首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Culture-independent and enrichment techniques, with an emphasis on members of the Archaea, were used to determine the composition and structure of microbial communities inhabiting microbial mats in the source pools of two geothermal springs near the towns of Arzakan and Jermuk in Armenia. Amplification of small-subunit rRNA genes using “universal” primers followed by pyrosequencing (pyrotags) revealed highly diverse microbial communities in both springs, with >99 % of pyrosequences corresponding to members of the domain Bacteria. The spring in Arzakan was colonized by a photosynthetic mat dominated by Cyanobacteria, in addition to Proteobacteria, Bacteroidetes, Chloroflexi, Spirochaeta and a diversity of other Bacteria. The spring in Jermuk was colonized by phylotypes related to sulfur, iron, and hydrogen chemolithotrophs in the Betaproteobacteria and Epsilonproteobacteria, along with a diversity of other Bacteria. Analysis of near full-length small subunit rRNA genes amplified using Archaea-specific primers showed that both springs are inhabited by a diversity of methanogens, including Methanomicrobiales and Methanosarcinales and relatives of Methanomassiliicoccus luminyensis, close relatives of the ammonia-oxidizing archaeon (AOA) “Candidatus Nitrososphaera gargensis”, and the yet-uncultivated Miscellaneous Crenarchaeotal Group and Deep Hydrothermal Vent Crenarchaeota group 1. Methanogenic enrichments confirmed the predicted physiological diversity, revealing methylotrophic, acetoclastic, and hydrogenotrophic methanogenesis at 45 and 55 °C, but not 65 °C. This is one of only a few studies combining cultivation-independent and -dependent approaches to study archaea in moderate-temperature (37–73 °C) terrestrial geothermal environments and suggests important roles for methanogenic archaea and AOA in the carbon and nitrogen biogeochemical cycles in these environments.  相似文献   

2.
Los Azufres spa consists of a hydrothermal spring system in the Mexican Volcanic Axis. Five samples (two microbial mats, two mud pools and one cenote water), characterized by high acidity (pH between 1 and 3) and temperatures varying from 27 to 87 °C, were investigated for their microbial diversity by Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and 16S rRNA gene library analyses. These data are the first to describe microbial diversity from Los Azufres geothermal belt. The data obtained from both approaches suggested a low bacterial diversity in all five samples. Despite their proximity, the sampling points differed by their physico-chemical conditions (mainly temperature and matrix type) and thus exhibited different dominant bacterial populations: anoxygenic phototrophs related to the genus Rhodobacter in the biomats, colorless sulfur oxidizers Acidithiobacillus sp. in the warm mud and water samples, and Lyzobacter sp.-related populations in the hot mud sample (87 °C). Molecular data also allowed the detection of sulfate and sulfur reducers related to Thermodesulfobium and Desulfurella genera. Several strains affiliated to both genera were enriched or isolated from the mesophilic mud sample. A feature common to all samples was the dominance of bacteria involved in sulfur and iron biogeochemical cycles (Rhodobacter, Acidithiobacillus, Thiomonas, Desulfurella and Thermodesulfobium genera).  相似文献   

3.
Seasonal shifts in bacterial diversity of microbial mats were analyzed in three hot springs (39?C68 °C) of Patagonia, using culture-independent methods. Three major bacterial groups were detected in all springs: Phyla Cyanobacteria and Bacteroidetes, and Order Thermales. Proteobacteria, Acidobacteria and Green Non-Sulfur Bacteria were also detected in small amounts and only in some samples. Thermophilic filamentous heterocyst-containing Mastigocladus were dominant Cyanobacteria in Porcelana Hot Spring and Geyser, and Calothrix in Cahuelmó, followed by the filamentous non-heterocyst Leptolyngbya and Oscillatoria. Bacteroidetes were detected in a wide temperature range and their relative abundance increased with decreasing temperature in almost all samples. Two Meiothermus populations with different temperature optima were found. Overall, fingerprinting analysis with universal bacterial primers showed high similarities within each hot spring despite differences in temperature. On the other hand, Cahuelmó Hot Spring showed a lower resemblance among samples. Porcelana Hot Spring and Porcelana Geyser were rather similar to each other, possibly due to a common geological substrate given their geographic proximity. This was even more evident with specific cyanobacterial primers. The different geological substrate and the seawater influence in Cahuelmó might have caused the differences in the microbial community structure with the other two hot springs.  相似文献   

