首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell-free extracts capable of converting [14C]-labeled gibberellins (GAs) were prepared from spinach (Spinacia oleracea L.) leaves. [14C]-labeled GAs, prepared enzymically from [14C]mevalonic acid, were incubated with these extracts, and products were identified by gas chromatography-mass spectrometry. The following pathway was found to operate in extracts from spinach leaves grown under long day (LD) conditions: GA12 → GA53 → GA44 → GA19 → GA20. The pH optima for the enzymic conversions of [14C]GA53, [14C]GA44 and [14C]GA19 were approximately 7.0, 8.0, and 6.5, respectively. These three enzyme activities required Fe2+, α-ketoglutarate and O2 for activity, and ascorbate stimulated the conversion of [14C]GA53 and [14C]GA19. Extracts from plants given LD or short days (SD) were examined, and enzymic activities were measured as a function of exposure to LD, as well as to darkness following 8 LD. The results indicate that the activities of the enzymes oxidizing GA53 and GA19 are increased in LD and decreased in SD or darkness, but that the enzyme activity oxidizing GA44 remains high irrespective of light or dark treatment. This photoperiodic control of enzyme activity is not due to the presence of an inhibitor in plants grown in SD. These observations offer an explanation for the higher GA20 content of spinach plants in LD than in SD.  相似文献   

2.
In G2 peas (Pisum sativum L.) apical senescence occurs only in long days (LD), and indeterminate growth is associated with elevated gibberellin (GA) levels in the shoot in short days (SD). Metabolism of GA12 aldehyde was investigated by feeding shoots grown in SD or LD with [14C]GA12 aldehyde through the cut end of the stem for 0.5 to 6 hours in the light and analyzing the tissue extract by high performance liquid chromatography. More radioactive products were detected than can be accounted for by the two GA metabolic pathways previously known to be present in peas. Three of the major products appear to be GA conjugates, but an additional pathway(s) of GA metabolism may be present. The levels of putative C20 GAs, [14C]GA53, [14C]GA44, [14C]GA19, and/or [14C] GA17, were all elevated in SD as compared to LD. Putative [14C]GA, was slightly higher in LD than in SD. Putative [14C]GA53 was a major metabolite after 30 minutes of treatment in SD but had declined after longer treatment times to be replaced by elevated levels of putative [14C] GA44 and [14C]GA19/17. Metabolism of GA20 was slow in both photoperiods. Although GA20 and GA19 are the major endogenous GAs as determined by gas chromatography-mass spectrometry, putative [14C]GA20 and [14C]GA19 were never major products of [14C]GA12 aldehyde metabolism. Thus, photoperiod acts in G2 peas to change the rate of GA53 production from GA12 aldehyde, with the levels of the subsequent GAs on the 13-OH pathway being determined by the amount of GA53 being produced.  相似文献   

3.
To determine whether daylength influences the rate of metabolism of gibberellins (GAs) in the long-day (LD) rosette plant Agrostemma githago L., [3H]GA20 and [3H]GA1 were applied under short day (SD) and LD. Both were metabolized faster under LD than under SD. [3H]GA20 was metabolized to a compound chromatographically identical to 3-epi-GA1. [3H]GA1 was metabolized to two acidic compounds, the major metabolite having chromatographic properties similar to, but not identical with GA8. [3H]3-epi-GA1 applied to plants under LD was metabolized much more slowly than was [3H]GA1, and formed a very polar metabolite which did not partition into ethyl acetate at pH 2.5. Very polar metabolites were also formed after the feeds of [3H]GA20 and [3H]GA1. It was not possible to characterize these very polar compounds further because of their apparent instability. The results obtained suggest that in Agrostemma GA20 is the precursor of 3-epi-GA1, but there is at present no evidence indicating the precursor of GA1.  相似文献   

