首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plerocercoids of Spirometra mansonoides produce a functional analogue of mammalian growth hormone (GH). Plerocercoid growth factor (PGF) mimics the growth-promoting actions of GH, but has not been shown to duplicate all of the actions reported for GH. The purpose of this study was to determine the effects of plerocercoid infection (chronic PGF treatment) on glucose metabolism of adipose tissue and to compare the effects to those elicited by insulin and GH in intact, diabetic, and hypophysectomized male rats. Groups of rats were constantly exposed to PGF (via plerocercoid infection) or injected twice daily with bovine GH, insulin, or saline for 10 days. Basal oxidation rates of [U-14C]glucose to 14CO2 in adipose tissue segments were measured in vitro immediately after tissue removal. Other aliquots of adipose tissue were preincubated in hormone-free medium for 3 hr prior to testing the ability of the tissue to respond to insulin or human GH (hGH) added in vitro. Adipose tissue from PGF-treated intact and hypophysectomized rats had significantly elevated basal glucose oxidation rates, and the tissue was sensitive to further stimulation by insulin or hGH. The results obtained with intact and hypophysectomized rats were essentially the same, indicating that the effects of PGF were not due to suppression of endogenous GH. The basal glucose oxidation rate in adipose tissue from diabetic rats was stimulated (P less than 0.01) by PGF, but the tissue was not sensitive to insulin added in vitro. Furthermore, PGF had no effect on body growth or blood glucose concentrations of diabetic rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
When polyclonal insulin antibodies were preincubated with either adipose tissue from hypophysectomized rats or adipocytes from normal rats, human growth hormone failed to stimulate glucose oxidation. Removal of insulin from adipocytes through incubation with pyruvate at pH 7.0, followed by washing three times, also abolished subsequent in vitro insulin-like action of hGH. Administration of the same insulin antibody to hypophysectomized rats 30 minutes prior to injection of hGH did not inhibit the insulin-like activity of the hGH as measured by its ability to decrease serum glucose and non-esterified fatty acid levels. It is concluded that the in vitro promotion of glucose oxidation by hGH requires insulin. Because of the uncertainty of complete removal of insulin in intact animals, such a conclusion cannot be made regarding in vivo insulin-like action of hGH.  相似文献   

3.
1. Regulation of lipogenesis and lipolysis by insulin was studied on adipocytes isolated from 100 kg Large white male pigs. Two adipose tissues were studied: subcutaneous and perirenal. Animals were fed either a control low fat diet or a diet containing 14.7% sunflower seed oil. 2. The cell diameter was higher in the group fed the sunflower diet. 3. De novo lipogenesis was decreased for each adipose tissue in the group fed the sunflower diet. The perirenal site had a higher lipogenic activity than subcutaneous site whatever the diet. 4. Insulin did not significantly stimulate lipogenesis but had an important antilipolytic effect on stimulated lipolysis by isoproterenol. 5. The antilipolytic action of insulin was higher in perirenal adipocytes with the control diet. With the sunflower diet, the decrease was about 54.4% for subcutaneous adipocytes, whereas the inhibition was decreased in perirenal adipocytes. Addition of theophylline reversed the antilipolytic action of insulin. 6. Insulin binding was not affected neither by the dietary fat nor by the adipose tissue location. 7. Absence of de novo lipogenesis stimulation by insulin was not due to an impairment in insulin binding. 8. The different effects of dietary fat and adipose tissue location on the antilipolytic action of insulin could not be explained by a modification of insulin binding but rather by a latter event, probably at a post-insulin binding stage.  相似文献   

4.
OBJECTIVE: Leptin receptors are expressed in adipocytes, suggesting potential autocrine/paracrine effects. Studies on the direct effects of leptin on adipose tissue metabolism in different species have yielded controversial data. To assess the in vitro effects of leptin on human adipocyte metabolism: lipolysis, the insulin-induced inhibition of lipolysis and lipogenesis were studied in adipocytes obtained from infants and adults. METHODS: Lipolysis was studied by incubating adipocytes with increasing concentrations of leptin or isoprenaline. Glycerol in the incubation medium was measured as an indicator of lipolysis. For the lipogenesis and insulin-induced inhibition of lipolysis experiments, the cells were preincubated with 0, 25, or 250 ng/ml of leptin for 2 h. RESULTS: Leptin did not stimulate lipolysis in human adipocytes, either in children or adults. Preincubation with leptin did not affect the insulin-induced inhibition of lipolysis, but decreased the insulin-induced lipogenesis (p < 0.05). CONCLUSIONS: This study shows that leptin has no direct lipolytic effect in human adipocytes. The lack of effect on the insulin-induced inhibition of lipolysis and the negative effect on lipogenesis indicates that the effect of leptin is not at the proximal insulin-signalling pathway but further downstream.  相似文献   