4.
A total of 12 samples were collected from the Tengchong geothermal areas of Yunnan, China, with the goal to assess the arsenite (AsIII) oxidation potential of the extant microbial communities as inferred by the abundance and diversity of the AsIII oxidase large subunit gene aioA relative to geochemical context. Arsenic concentrations were higher (on average 251.68 μg/L) in neutral or alkaline springs than in acidic springs (on average 30.88 μg/L). aioA abundance ranged from 1.63 × 101 to 7.08 × 103 per ng of DNA and positively correlated with sulfide and the ratios of arsenate (AsV):total dissolved arsenic (AsTot). Based on qPCR estimates of bacterial and archaeal 16S rRNA gene abundance, aioA-harboring organisms comprised as much as ~15 % of the total community. Phylogenetically, the major aioA sequences (270 total) in the acidic hot springs (pH 3.3–4.4) were affiliated with Aquificales and Rhizobiales, while those in neutral or alkaline springs (pH 6.6–9.1) were inferred to be primarily bacteria related to Thermales and Burkholderiales. Interestingly, aioA abundance at one site greatly exceeded bacterial 16S rRNA gene abundance, suggesting these aioA genes were archaeal even though phylogenetically these aioA sequences were most similar to the Aquificales. In summary, this study described novel aioA sequences in geothermal features geographically far removed from those in the heavily studied Yellowstone geothermal complex.  相似文献   

5.

Background

Microbial mats are a good model system for ecological and evolutionary analysis of microbial communities. There are more than 20 alkaline hot springs on the banks of the Barguzin river inflows. Water temperature reaches 75 °C and pH is usually 8.0–9.0. The formation of microbial mats is observed in all hot springs. Microbial communities of hot springs of the Baikal rift zone are poorly studied. Garga is the biggest hot spring in this area.

Results

In this study, we investigated bacterial and archaeal diversity of the Garga hot spring (Baikal rift zone, Russia) using 16S rRNA metagenomic sequencing. We studied two types of microbial communities: (i) small white biofilms on rocks in the points with the highest temperature (75 °C) and (ii) continuous thick phototrophic microbial mats observed at temperatures below 70 °C. Archaea (mainly Crenarchaeota; 19.8% of the total sequences) were detected only in the small biofilms. The high abundance of Archaea in the sample from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. In the microbial mats, primary products were formed by cyanobacteria of the genus Leptolyngbya. Heterotrophic microorganisms were mostly represented by Actinobacteria and Proteobacteria in all studied samples of the microbial mats. Planctomycetes, Chloroflexi, and Chlorobi were abundant in the middle layer of the microbial mats, while heterotrophic microorganisms represented mostly by Firmicutes (Clostridia, strict anaerobes) dominated in the bottom part. Besides prokaryotes, we detect some species of Algae with help of detection their chloroplasts 16 s rRNA.

Conclusions

High abundance of Archaea in samples from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. Metagenomic analysis of microbial communities of the microbial mat of Garga hot spring showed that the three studied points sampled at 70 °C, 55 °C, and 45 °C had similar species composition. Cyanobacteria of the genus Leptolyngbya dominated in the upper layer of the microbial mat. Chloroflexi and Chlorobi were less abundant and were mostly observed in the middle part of the microbial mat. We detected domains of heterotrophic organisms in high abundance (Proteobacteria, Firmicutes, Verrucomicrobia, Planctomicetes, Bacteroidetes, Actinobacteria, Thermi), according to metabolic properties of known relatives, which can form complete cycles of carbon, sulphur, and nitrogen in the microbial mat. The studied microbial mats evolved in early stages of biosphere formation. They can live autonomously, providing full cycles of substances and preventing live activity products poisoning.
  相似文献   