4.
The role of gibberellins (GAs) in photoperiodic control of leaf elongation in Poa pratensis was studied by both application of exogenous GAs and analysis of endogenous GAs. Leaf elongation was strongly increased under long day (LD, 24 h) conditions at both 9 and 21°C, leaf length at 9°C LD being similar to that in plants grown in short days (SD, 8 h) at 21°C. However, even at 21°C leaf elongation was enhanced by LD. Exogenous GA1 could completely compensate for LD at both 9 and 21°C. Gibberellins A20, A19 and A44 could also partly replace LD, but they were significantly less active than GA1, GA53 was inactive when applied to plants grown at 9°C in SD and exhibited only marginal activity at 9°C LD and 21°C SD. The total level of GAs of the early 13-hydroxylation pathway (A53, A44, A19, A20 and A1) increased rapidly when plants were transferred from SD to LD at 9°C. After transfer from 9 to 21°C, there was an increase in GA levels at both LD and SD, followed by a decrease under LD conditions. In all cases, GA19 was the predominant GA, accounting for 60 to 80% of the analysed GAs. Levels of the bioactive GA1 were low and increased transiently by LD four days after transfer from SD to LD. At both temperatures, the ratio GA19 to GA20 and GA20 to GA1 at 9°C was enhanced by LD compared with SD. Taken together, these results support the hypothesis that photoperiodic regulation of leaf elongation in Poa pratensis is GA-mediated, and they indicate a photoperiodic control of oxidation of GA53 to GA44 and GA19 to GA20, and perhaps also of 3β-hydroxylation of GA20 to GA1.  相似文献   

5.
The influence of photoperiod on the metabolism of GA20 in Salix pentandra was studied by feeding [3H]-GA20 to seedlings which had been grown previously under long day (LD) or short day (SD) conditions. After 48 h in LD or SD, metabolites were separated on sequential, silica gel partition columns and reversed-phase C18 HPLC. The principal metabolite co-chromatographed with [3H]-GA1 and this conversion was confirmed by feeding [2H]-GA20, which was converted to [2H]-GA1 as identified by gas chromatography-selected ion monitoring. Chromatographic evidence also indicated the minor conversion of [3H]-GA20 to [3H]-GA8 (via [3H]-GA1) and trace conversion to [3H]-GA29 (GAs A1.8,20.29 are native in Salix). Ethyl acetate-insoluble [3H] metabolites were formed and could be cleaved by cellulase to release putative [3H]-GA20 and [3H]-GA1 suggesting the conversion to glucosyl conjugates of these GAs. Metabolism of [3H]-GA20 was slightly more rapid in plants previously grown under LD than SD, an effect which reflected the generally increased shoot growth under LD. However, altering the photoperiod after [3H]-GA20 addition had only a slight effect on the metabolism of [3H]-GA20 in Salix seedlings. This indicates that the conversion of GA20 to GA1 is not a controlling step in the photoperiodic regulation of growth cessation in Salix.  相似文献   

6.
Talon M  Zeevaart JA 《Plant physiology》1990,92(4):1094-1100
Stem growth and flowering in the long-day plant Silene armeria L. are induced by exposure to a minimum of 3 to 6 long days (LD). Stem growth continues in subsequent short days (SD), albeit at a reduced rate. The growth retardant tetcyclacis inhibited stem elongation induced by LD, but had no effect on flowering. This indicates that photoperiodic control of stem growth in Silene is mediated by gibberellins (GA). The objective of this study was to analyze the effects of photoperiod on the levels and distribution of endogenous GAs in Silene and to determine the nature of the photoperiodic after-effect on stem growth in this plant. The GAs identified in extracts from Silene by full-scan combined gas chromatography-mass spectrometry (GC-MS), GA12, GA53, GA44, GA17, GA19, GA20, GA1, GA29, and GA8, are members of the early 13-hydroxylation pathway. All of these GAs were present in plants under SD as well as under LD conditions. The GA53 level was highest in plants in SD, and decreased in plants transferred to LD conditions. By contrast, GA19, GA20, and GA1 initially increased in plants transferred to LD, and then declined. Likewise, when Silene plants were returned from LD to SD, there was an increase in GA53, and a decrease in GA19, GA20, and GA1 which ultimately reached levels similar to those found in plants kept in SD. Thus, measurements of GA levels in whole shoots of Silene as well as in individual parts of the plant suggest that the photoperiod modulates GA metabolism mainly through the rate of conversion of GA53. As a result of LD induction, GA1 accumulates at its highest level in shoot tips which, in turn, results in stem elongation. In addition, LD also appear to increase the sensitivity of the tissue to GA, and this effect is presumably responsible for the photoperiodic after-effect on stem elongation in Silene.  相似文献   

