首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of far-red (FR; 700–800 nm) radiation on steady-state stomatal conductance and net photosynthesis in P. vulgaris has been studied. Whereas FR radiation alone was relatively ineffective, addition of FR to a background of white light (WL; predominantly 400–700 nm) resulted in increased stomatal conductance. Stomata exhibited a marked diurnal sensitivity to FR. The action maximum for enhancing stomatal conductance was near 714 nm. A combination of FR and infra-red (IR; >800 nm) enhanced net photosynthesis when added to a background of WL. When IR alone was added to WL, there was a net decrease in photosynthesis, indicating that it is the FR waveband which is responsible for the observed photosynthetic effects. Naturally occurring levels of FR radiation (235 mol·m-2·s-1) in vegetation-canopy shade enhanced net photosynthetic CO2 gain by 28% when added to a background of 55 mol·m-2·s-1 WL.Abbreviations BL blue - FR far-red - IR infra-red - PAR photosynthetically active radiation - R red - WL white light  相似文献   

2.
Onion (Allium cepa L.) plants were examined to determine the photosynthetic role of CO2 that accumulates within their leaf cavities. Leaf cavity CO2 concentrations ranged from 2250 L L–1 near the leaf base to below atmospheric (<350 L L–1) near the leaf tip at midday. There was a daily fluctuation in the leaf cavity CO2 concentrations with minimum values near midday and maximum values at night. Conductance to CO2 from the leaf cavity ranged from 24 to 202 mol m–2 s–1 and was even lower for membranes of bulb scales. The capacity for onion leaves to recycle leaf cavity CO2 was poor, only 0.2 to 2.2% of leaf photosynthesis based either on measured CO2 concentrations and conductance values or as measured directly by 14CO2 labeling experiments. The photosynthetic responses to CO2 and O2 were measured to determine whether onion leaves exhibited a typical C3-type response. A linear increase in CO2 uptake was observed in intact leaves up to 315 L L–1 of external CO2 and, at this external CO2 concentration, uptake was inhibited 35.4±0.9% by 210 mL L–1 O2 compared to 20 mL L–1 O2. Scanning electron micrographs of the leaf cavity wall revealed degenerated tissue covered by a membrane. Onion leaf cavity membranes apparently are highly impermeable to CO2 and greatly restrict the refixation of leaf cavity CO2 by photosynthetic tissue.Abbreviations Ca external CO2 concentration - Ci intercellular CO2 concentration - CO2 compensation concentration - PPFR photosynthetic photon fluence rate  相似文献   

3.
Photosynthetic gas exchange characteristics of two common boreal forest mosses, Sphagnum (section acutifolia) and Pleurozium schreberi, were measured continuously during the time required for the moss to dry out from full hydration. Similar patterns of change in CO2 assimilation with variation in water content occurred for both species. The maximum rates of CO2 assimilation for Sphagnum (approx. 7 mol m–2 s–1) occurred at a water content of approximately 7 (fresh weight/dry weight) while for Pleurozium the maximum rate (approx. 2 mol m–2 s–1) occurred at a water content of approximately 6 (fresh weight/dry weight). Above and below these water contents CO2 assimilation declined. In both species total conductance to water vapour (expressed as a percentage of the maximum rates) remained nearly constant at a water content above 9 (fresh weight/dry weight), but below this level declined in a strong linear manner. Short-term, on-line 13CO2 and C18O16O discrimination varied substantially with changes in moss water content and associated changes in the ratio of chloroplast CO2 to ambient CO2 partial pressure. At full hydration (maximum water content) both Sphagnum and Pleurozium had similar values of 13CO2 discrimination (approx. 15). Discrimination against 13CO2 increased continuously with reductions in water content to a maximum of 27 in Sphagnum and 22 in Pleurozium. In a similar manner C18C16O discrimination increased from approximately 30 at full hydration in both species to a maximum of 150 in Sphagnum and 90 in Pleurozium, at low water content. The observed changes in C18O16O were strongly correlated to predictions of a mechanistic model of discrimination processes. Field measurements of moss water content suggested that photosynthetic gas exchange by moss in the understory of a black spruce forest was regularly limited by low water content.  相似文献   