6.
Thousands of hot springs are located in the north‐eastern part of the Yunnan–Tibet geothermal zone, which is one of the most active geothermal areas in the world. However, a comprehensive and detailed understanding of microbial diversity in these hot springs is still lacking. In this study, bacterial and archaeal diversities were investigated in 16 hot springs (pH 3.2–8.6; temperature 47–96°C) in Yunnan Province and Tibet, China by using a barcoded 16S rRNA gene‐pyrosequencing approach. Aquificae, Proteobacteria, Firmicutes, Deinococcus‐Thermus and Bacteroidetes comprised the large portion of the bacterial communities in acidic hot springs. Non‐acidic hot springs harboured more and variable bacterial phyla than acidic springs. Desulfurococcales and unclassified Crenarchaeota were the dominated groups in archaeal populations from most of the non‐acidic hot springs; whereas, the archaeal community structure in acidic hot springs was simpler and characterized by Sulfolobales and Thermoplasmata. The phylogenetic analyses showed that Aquificae and Crenarchaeota were predominant in the investigated springs and possessed many phylogenetic lineages that have never been detected in other hot springs in the world. Thus findings from this study significantly improve our understanding of microbial diversity in terrestrial hot springs.  相似文献   

7.
The geothermal system of the Araró region, located in the Trans-Mexican Volcanic Belt of México, hosts various hot springs with unique physicochemical characteristics, including temperatures ranging from 45°C to 78°C. The microbial diversity in these hot springs has been explored only by culture-dependent surveys. In this study, we performed metagenomic Illumina MiSeq, and 16S and 18S rRNA pyrosequencing analysis of the microbial life are residing in the microbial mats of the springs called “Tina–Bonita”. Our results show the presence of 186 operational taxonomic units, 99.7% of which belong to bacteria, 0.27% to eukaryotes, and 0.03% to archaea. The most abundant bacterial divisions are the Proteobacteria, Chloroflexi, and Cyanobacteria, which include 105 genera. The ecological indexes indicate that the microbial mats have moderate microbial diversity. An abundant group of genes that participate in photosynthesis, including photosynthetic electron transport, as well as photosystems I and II, were detected. Another cluster of genes was found that participates in sulfur, nitrogen, and methane metabolism. Finally, this phylogenetic and metagenomic analysis revealed an unexpected taxonomic and genetic diversity, expanding our knowledge of microbial life under specific extreme conditions.  相似文献   

8.
The diversity and community composition of Actinobacteria in microbial mats of five Tibetan hot springs (temperatures 26°C to 81°C) and a sympatric soil were investigated with 16S rRNA gene phylogentic analysis. A total of 278 clones were obtained. The actinobacterial communities in the Tibetan hot springs were diverse, and most of the retrieved clones were affiliated with Actinobacteridae, Acidimicrobidae, and unclassified Actinobacteria. The Actinobacteridae sequences were distributed into seven suborders (e.g., Frankineae, Corynebacterineae, Micromonosporineae, Pseudonocardineae, Propionibacterineae, Micrococcineae, and Actinomycineae) and unclassified Actinobacteridae. The actinobacterial composition varied among different hot springs. Statistical analysis showed that the actinobacterial diversity in the investigated Tibetan hot springs was not significantly correlated with temperature, suggesting that temperature is not a key factor in shaping the actinobacterial diversity in hot springs.  相似文献   

9.
The effect of altitude and season on abundance and diversity of the culturable heterotrophic bacterial and yeast community was examined at four forest sites in the Italian Alps along an altitude gradient (545–2000 m). Independently of altitude, bacteria isolated at 0 °C (psychrophiles) were less numerous than those recovered at 20 °C. In autumn, psychrophilic bacterial population increased with altitude. The 1194 bacterial strains were primarily affiliated with the classes Alpha-, Beta-, Gammaproteobacteria, Spingobacteriia and Flavobacteriia. Fifty-seven of 112 operational taxonomic units represented potential novel species. Strains isolated at 20 °C had a higher diversity and showed similarities in taxa composition and abundance, regardless of altitude or season, while strains isolated at 0 °C showed differences in community composition at lower and higher altitudes. In contrast to bacteria, yeast diversity was season-dependent: site- and altitude-specific effects on yeast diversity were only detected in spring. Isolation temperature affected the relative proportions of yeast genera. Isolations recovered 719 strains, belonging to the classes Dothideomycetes, Saccharomycetes, Tremellomycetes and Mycrobotryomycetes. The presence of few dominant bacterial OTUs and yeast species indicated a resilient microbial population that is not affected by season or altitude. Soil nutrient contents influenced significantly abundance and diversity of culturable bacteria, but not of culturable yeasts.  相似文献   