7.
To interpret the metabolism of radiolabeled gibberellins A12-aldehyde and A12 in shoots of pea (Pisum sativum L.), the identity of the radiolabeled peaks has to be determined and the endogenous presence of the gibberellins demonstrated. High specific activity [14C]GA12 and [14C]GA12-aldehyde were synthesized using a pumpkin endosperm enzyme preparation, and purified by high performance liquid chromatography (HPLC). [14C]GA12 was supplied to upper shoots of pea, line G2, to produce radiolabeled metabolites on the 13-OH pathway. Endogenous compounds copurifying with the [14C]GAs on HPLC were analyzed by gas chromatography-mass spectrometry. The endogenous presence of GA53, GA44, GA19 and GA20 was demonstrated and their HPLC peak identity ascertained. The 14C was progressively diluted in GAs further down the pathway, proportional to the levels found in the tissue and inversely proportional to the speed of metabolism, ranging from 63% in GA53 to 4% in GA20. Calculated levels of GA20, GA19, GA44, and GA53 were 42, 8, 10, and 0.5 nanograms/gram, respectively.  相似文献   

8.
In an early-flowering line of pea (G2) apical senescence occurs only in long days (LD), while growth in short days (SD) is indeterminate. In SD, G2 plants are known to produce a graft-transmissible substance which delays apical senescence in related lines that are photoperiod-insensitive with regard to apical senescence. Gibberellic acid (GA3) applied to the apical bud of G2 plants in LD delayed apical senescence indefinitely, while N6-benzyladenine and -naphthaleneacetic acid were ineffective. Of the gibberellins native to pea, GA9 had no effect whereas GA20 had a moderate senescence-delaying effect. [3H]GA9 metabolism in intact leaves of G2 plants was inhibited by LD and was restored by placing the plants back in SD. Leaves of photoperiod-insensitive lines (I-types) metabolized GA9 readily regardless of photoperiod, but the metabolites differed qualitatively from those in G2 leaves. A polar GA9 metabolite, GAE, was found only in G2 plants in SD. The level of GA-like substances in methanol extracts from G2 plants dropped about 10-fold after the plants were moved from SD to LD; it was restored by transferring the plants back to SD. A polar zone of these GA-like materials co-chromatographed with GAE. It is suggested that a polar gibberellin is synthesized by G2 plants in SD; this gibberellin promotes shoot growth and meristematic activity in the shoot apex, preventing senescence.Abbreviations GA gibberellin - GA3 gibberellic acid - SD short days - LD long days  相似文献   

9.
Stem elongation and flowering are two processes induced by long-day (LD) treatment in Silene armeria L. Whereas photoperiodic control of stem growth is mediated by gibberellins (GAs), the flowering response cannot be obtained by GA applications. Microscopic observations on early cellular changes in the shoot meristem following LD induction or GA treatment in short days (SD) were combined with GA analyses of stem sections at various distances below the shoot apex. The earliest effects of both LD and GA induction on the subapical meristem were an increase in the number of cells per cell file and a reduction of cell length in the meristematic tissue approx. 1.0–3.0 mm below the shoot apex. Within 8 d after the beginning of LD induction or after GA application, the cells in the subapical meristem were oriented in long files. In induced tips, cellulose deposition occurred mostly in longitudinal walls, indicating that many transverse cell divisions had taken place which, in turn, increased the length of the stem. In contrast to LD induction, GA treatments did not promote the transition from the vegetative to the floral stage. Endogenous GAs were analyzed by selected ion monitoring (SIM), using labeled internal standards, in extracts from transverse sections of the tip at various distances below the apical meristem. In control plants, the levels of the six 13-hydroxy GAs studied (GA53, GA44, GA19, GA20, GA1, and GA8) decreased as the distance from the apical meristem increased. Except for GA53, GA levels were higher in tips of LD-induced plants, particularly in the meristematic zone approx. 0.5–1.5 mm below the apical meristem. In comparison with SD, the highest increase observed was for GA1, the content of which increased 30-fold in the zone 0.5–3.5 mm below the shoot apex. These data indicate a spatial correlation between the accumulation of GA1 and its precursors, and the enhanced mitotic activity which occurs in the subapical meristem of elongating Silene apices.Abbreviations GAn gibberellin An - LD long day(s) - SD short day(s) We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]- gibberellins, Dr. B.O. Phinney, University of California, Los Angeles, USA, for [13C]GA8, Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility, for advice with mass spectrometry, and Mr. M. Chassagne, I.N.R.A. C.R. Bordeaux, for the photography. This work was supported, in part, by a fellowship from the Spanish Ministry of Agriculture (Instituto Nacional de Investigaciones Agrarias) to M.T., by the U.S. Department of Energy under contract DE-ACO2-76ERO-1338, and by the U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