4.
The importance of reduced leaf conductance (stomatal and boundary layer) in limiting photosynthetic rates during water stress was studied in Encelia frutescens, a drought-deciduous leaved subshrub of the Mohave and Sonoran Deserts. Light-saturated CO2 assimilation rates of greenhouse grown plants decreased from 42.6±1.6mol CO2 m-2 s-1 (x±s.e.) to 1.7±1.7 mol CO2 m-2s-1 as leaf water potential decreased from-1.5 MPa to-4.0 MPa. The dependence of light saturated, CO2 assimilation rate on leaf intercellular CO2 concentrations between 60 and 335 l l-1 was also determined as leaf water potential decline. This enabled us to compare the effects of leaf water potentials on limitations to carbon assimilation imposed by leaf conductance and by intrinsic photosynthetic capacity. Both leaf conductance and intrinsic photosynthetic capacity decreased with decreasing leaf water potential, but the decrease in leaf conductance was proportionately greater. The relative stomatal limitation, defined as the percent limitation in photosynthetic rate due to the presence of gas-phase diffusional barriers, increased from (x±s.e.) to 41±3% as water potentials became more negative. Since both leaf conductance and intrinsic photosynthetic capacity were severely reduced in an absolute sense, however, high photosynthetic rates could not have been restored at low leaf water potentials without simultaneous increases in both components.  相似文献   

5.
Strawberry (Fragaria ananassaDuch. cv. Fengxiang) plantlets were cultured under two in vitroenvironments for rooting, and then acclimatized under two ex vitroirradiance conditions. At the end of rooting stage plant height, fresh weight and specific leaf area of T1-plants grown under high sucrose concentration (3 sucrose), low photosynthetic photon flux density (30 mol m–2 s–1) and normal CO2 concentration (350–400 l l–1) were significantly higher than those of T2-plantlets grown under low sucrose concentration (0.5), high photosynthetic photon flux density (90 mol m–2 s–1) and elevated CO2 concentration (700–800 l l–1). But T2-plantlets had higher net photosynthetic rate (Pn), effective photochemical quantum yield of PSII (PSII), effective photosynthetic electron transport rate (ETR), photochemical quenching (qP) and ratio of chlorophyll fluorescence yield decrease (Rfd). After transfer, higher irradiance obviously promoted the growth of plantlets and was beneficial for the development of photosynthetic functions during acclimatization. T2-plantlets had higher fresh weight, leaf area, PSII and ETR under higher ex vitroirradiance condition.  相似文献   

6.
Summary CO2 assimilation in relation to light intensity and the relationship between leaf nitrogen and phosphorus concentrations and CO2 assimilation in 14 species of ecologically important Zimbabwean trees were examined. Eight of the species are members of the Fabaceae (Leguminosae). In the majority of Zimbabwean climax woodlands, the dominant trees are non-nodulating members of the sub-family Caesalpinioideae. The species examined have higher light saturation points (>700 mol m–2 s–1) than woody species from temperate areas; one species, Acacia nigrescens, did not reach saturation at photon fluxes greater than 1500 mol m–2 sec–1. Higher leaf nitrogen content was found to correlate positively with higher CO2 assimilation rates (r=0.85; P0.0003); there was no correlation between leaf phosphorus content and CO2 uptake rates. There were no significant differences between sites in terms of leaf nitrogen or phosphorus content, but the mean photosynthetic rate at one of the sites (Chizedzi) was lower. Taxa from the nodulating legumes were found to have higher leaf nitrogen contents (309.1±SD 22 mmol m–2) than those of the non-nodulating species (239±33); the lowest nitrogen contents were found in nonleguminous trees (179±42), with the exception of Ziziphus mucronata. This species may form an association with an N2-fixing actinomycete.  相似文献   