10.
11.
12.
Geothermal springs in Algeria have been known since the Roman Empire. They mainly locate in Eastern Algeria and are inhabited by thermophilic organisms, which include cyanobacteria forming mats and concretions. In this work, we have investigated the cyanobacterial diversity of these springs. Cyanobacteria were collected from water, concretions and mats in nine hot springs with water temperatures ranging from 39 to 93 °C. Samples were collected for isolation in culture, microscopic morphological examination, and molecular diversity analysis based on 16S rRNA gene sequences. Nineteen different cyanobacterial morphotypes were identified, the most abundant of which were three species of Leptolyngbya, accompanied by members of the genera Gloeocapsa, Gloeocapsopsis, Stigonema, Fischerella, Synechocystis, Microcoleus, Cyanobacterium, Chroococcus and Geitlerinema. Molecular diversity analyses were in good general agreement with classical identification and allowed the detection of additional species in three springs with temperatures higher than 50 °C. They corresponded to a Synechococcus clade and to relatives of the intracellularly calcifying Candidatus Gloeomargarita lithophora. The hottest springs were dominated by members of Leptolyngbya, Synechococcus-like cyanobacteria and Gloeomargarita, whereas Oscillatoriales other than Leptolyngbya, Chroococcales and Stigonematales dominated lower temperature springs. The isolation of some of these strains sets the ground for future studies on the biology of thermophilic cyanobacteria.  相似文献   

13.
In this study the bacterial diversity of thermophilic microbial mats (40 to 65°C) in three alkaline hot springs of the Baikal Rift Zone (BRZ) was determined through pyrosequencing of 16S rRNA gene libraries. Significant diversity of bacterial species was found in the biomats of the hot springs with total number of detected phylotypes of 607. The highest share of the microbial community was represented by the phyla Chloroflexi (Seya Spring, 76.4%), Deinococcus-Thermus (Alla Spring, 45.1%), Nitrospira (Alla Spring, 36.1%), Cyanobacteria (Tsenkher Spring, 33.1%), and Proteobacteria (Tsenkher Spring, 22.6%), but their ratio varied significantly in different springs. A comparison of the biodiversity and composition of microbial communities between hot springs showed a decrease in biodiversity with increasing temperature. A large number of sequences showed a low degree of similarity with cultivated representatives in public databases. Microbial communities showed intensive rates of production and destruction of organic compounds, as revealed by the quantitative assessment of their functional activity.  相似文献   

14.
Two hydrothermal springs (AI: 51 °C, pH 3; AIV: 92 °C, pH 8) were analysed to determine prokaryotic community composition. Using pyrosequencing, 93,576 partial 16S rRNA gene sequences amplified with V2/V3-specific primers for Bacteria and Archaea were investigated and compared to 16S rRNA gene sequences from direct metagenome sequencing without prior amplification. The results were evaluated by fluorescence in situ hybridization (FISH). While in site AIV Bacteria and Archaea were detected in similar relative abundances (Bacteria 40 %, Archaea 35 %), the acidic spring AI was dominated by Bacteria (68 %). In spring AIV the combination of 16S rRNA gene sequence analysis and FISH revealed high abundance (>50 %) of heterotrophic bacterial genera like Caldicellulosiruptor, Dictyoglomus, and Fervidobacterium. In addition, chemolithoautotrophic Aquificales were detected in the bacterial community with Sulfurihydrogenibium being the dominant genus. Regarding Archaea, only Crenarchaeota, were detected, dominated by the family Desulfurococcaceae (>50 %). In addition, Thermoproteaceae made up almost 25 %. In the acidic spring (AI) prokaryotic diversity was lower than in the hot, slightly alkaline spring AIV. The bacterial community of site AI was dominated by organisms related to the chemolithoautotrophic genus Acidithiobacillus (43 %), to the heterotrophic Acidicaldus (38 %) and to Anoxybacillus (7.8 %). This study reveals differences in the relative abundance of heterotrophic versus autotrophic microorganisms as compared to other hydrothermal habitats. Furthermore, it shows how different methods to analyse prokaryotic communities in complex ecosystems can complement each other to obtain an in-depth picture of the taxonomic composition and diversity within these hydrothermal springs.  相似文献   