10.
[3H]gibberellin A9 was applied to shoots or seed parts of G2 pea to produce radiolabeled metabolites. These were used as markers during purification for the recovery of endogenous GA9 and its naturally occurring metabolites. GA9 and its metabolites were purified by HPLC, derivatized and examined by GC-MS. Endogenous GA9, GA20, GA29 and GA51 were identified in pea shoots and seed coats. GA51-catabolite and GA29-catabolite were also detected in seed coats. GA70 was detected in seed coats following the application of 1 g of GA9. Applied [3H]GA9 was metabolized through both the 13-hydroxylation and 2-hydroxylation pathways. Labeled metabolites were tentatively identified on the basis of co-chromatography on HPLC with endogenous compounds identified by GC-MS. In shoots [3H]GA51 and [3H]GA51-catabolite were the predominant metabolites after 6 hrs, but by 24 hrs there was little of these metabolites remaining, while [3H]GA29-catabolite and an unidentified metabolite predominated. In seed coats [3H]GA51 was the initial product, later followed by [3H]GA51-catabolite and an unidentified metabolite (different from that in shoots), with lesser amounts of [3H]GA20, [3H]GA29 and [3H]GA29-catabolite. [3H]GA70 was a very minor product in both cases. [3H]GA9 was not metabolized by pea cotyledons.Edited by T.J. Gianfagna.Author for correspondence  相似文献   

11.
The following seven gibberellins (GAs) have been identified by gas chromatography-mass spectrometry in shoots and leaves of the long-day plant Agrostemma githago: GA53, GA44, GA19, GA17, GA20, GA1, and 3-epi-GA1. The levels of these compounds were measured, using selected ion monitoring, during photoperiodic induction. The levels of GA44, GA19, GA17, and GA20 all increased to a peak at eight long days (LD), followed by a decline, while the levels of GA1 and 3-epi-GA1 did not reach a peak until 12 LD. The level of GA53 remained steady over the first 10–12 LD. Later in the LD treatment the levels of GA53, GA44, GA19, and GA17 increased again. The rate of metabolism of all GAs except GA53 was higher after 12–16 LD than under short days. These data thus provide indirect evidence for an effect of photoperiodic induction on GA turnover in A. githago.Abbreviations AMO-1618 2-isopropyl-4-dimethylamino-5-methylphenyl-1-piperidine-carboxylate methyl chloride - GA(s) gibberellin(s) - GC-MS gas chromatography-mass spectrometry - HPLC high performance liquid chromatography - LD long day(s) - MeTMS trimethylsilylether of the methyl ester - SD short day(s) - SIM selected ion monitoring  相似文献   

12.
This communication describes the distribution of gibberellins (GAs) in roots and shoots of spinach in relation to photoperiod. From previous work (Metzger, Zeevaart 1980 Plant Physiol 65: 623-626) shoots were known to contain GA53, GA44, GA19, GA17, GA20, and GA29. We now show by combined gas chromatography—mass spectrometry that roots contain GA44, GA19, and GA29. Trace amounts of GA53 were detected by combined gas chromatography—selected ion current monitoring. Neither GA17 nor GA20 were detected in root extracts. Analysis by the d-5 corn bioassay also showed no effect of photoperiodic treatment on the levels of GA-like substances in root extracts. Both phloem and xylem exudates had patterns of GA-like activity similar to those found in shoots and roots, respectively. Moreover, foliar application of [3H]GA20 resulted in the transport of label from the shoot to the roots. Over half of the label in the roots represented unmetabolized [3H]GA20, indicating that part of the GA20 in the phloem is transported to the roots. Consequently, if GA20 is made in, or transported to the roots, it is rapidly metabolized in that organ. This is a clear indication that regulation of GA metabolism is greatly different in roots and shoots.  相似文献   