7.
Summary The gas exchange characteristics under steadystate and transient light conditions were determined for a redwood forest understory herb Adenocaulon bicolor, that depends on use of sunflecks for a large fraction of its daily carbon gain. Measurements under steady-state conditions indicated that this species has photosynthetic characteristics that are typical for understory plants. The mean light-saturated assimilation rate was 5.26 mol CO2 m-2 s-1; the light saturation and compensation occurred at 243 and 2 mol photons m-2 s-1, respectively. This light compensation point was much less than the photon flux density under diffuse light in the understory so that positive assimilation could be maintained throughout the day. When leaves that had been in diffuse light for at least 2 h were exposed to a sudden increase in PFD to saturating levels, 10–30 min were required for both assimilation and stomatal conductance to reach maximum values. Calculation of intercellular CO2 pressures, however, suggest that for the first 10 min after the light increase, biochemical factors were responsible for most of the increase in assimilation. Thereafter stomatal opening caused a further increase in assimilation that was no more than 25% of the total. When fully induced leaves were returned to low light, induction was rapidly lost even though stomatal conductance decreased only slowly. This rapid loss of induction limited the capacity of A. bicolor to use sunflecks after low light periods that lasted longer than 1–2 min. However, during periods when sunflecks are more frequent there is probably little loss of induction. Under these conditions, sunflecks are used with high efficiency for assimilation.  相似文献   

8.
The growth and photosynthetic responses ofPterocladiella capillaceato NH4, PO4, CO2-enrichment, pH, irradiance and temperature were evaluated for winter or summer plants cultivated under laboratory and outdoor settings. In the laboratory, using a gradient table, optimal growth temperature and irradiance for winter plants occurred at 10–20 °C and 100 mol photon m–2s–1, averaging 24.3% per week. The optimal growth conditions found for summer plants were 10–20 °C and 20 mol photon m–2s–1, averaging 29.0% per week. In a pH-stat cultivation system photosynthetic rates and growth rates were largely unaffected by pH in the range 6.5–8.5, however, they both decreased significantly above 8.5. In outdoor settings, using 40 L tanks,P. capillaceawas more responsive to the frequency the algae were fed with NH4and PO4rather than the relative concentrations of these nutrients. The average growth rates during winter were 28.3% and 12.5% per week when NH4and PO4were included once and twice a week for 24-h periods, respectively, while summer plants grew 15.0% and 25.3% per week at these nutrient regimes. Algae grown in seawater (containing 13.8 ± 1.8 M CO2) or CO2-enriched seawater (averaging 33.7 ± 13.2 M CO2) had similar growth rates or even reduced productivity under CO2-enrichment during winter. Concentrations of chlorophyllawere in average significantly higher in winter as compared to summer especially when nutrients were included twice a week. Phycoerythrin levels were also higher for plants fed with nutrients twice a week particularly during summer time. Although agar yields were limited and not seasonally dependent, this study shows high growth capacity forP. capillaceaas compared to previous investigations. Future mariculture prospective using current tank cultivation techniques for this species will likely depend on market demands for high quality agar.  相似文献   

9.
Ray  D.  Dey  S.K.  Das  G. 《Photosynthetica》2004,42(1):93-97
Adjustment in leaf area : mass ratio called leaf area ratio (LAR) is one of the strategies to optimize photon harvesting. LAR was recorded for 10 genotypes of Hevea brasiliensis under high irradiance and low temperature and the genotypes were categorized into two groups, i.e. high LAR and low LAR types. Simultaneously, the growth during summer as well as winter periods, photosynthetic characteristics, and in-vitro oxidative damage were studied. Low LAR (19.86±0.52 m2 kg–1) types, recorded an average of 18.0 % chlorophyll (Chl) degradation under high irradiance and 7.1 % Chl degradation under low temperature. These genotypes maintained significantly higher net photosynthetic rate (P N) of 10.4 mol(CO2) m–2 s–1 during winter season. On the contrary, the high LAR (24.33±0.27 m2 kg–1) types recorded significantly lower P N of 4 mol(CO2) m–2 s–1 and greater Chl degradation of 37.7 and 13.9 % under high irradiance and low temperature stress, respectively. Thus LAR may be one of the physiological traits, which are possibly involved in plant acclimation process under both stresses studied.  相似文献   

10.
The CO2 gas exchange rates of the Central European perennial understory plantAsarum europaeum L. were measured in late autumn (October 30 to November 30) in its natural habitat day and night.During these measurements the temperature ranged from 0 to 15°C and the absolute air humidity from 3 to 10 mg H2O·1–1. Temperature and absolute air humidity over these ranges did not affect CO2 net assimilation which was determined almost entirely by quantum flux density.CO2 net assimilation was light saturated at about 100 M·m–2·s–1 quantum flux density. The uptake rate at this point was 4.3 mg·dm–2·h–1. The compensation point occurred at approximately 1 M·m–2·s–1.  相似文献   