15.
The respiratory and photosynthetic quinones of microbial mats which occurred in Japanese sulfide-containing neutral-pH hot springs at different temperatures were analyzed by spectrochromatography and mass spectrometry. All of the microbial mats that developed at high temperatures (temperatures above 68°C) were so-called sulfur-turf bacterial mats and produced methionaquinones (MTKs) as the major quinones. A 78°C hot spring sediment had a similar quinone profile. Chloroflexus-mixed mats occurred at temperatures of 61 to 65°C and contained menaquinone 10 (MK-10) as the major component together with significant amounts of either MTKs or plastoquinone 9 (PQ-9). The sunlight-exposed biomats growing at temperatures of 45 to 56°C were all cyanobacterial mats, in which the photosynthetic quinones (PQ-9 and phylloquinone) predominated and MK-10 was the next most abundant component in most cases. Ubiquinones (UQs) were not found or were detected in only small amounts in the biomats growing at temperatures of 50°C and above, whereas the majority of the quinones of a purple photosynthetic mat growing at 34°C were UQs. A numerical analysis of the quinone profiles was performed by using the following three parameters: dissimilarity index (D), microbial divergence index (MDq), and bioenergetic divergence index (BDq). A D matrix tree analysis showed that the hot spring mats consisting of the sulfur-turf bacteria, Chloroflexus spp., cyanobacteria, and purple phototrophic bacteria formed distinct clusters. Analyses of MDq and BDq values indicated that the microbial diversity of hot spring mats decreased as the temperature of the environment increased. The changes in quinone profiles and physiological types of microbial mats in hot springs with thermal gradients are discussed from evolutionary viewpoints.  相似文献   

16.
In situ analysis of the 16S rRNA genes from bacterial mats of five hydrothermal springs (36–58°C) in the Uzon caldera (Kamchatka, Russia) was carried out using clone libraries. Eight clone libraries contained 18 dominant phylotypes (over 4–5%). In most clone libraries, the phylotype of the green sulfur bacterium Chlorobaculum sp. was among the dominant ones. The phylotypes of the green nonsulfur bacteria Chloroflexus and Roseiflexus and of purple nonsulfur bacteria Rhodoblastus, Rhodopseudomonas, and Rhodoferax were also among the dominant ones. Cyanobacteria were represented by one dominant phylotype in a single spring. Among nonphototrophic bacteria, the dominant phylotypes belonged to Sulfyrihydrogenibium sp., Geothrix sp., Acidobacterium sp., Meiothermus sp., Thiomonas sp., Thiofaba sp., and Spirochaeta sp. Three phylotypes were not identified at the genus level. Most genera of phototrophic and nonphototrophic organisms corresponding to the phylotypes from Uzon hydrotherms have been previously revealed in the hydrotherms of volcanically active regions of America, Asia, and Europe. These results indicate predominance of bacterial mats carrying out anaerobic photosynthesis in the hydrotherms of the Uzon caldera.  相似文献   