13.
Metabolism of [14C]gibberellin (GA) A12 (GA12) and [14C]gibberellin A12-aldehyde (GA12-aldehyde) was examined in cotyledons and seed coats from developing seeds of pea (Pisum sativum L.). Both were metabolized to only 13-hydroxylated GAs in cotyledons but to 13-hydroxylated and non-13-hydroxylated GAs in seed coats. The metabolism of [14C]GA12 was slower in seed coats than in cotyledons. [14C]GA12-aldehyde was also metabolized to conjugates in seed coats. Seed coat [14C]-metabolites produced from [14C]GA12-aldehyde were isolated by high-performance liquid chromatography (HPLC). Conjugates were base hydrolyzed and the free GAs reisolated by HPLC and identified by gas chromatography-mass spectrometry. [14C]GA53-aldehyde, [14C]GA12-aldehyde conjugate, and [14C]GA53-aldehyde conjugate were major metabolites produced from [14C]GA12-aldehyde by seed coats aged 20-22 days or older. The dilution of 14C in these compounds by 12C, as compared to the supplied [14C]GA12-aldehyde, indicated that they are endogenous. Feeding [14C]GA53-aldehyde led to the production of [14C]GA53-aldehyde conjugate in seed coats and shoots and also to 13-hydroxylated GAs in shoots. Labeled GAs, recovered from plant tissue incubated with either [14C]GA12, [14C]GA12-aldehyde, or [3H]GA9, were used as appropriate markers for the recovery of endogenous GAs from seed coats or cotyledons. These GAs were purified by HPLC and identified and quantified by gas chromatography-mass spectrometry. GA15, GA24, GA9, GA51, GA51-catabolite, GA20, GA29, and GA29-catabolite were detected in seed coats, whereas GA9, GA53, GA44, GA19, GA20, and GA29 were found in cotyledons. The highest GA levels were for GA20 and GA29 in cotyledons (783 and 912 nanograms per gram fresh weight, respectively) and for GA29 and GA29-catabolite in seed coats (1940 and > 1940 nanograms per gram fresh weight, respectively).  相似文献   

14.
Metabolism of tritiated gibberellin a(20) in maize   总被引:6,自引:5,他引:1       下载免费PDF全文
After the application of 2.36 Curies per millimole [2,3-3H]gibberellin A20 (GA20) to 21-day-old maize (Zea mays L., hybrid CM7 × CM49) plants, etiolated maize seedlings, or maturing maize cobs, a number of 3H-metabolites were observed. The principal acidic (pH 3.0), ethyl acetate-soluble metabolite was identified as [3H]GA1 on the basis of co-chromatography with standard [3H]GA1 on SiO2 partition, high resolution isocratic elution reverse phase C18 high performance liquid chromatography and gas-liquid chromatography radiocounting. Two other acidic metabolites were identified similarly as [3H]GA8 and C/D ring-rearranged [3H]GA20, although gas-liquid chromatography radiocounting was not performed on these metabolites. Numerous acidic, butanol-soluble (e.g. ethyl acetate-insoluble) metabolites were observed with retention times on C18 high performance liquid chromatography radiocounting similar to those of authentic glucosyl conjugates of GA1 and GA8, or with retention times where conjugates of GA20 would be expected to elute. Conversion to [3H]GA1 was greatest (23% of methanol extractable radioactivity) in 21-day-old maize plants. In etiolated maize seedlings, the C/D ring-rearranged [3H]GA20-like metabolite was the major acidic product, while conversion to [3H]GA1 was low.  相似文献   