11.
Jia  Yinsuo  Gray  V.M. 《Photosynthetica》2003,41(4):605-610
We determined for Vicia faba L the influence of nitrogen uptake and accumulation on the values of photon saturated net photosynthetic rate (P Nmax), quantum yield efficiency (), intercellular CO2 concentration (C i), and carboxylation efficiency (C e). As leaf nitrogen content (NL) increased, the converged onto a maximum asymptotic value of 0.0664±0.0049 mol(CO2) mol(quantum)–1. Also, as NL increased the C i value fell to an asymptotic minimum of 115.80±1.59 mol mol–1, and C e converged onto a maximum asymptotic value of 1.645±0.054 mol(CO2) m–2 s–1 Pa–1 and declined to zero at a NL-intercept equal to 0.596±0.096 g(N) m–2. fell to zero for an NL-intercept of 0.660±0.052 g(N) m–2. As NL increased, the value of P Nmax converged onto a maximum asymptotic value of 33.400±2.563 mol(CO2) m–2 s–1. P N fell to zero for an NL-intercept of 0.710±0.035 g(N) m–2. Under variable daily meteorological conditions the values for NL, specific leaf area (L), root mass fraction (Rf), P Nmax, and remained constant for a given N supply. A monotonic decline in the steady-state value of Rf occurred with increasing N supply. L increased with increasing N supply or with increasing NL.  相似文献   

12.
Cultures in vitro of Betula pendula Roth were subjected to light of different spectral qualities. Photosynthetic capacity was highest when the plantlets were exposed to blue light (max recorded photosynthesis, 82 mol CO2 dm–2 h–1) and lowest when irradiated with light high in red and/or far-red wave lengths (max recorded photosynthesis, 40 mol CO2 dm–2 h–1). Highest chlorophyll content (2.2 mg dm–2 leaf area) was found in cultures irradiated with blue light, which also enhanced the leaf area. Morphometric analysis of light micrographs showed that the epidermal cell areas were largest in plantlets subjected to blue light and smallest in those subjected to red light. Morphometric analysis of electron micrographs of palisade cells, showed that the functional chloroplast area was largest in chloroplasts of leaves subjected to blue light and smallest in those exposed to red light. We suggest that light quality affects photosynthesis both through effects on the composition of the photosynthetic apparatus and on translocation of carbohydrates from chloroplasts.  相似文献   

13.
Explants excised from strawberry (Fragaria x ananassa Duch.) plantlets were cultured in vitro for 21 days on half-strength MS (Murashige & Skoog 1962) basal liquid medium with 20 g l-1 sucrose and without sugar in the vessels capped with gas permeable microporous polypropylene film. The experiments were conducted under CO2 nonenriched (350–450 mol mol-1 in the culture room) and CO2 enriched (2,000 mol mol-1 during the photoperiod in the culture room) conditions with a PPF (photosynthetic photon flux) of 200 mol m-2 s-1. The CO2 concentration in the vessels decreased to approximately 200 mol mol-1 during the photoperiod on day 21 under CO2 nonenriched conditions. The fresh and dry weight, net photosynthetic rate (NPR) per plantlet, NPR per g leaf fresh weight, NPR per g leaf dry weight, the number of unfolded leaves, and ion uptake of PO4 3-, NO3 -, Ca2+, Mg2+ and K+ on day 21 were the greatest under photoautotrophic (no sugar in the medium) and CO2 enriched conditions. The residual percent of PO4 3- was 3% on day 21 under photoautotrophic and CO2 enriched conditions.Abbreviations MS Murashige & Skoog (1962) basal medium composition - NPR net photosynthetic rate - PPF photosynthetic photon flux  相似文献   