17.
So-called sulfur-turf microbial mats, which are macroscopic white filaments or bundles consisting of large sausage-shaped bacteria and elemental sulfur particles, occur in sulfide-containing hot springs in Japan. However, no thermophiles from sulfur-turf mats have yet been isolated as cultivable strains. This study was undertaken to determine the phylogenetic positions of the sausage-shaped bacteria in sulfur-turf mats by direct cloning and sequencing of 16S rRNA genes amplified from the bulk DNAs of the mats. Common clones with 16S rDNA sequences with similarity levels of 94.8 to 99% were isolated from sulfur-turf mat samples from two geographically remote hot springs. Phylogenetic analysis showed that the phylotypes of the common clones formed a major cluster with members of the Aquifex-Hydrogenobacter complex, which represents the most deeply branching lineage of the domain bacteria. Furthermore, the bacteria of the sulfur-turf mat phylotypes formed a clade distinguishable from that of other members of the Aquifex-Hydrogenobacter complex at the order or subclass level. In situ hybridization with clone-specific probes for 16S rRNA revealed that the common phylotype of sulfur-turf mat bacteria is that of the predominant sausage-shaped bacteria.Microbial mats develop in a wide variety of aquatic environments, including geothermal hot springs and hydrothermal vents. There are several types of thermophilic microbial mats, e.g., those of cyanobacteria, anoxygenic phototrophic bacteria, and chemotrophic sulfur bacteria, which differ according to the physical and chemical conditions they favor and other environmental factors (10, 38). These microbial mats in thermal habitats have been studied extensively as a peculiar microbial community of the ecosystem, in relation to the phylogeny and evolution of thermophilic prokaryotes, or as a source of new functional enzymes.So-called sulfur-turf microbial mats are macroscopic bundles of white filaments consisting of colorless sulfur bacteria and elemental sulfur particles that form in shallow streams of sulfide-containing high-temperature hot springs. Since first reported by Miyoshi in 1897 (33), this kind of microbial mat has been recorded for several geographically remote hot springs in Japan, although there have been only scattered reports of sulfur-turf microbial mats or chemotrophic sulfur streamers in geothermal springs in other countries (9, 13, 14). The sulfur-turf mats generally develop within a temperature range of 45 to 73°C, within a pH range of 6 to 9, and at discrete sulfide-oxygen interfaces in geothermal springs. These characteristics suggest that the major constituents of the sulfur-turf prokaryotic community are (hyper)thermophilic, neutrophilic, microaerophilic, and chemolithotrophic bacteria. Early studies of these sulfur-turf mats distinguished microscopically three morphotypes of bacteria, two of which were tentatively named Thiovibrio miyoshi and Thiothrix miyoshi (15). Moreover, in situ ecophysiological and microscopic studies have shown that one of these bacteria, the large sausage-shaped “Thiovibrio miyoshi,” predominates in sulfur-turf mats and oxidizes environmental sulfide to elemental sulfur and then to sulfate via thiosulfate (2731). So far, however, it has not been possible to isolate and cultivate any thermophilic prokaryotes from the sulfur-turf mats predominated by these sausage-shaped bacteria with artificial media, and no attempt has been made to clarify their taxonomic and phylogenetic positions.Determination of 16S rRNA genes is a useful research strategy for identifying uncultivated prokaryotes and is now commonly performed in ecological studies. This technique, involving PCR amplification of 16S rRNA genes or synthesis of cDNAs from bulk 16S rRNAs of natural mixed microbial populations, has been used successfully for the phylogenetic characterization of prokaryotes in hydrothermal environments (6, 7, 34, 40, 41, 47, 48). In the present study, this approach was applied to characterize the sausage-shaped bacteria in sulfur-turf mats without isolating and cultivating them. Here we report that sulfur-turf mats contain novel thermophilic bacteria belonging to the earliest-branching lineage of the domain bacteria.  相似文献   

18.
Owen  R.B.  Renaut  R.W.  Hover  V.C.  Ashley  G.M.  Muasya  A.M. 《Hydrobiologia》2004,518(1-3):59-78
Lakes Bogoria and Baringo lie in a semi-arid part of the Kenya Rift Valley between 0° 15′–0° 30'N and 36° 02′–36° 05′E. Nevertheless, the area around these lakes contains numerous wetland systems that have been formed: along lake shorelines; along faults where hot, warm and cold springs have developed; and along river systems that cross the rift floor. Six major types of wetland are recognized: Proximal Hot Springs; Hot Spring Marshes; Blister Wetlands; Typha and Cyperus papyrus Swamps; Floodplain Marshes; Hypersaline Lake Littoral Wetlands; and Freshwater Lake Littoral Wetlands. These show significant variability in terms of geomorphic setting, water chemistry, temperature, plant communities and diatom floras. They are variously dominated by macrophytes, such as Cyperus laevigatus, Typha domingensis and Cyperus papyrus. In some cases macrophytes are absent. In hot spring settings and in hypersaline lake littoral zones bacterial mats are common. Although absent in some samples, diatoms occur in at least parts of all of the wetlands, varying in diversity, abundance and species composition. Canonical correspondence analysis indicates that diatom floras show a close relationship with pH, temperature, and specific conductivity, with other environmental variables such as Si and nitrate being of secondary importance. Common diatoms include: Anomoeoneis sphaerophora var. guntheri, Navicula tenella, N. cuspidata, and Nitzschia invisitata in hot springs, where diversity is generally low and abundance is variable. Other wetland types contain distinctive diatom floras that variously include: Fragilaria brevistriata, Gomphonema parvulum, Navicula tenelloides, Nitzschia communis, N. latens, N. sigma, Rhopalodia gibberula, and Stauroneis anceps.  相似文献   