15.
[3H]Gibberellin A20 (GA20) of high specific radioactivity (49.9 gigabecquerel per millimole) was applied equilaterally in a ring of microdrops to the internodal pulvinus of shoots of 3-week-old gravistimulated and vertical normal maize (Zea mays L.), and to a pleiogravitropic (prostrate) maize mutant, lazy (la). All plants converted the [3H]GA20 to [3H]GA1 and [3H]GA29-like metabolites as well as to several metabolites with the partitioning and chromatographic behavior of glucosyl conjugates of [3H]GA1, [3H]GA29, and [3H]GA8. The tentative identification of these putative [3H]GA glucosyl conjugates was further supported by the release of the free [3H]GA moiety after cleavage with cellulase. Within 12 hours of the [3H]GA20 feed, there was a significantly higher proportion of total radioactivity in lower than in upper halves of internode and leaf sheath pulvini in gravistimulated normal maize. Further, there was a significantly higher proportion of putative free GA metabolites of [3H]GA20, especially [3H]GA1, in the lower halves of normal maize relative to upper halves. The differential localization of the metabolites between upper and lower halves was not apparent in the pleiogravitropic mutant, la. Endogenous GA-like substances were also examined in gravistimulated maize shoots. Forty-eight hours after gravistimulation of 3-week-old maize seedlings, endogenous free GA-like substances in upper and lower leaf sheath and internode pulvini halves were extracted, chromatographed, and bioassayed using the `Tanginbozu' dwarf rice microdrop assay. Lower halves contained consistently higher total levels of GA-like activity. The qualitative elution profile of GA-like substances differed consistently, upper halves containing principally a GA20-like substance and lower halves containing mainly GA1-like and GA19-like substances. Gibberellins A1 (10 nanograms per gram) and A20 (5 nanograms per gram) were identified from these lower leaf sheath pulvini by capillary gas chromatography-selected ion monitoring. Results from all of these experiments are consistent with a role for GAs in the differential shoot growth that follows gravitropism, although the results do not eliminate the possibility that the redistribution of GAs results from the gravitropic response.  相似文献   

16.
[2H]Steviol (ent-13-hydroxykaur-16-en-19-oic acid) was synthesized from steviol acetate norketone (ent-13-acetoxy-16-oxo-17-norkauran-19-oic acid) by the Wittig reaction using (methyl-d3)triphenylphosphonium bromide. A mixture of steviol analogs was produced containing from one to four 2H/molecule. [2H]Steviol was fed to strain LM-45-399 of the fungus Gibberella fujikuroi which was grown on synthetic medium (ICI, 0% N) in the presence of the growth retardant CCC. [2H]GA1, [2H]GA18, [2H]GA23 and [2H]GA53 were isolated from the fungal medium after 4 days. This strain converted steviol to 13-hydroxy GAs in the highest yields of the four Gibberella strains tested, and in amounts suitable for metabolic studies with higher plants.  相似文献   

17.
The effect of photoperiod on metabolism of 16,17-[3H2]GA19, and 1.2-[3H2]GA1 applied to intact seedlings of Salix pentandra, was investigated. No difference was found in conversion of 16,17-[3H2]GA19 to 16,17-[3H2]GA20, and 16,17-[3H2]GA1, or in metabolism of 1,2-[3H2]GA1 to [3H]GA8 between plants grown in continuous light and plants exposed for 14 days to a 12-h photoperiod. Also, leaf discs from plants grown in long or short days, converted 16,17-[3H2]GA19 both in light and darkness. These data on metabolism of 16,17-[3H2]GA19, contrast with previous results, which have indicated a photoperiodic control of the metabolism of GA19 to GA20 in S. pentandra. Presence of these applied labelled GAs and their metabolites in different parts of seedlings was recorded, after application to intact seedlings as well as to isolated plant parts. When 16,17-[3H2]GA19 was applied through the roots of intact plants, the relative amounts of 16,17-[3H2]GA1 present in leaves and shoot apices were higher than in roots and stems. In corresponding experiments with 1,2-[3H2]GA1, relatively higher amounts of [3H2]GA8 were found in roots and stems than in leaves and shoot apices. Twenty-four hours after application of 16,17-[3H2]GA19 to isolated plant parts, 16,17-[3H2]GA20 and 16,17-[3H2]GA1 were found in leaves and roots, but not in internodes. Incubation of isolated plant parts with 1,2-[3H2]GA1 for 24 h resulted in presence of [3H]GA8 in all parts. The results mentioned above were obtained by monitoring metabolites by HPLC with on-line radio counting. The conversions of 17-[2H2]GA19 to 17-[2H2]GA20 and 17-[2H2]GA1 in shoot apices and whole seedlings, and of 17-[2H2]GA8 in whole seedlings, were confirmed by GC-MS.  相似文献   