14.
Soybean [Glycine max (L.) Merr. cv. Williams 82 and A3127] plants were grown in the field under long-term soil moisture deficit and irrigation to determine the effects of severe drought stress on the photosynthetic capacity of soybean leaves. Afternoon leaf water potentials, stomatal conductances, intercellular CO2 concentrations and CO2-assimilation rates for the two soil moisture treatments were compared during the pod elongation and seed enlargement stages of crop development. Leaf CO2-assimilation rates were measured with either ambient (340 l CO2 l–1) or CO2-enriched (1800 l CO2 l–1) air. Although seed yield and leaf area per plant were decreased an average of 48 and 31%, respectively, as a result of drought stress, leaf water potentials were reduced only an average of 0.27 MPa during the sampling period. Afternoon leaf CO2-assimilation rates measured with ambient air were decreased an average of 56 and 49% by soil moisture deficit for Williams 82 and A3127, respectively. The reductions in leaf photosynthesis of both cultivars were associated with similar decreases in leaf stomatal conductance and with small increases in leaf intercellular CO2 concentration. When the CO2-enriched air was used, similar afternoon leaf CO2-assimilation rates were found between the soil moisture treatments at each stage of crop development. These results suggest that photosynthetic capacity of soybean leaves is not reduced by severe soil moisture deficit when a stress develops gradually under field conditions.Abbreviations Ci intercellular CO2 concentrations - Aa rates of CO2 assimilation measured with ambient air - Ae rates of CO2 assimilation measured with CO2-enriched air - gs stomatal conductances - RuBPCase ribulose-1,5-bisphosphate carboxylase  相似文献   

15.
Single leaf photosynthetic characteristics of Alnus glutinosa, A. incana, A. rubra, Elaeagnus angustifolia, and E. umbellata seedlings conditioned to ambient sunlight in a glasshouse were assessed. Light saturation occurred between 930 and 1400 mol m-2s-1 PAR for all species. Maximum rates of net photosynthesis (Pn) measured at 25°C ranged from 12.8 to 17.3 mol CO2m-2s-1 and rates of dark respiration ranged from 0.74 to 0.95 mol CO2m-2s-1. These values of leaf photosynthetic variables are typical of early to midsuccessional species. The rate of Pn measured at optimal temperature (20°C) and 530mol m-2s-1 PAR was significantly (p<0.01) correlated with leaf nitrogen concentration (r=0.69) and negatively correlated with the mean area of a leaf (r=–0.64). We suggest that the high leaf nitrogen concentration and rate of Pn observed for Elaeagnus umbellata and to a lesser degree for E. angustifolia are genetic adaptations related to their crown architecture.Abbreviations Pn net photosynthesis  相似文献   

16.
The effects of a 60 min exposure to photosynthetic photon flux densities ranging from 300 to 2200 mol m–2s–1 on the photosynthetic light response curve and on PS II heterogeneity as reflected in chlorophyll a fluorescence were investigated using the unicellular green alga Chlamydomonas reinhardtii. It was established that exposure to high light acts at three different regulatory or inhibitory levels; 1) regulation occurs from 300 to 780 mol m–2s–1 where total amount of PS II centers and the shape of the light response curve is not significantly changed, 2) a first photoinhibitory range above 780 up to 1600 mol m–2s–1 where a progressive inhibition of the quantum yield and the rate of bending (convexity) of the light response curve can be related to the loss of QB-reducing centers and 3) a second photoinhibitory range above 1600 mol m–2s–1 where the rate of light saturated photosynthesis also decreases and convexity reaches zero. This was related to a particularly large decrease in PS II centers and a large increase in spill-over in energy to PS I.Abbreviations Chl chlorophyll - DCMU 3,(3,4-dichlorophenyl)-1,1-dimethylurea - FM maximal fluorescence yield - Fpl intermediate fluorescence yield plateau level - F0 non-variable fluorescence yield - Fv total variable fluorescence yield (FM-F0) - initial slope to the light response curve, used as an estimate of initial quantum yield - convexity (rate of bending) of the light response curve of photosynthesis - LHC light-harvesting complex - Pmax maximum rate of photosynthesis - PQ plastoquinone - Q photosynthetically active photon flux density (400–700 nm, mol m–2s–1) - PS photosystem - QA and QB primary and secondary quinone electron acceptor of PS II  相似文献   