19.
The availability of microbiological and geochemical data from island-based and high-arsenic hydrothermal systems is limited. Here, the microbial diversity in island-based hot springs on Ambitle Island (Papua New Guinea) was investigated using culture-dependent and -independent methods. Waramung and Kapkai are alkaline springs high in sulfide and arsenic, related hydrologically to previously described hydrothermal vents in nearby Tutum Bay. Enrichments were carried out at 24 conditions with varying temperature (45, 80 °C), pH (6.5, 8.5), terminal electron acceptors (O2, SO4 2?, S0, NO3 ?), and electron donors (organic carbon, H2, AsIII). Growth was observed in 20 of 72 tubes, with media targeting heterotrophic metabolisms the most successful. 16S ribosomal RNA gene surveys of environmental samples revealed representatives in 15 bacterial phyla and 8 archaeal orders. While the Kapkai 4 bacterial clone library is primarily made up of Thermodesulfobacteria (74 %), no bacterial taxon represents a majority in the Kapkai 3 and Waramung samples (40 % Proteobacteria and 39 % Aquificae, respectively). Deinococcus/Thermus and Thermotogae are observed in all samples. The Thermococcales dominate the archaeal clone libraries (65–85 %). Thermoproteales, Desulfurococcales, and uncultured Eury- and Crenarchaeota make up the remaining archaeal taxonomic diversity. The culturing and phylogenetic results are consistent with the geochemistry of the alkaline, saline, and sulfide-rich fluids. When compared to other alkaline, island-based, high-arsenic, or shallow-sea hydrothermal communities, the Ambitle Island archaeal communities are unique in geochemical conditions, and in taxonomic diversity, richness, and evenness.  相似文献   

20.
An integrated view of bacterial and archaeal diversity in saline soil habitats is essential for understanding the biological and ecological processes and exploiting potential of microbial resources from such environments. This study examined the collective bacterial and archaeal diversity in saline soils using a meta-analysis approach. All available 16S rDNA sequences recovered from saline soils were retrieved from publicly available databases and subjected to phylogenetic and statistical analyses. A total of 9,043 bacterial and 1,039 archaeal sequences, each longer than 250 bp, were examined. The bacterial sequences were assigned into 5,784 operational taxonomic units (OTUs, based on ≥97 % sequence identity), representing 24 known bacterial phyla, with Proteobacteria (44.9 %), Actinobacteria (12.3 %), Firmicutes (10.4 %), Acidobacteria (9.0 %), Bacteroidetes (6.8 %), and Chloroflexi (5.9 %) being predominant. Lysobacter (12.8 %) was the dominant bacterial genus in saline soils, followed by Sphingomonas (4.5 %), Halomonas (2.5 %), and Gemmatimonas (2.5 %). Archaeal sequences were assigned to 602 OTUs, primarily from the phyla Euryarchaeota (88.7 %) and Crenarchaeota (11.3 %). Halorubrum and Thermofilum were the dominant archaeal genera in saline soils. Rarefaction analysis indicated that less than 25 % of bacterial diversity, and approximately 50 % of archaeal diversity, in saline soil habitats has been sampled. This analysis of the global bacterial and archaeal diversity in saline soil habitats can guide future studies to further examine the microbial diversity of saline soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号