18.
In studies of the effect of long or short-day photoperiod treatments on the qualitative gibberellin (GA) content of mature leaves of a facultative short-day (SD) strawberry cultivar (Fragaria × ananassa Duch. cv. Elsanta), GA1, GA8, GA17, GA19, GA20, GA29 and GA44 were identified by full-scan gas chromatography - mass spectrometry (GC-MS) in extracts from plants grown under long-day (LD) conditions, and GA1, GA5, GA8, GA19, GA20 and GA29 in similar extracts from plants subjected to eight SD cycles after growth under LD conditions. The early 13-hydroxylation GA biosynthetic pathway thus appeared to predominate, with the apparent absence of GA5 in LD and of GA17 and GA44 in SD extracts providing evidence of modulation of this pathway by photoperiod. A search, including GC-MS with selected ion monitoring, failed to detect GA3, or the polyhydroxylated GA85, GA86, GA87 or GA32 for which some extracts were specifically purified.This paper is respectfully dedicated to the memory of Gordon Browning, who died suddenly on the 1st July, 1993. He will be sorely missed, both as a friend and colleague.  相似文献   

19.
A cell-free system prepared from developing seed of runner bean (Phaseolus coccineus L.) converted [14C]gibberellin A12-aldehyde to several products. Thirteen of these were identified by capillary gas chromatography-mass spectrometry as gibberellin A1 (GA1), GA4, GA5, GA6, GA15, GA17, GA19, GA20, GA24, GA37, GA38, GA44 and GA53-aldehyde, all giving mass spectra with 14C-isotope peaks. GA8 and GA28 were also identified but contained no 14C. All the [14C]GA12-aldehyde metabolites, except GA15, GA24 and GA53-aldehyde, are known endogenous GAs of P. coccineus.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC highperformance liquid chromatography - MVA mevalonic acid - S-2 2000-g supernatant  相似文献   

20.
A mutant gene that increases gibberellin production in brassica   总被引:10,自引:7,他引:3  
A single gene mutant (elongated internode [ein/ein]) with accelerated shoot elongation was identified from a rapid cycling line of Brassica rapa. Relative to normal plants, mutant plants had slightly accelerated floral development, greater stem dry weights, and particularly, increased internode and inflorescence elongation. The application of the triazole plant growth retardant, paclobutrazol, inhibited shoot elongation, returning ein to a more normal phenotype. Conversely, exogenous gibberellin A3 (GA3) can convert normal genotypes to a phenotype resembling ein. The content of endogenous GA1 and GA3 were estimated by gas chromatography-selected ion monitoring using [2H]GA1, as a quantitative internal standard and at day 14 were 1.5- and 12.1-fold higher per stem, respectively, in ein than in normal plants, although GA concentrations were more similar. The endogenous levels of GA20 and GA1, and the rate of GA19 metabolism were simultaneously analyzed at day 7 by feeding [2H2]GA19 and measuring metabolites [2H2]GA20 and [2H2]GA1 and endogenous GA20 and GA1, with [2H5]GA20 and [2H5]GA1 as quantitative internal standards. Levels of GA1 and GA20 were 4.6- and 12.9-fold higher, respectively, and conversions to GA20 and GA1 were 8.3 and 1.3 times faster in ein than normal plants. Confirming the enhanced rate of GA1 biosynthesis in ein, the conversion of [3H]GA20 to [3H]GA1 was also faster in ein than in the normal genotype. Thus, the ein allele results in accelerated GA1 biosynthesis and an elevated content of endogenous GAs, including the dihydroxylated GAs A1 and A3. The enhanced GA production probably underlies the accelerated shoot growth and development, and particularly, the increased shoot elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号