17.
Maximal rates of CO2 assimilation of 8–11 mol m-2 s-1 at ambient CO2 concentration were measured for Dendrosenecio keniodendron, D. brassica, Lobelia telekii and L. keniensis during the day in the natural habitat of these plants at 4,200 m elevation on Mt. Kenya. Even at these maximal rates, the CO2 uptake of all species was found to correspond to the linear portion of the CO2 response curve, with a calculated stomatal limitation for CO2 diffusion of 42%. Photosynthesis was strongly reduced at temperatures above 15° C. In contrast to this sensitivity to high temperatures, frozen leaves regained full photosynthetic capacity immediately after thawing. Stomata responded to dry air, but not to low leaf water potentials which occurred in cold leaves and at high transpiration rates. During the day reduced rates of CO2 uptake were associated with reduced light interception due to the erect posture of the rosette leaves and with high temperatures. Stomata closed at vapour pressure deficits which were comparable in magnitude to those characteristic of many lowland habitats (40 mPa Pa-1).  相似文献   

18.
CO2 exchange components of a temperate semi-desert sand grassland ecosystem in Hungary were measured 21 times in 2000–2001 using a closed IRGA system. Stand CO2 uptake and release, soil respiration rate (R s), and micrometeorological values were determined with two types of closed system chambers to investigate the daily courses of gas exchange. The maximum CO2 uptake and release were –3.240 and 1.903 mol m–2 s–1, respectively, indicating a relatively low carbon sequestration potential. The maximum and the minimum R s were 1.470 and 0.226 mol(CO2) m–2 s–1, respectively. Water shortage was probably more effective in decreasing photosynthetic rates than R s, indicating water supply as the primary driving variable for the sink-source relations in this ecosystem type.  相似文献   

19.
J. Munoz  M. J. Merrett 《Planta》1989,178(4):450-455
Inorganic-carbon transport was investigated in the eukaryotic marine microalgaeStichococcus minor, Nannochloropsis oculata and aMonallantus sp. Photosynthetic O2 evolution at constant inorganic-carbon concentration but varying pH showed thatS. minor had a greater capacity for CO2 rather than HCO 3 utilization but forN. oculata andMonallantus HCO 3 was the preferred source of inorganic carbon. All three microalgae had a low affinity for CO2 as shown by the measurement of inorganic-carbon-dependent photosynthetic O2 evolution at pH 5.0. At pH 8.3, where HCO 3 is the predominant form of inorganic carbon, the concentration of inorganic carbon required for half-maximal rate of photosynthetic O2 evolution [K 0.5 (CO2)] was 53 M forMonallantus sp. and 125 M forN. oculata, values compatible with HCO 3 transport. Neither extra- nor intracellular carbonic anhydrase was detected in these three microalgal species. It is concluded that these microalgae lack a specific transport system for CO2 but that HCO 3 transport occurs inN. oculata andMonallantus, and in the absence of intracellular carbonic anhydrase the conversion of HCO 3 to CO2 may be facilitated by the internal pH of the cell.  相似文献   

20.
J. R. Evans 《Planta》1986,167(3):351-358
Photosynthesis in two cultivars of Triticum aestivum was compared with photosynthesis in two lines having the same nuclear genomes but with cytoplasms derived from T. boeoticum. The in-vitro specific activity of ribulose-1,5-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39) isolated from lines with T. boeoticum cytoplasm was only 71% of that of normal T. aestivum. By contrast, the RuBPCase activities calculated from the CO2-assimilation rate at low partial pressures of CO2, p(CO2), were the same for all lines for a given RuBPCase content. This indicates that both types of RuBPCase have the same turnover numbers in-vivo of 27.5 mol CO2·(mol enzyme)–1·s–1 (23°). The rate of CO2 assimilation measured at normal p(CO2), p a =340 bar, and high irradiance could be quantitatively predicted from the amount of RuBPCase protein. The maximum rate of RuBP regeneration could also predict the rate of CO2 assimilation at normal ambient conditions. Therefore, the maximum capacities for RuBP carboxylation and RuBP regeneration appear to be well-balanced for normal ambient conditions. As photosynthetic capacity declined with increasing leaf age, the capacities for RuBP carboxylation and RuBP regeneration declined in parallel.Abbreviations PAR photosynthetically active radiation - RuBP(Case) ribulose-1,5-bisphosphate (carboxylase)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号