5.
Growth hormone (GH) has a lipolytic effect in adipose tissue but this effect may differ in adipose tissue from various fat depots. This latter possibility was investigated in the present study, in which the effects of GH in vivo on catecholamine-induced lipolysis and the number of β-adrenergic receptors in isolated adipocytes from different fat depots of hypophysectomized rats were investigated. Female and male Sprague-Dawley rats were hypophysectomized or sham-operated at 45 days of age. One week after the operation, hormonal replacement therapy with L-thyroxine and hydrocortisone acetate was given. In addition, groups of rats were treated with GH (1.33 mg/kg per day, given as two daily subcutaneous injections). After 1 week of hormonal treatment, adipocytes were isolated from the parametrial, epididymal and inguinal fat pads, and glycerol release after catecholamine-stimulation and 125I-cyanopindolol binding were measured. Hypophysectomy resulted in a marked decrease in the lipolytic response to catecholamines. GH treatment significantly increased catecholamine-induced lipolysis with similar effects in adipocytes from parametrial or epididymal and inguinal fat depots in both female and male rats. There were no differences between norepinephrine compared with isoproterenol-induced responses. 125I-cyanopindolol binding was reduced after hypophysectomy and normalized by GH treatment, without differences between parametrial and inguinal adipose tissue regions. We conclude that the lipolytic effects of GH in the rat may partly be mediated by a stimulatory effect on β-adrenergic receptors in adipocytes. In addition, GH exerted similar effect on catecholamine-induced lipolysis and β-adrenergic receptors in adipocytes from parametrial, epididymal and inguinal fat depots.  相似文献   

6.
Insulin sensitivity has been implicated in the variation of fat accumulation in early gestation by as-yet-unknown mechanisms. In the present study, we analyzed the insulin sensitivity of lipolysis and lipogenesis in lumbar adipocytes from rats at 0, 7, 14, and 20 days of gestation. In adipocytes of 7-day pregnant rats, we found a twofold decrease in both beta-agonist (isoproterenol and BRL-37344)-stimulated lipolysis and beta3-adrenoceptor protein but not in lipolysis initiated by forskolin or isobutylmethylxanthine, suggesting a modification of the lipolytic pathway at the receptor level. Whereas adipocytes from 7-day pregnant rats showed a twofold increase in fatty acid synthesis from glucose, those from 20-day pregnant animals displayed a decreased lipogenic activity. Insulin responsiveness of the lipolytic and lipogenic pathways was analyzed by dose-response experiments, giving evidence for the involvement of improved insulin responsiveness in the enhanced lipogenic and reduced lipolytic activities of adipocytes in early pregnancy. In contrast, insulin resistance is responsible for lower antilipolytic and lipogenic actions of insulin in late pregnant animals. In conclusion, the present study shows that enhanced adipose tissue insulin responsiveness during early pregnancy contributes to maternal fat accumulation, whereas decreased insulin responsiveness during late gestation modulates fat breakdown.  相似文献   

7.
Insulin and to a smaller extent, human growth hormone (hGH), both stimulate lipogenesis in isolated rat adipocytes preincubated 4 hours in the absence of hormone. The non-additivity of maximal doses suggested that hGH may share a subset of the metabolic pathways stimulated by insulin. We explored whether kinase C may be involved in the common lipogenic effect of both hormones. The stimulation of lipogenesis by phorbol ester 12-myristate 13-acetate (PMA) (an activator of kinase C) was not additive to the stimulation by either insulin or hGH. Downregulation of kinase C resulted in a marked decrease of the maximal insulin effect (44 +/- 9%) and even more of the hGH effect (64 +/- 14%). These data suggest that kinase C either mediates part of, or modulates, the effect of insulin and hGH on lipogenesis.  相似文献   

8.
Monoclonal antibodies previously shown to react with five distinct epitopes on the human insulin receptor were tested for their metabolic effects on isolated human adipocytes. Two antibodies which reacted with receptor alpha-subunit and completely inhibited 125I-insulin binding mimicked the actions of insulin to stimulate lipogenesis from [14C]glucose and to inhibit catecholamine-induced lipolysis. On a molar basis, these antibodies were comparable in potency with insulin itself. Two other antibodies which decreased insulin binding only slightly or not at all also mimicked these metabolic effects of insulin. One of these antibodies reacted with receptor beta-subunit. In contrast, a further antibody which reacted with alpha-subunit and inhibited insulin binding did not affect basal lipogenesis or catecholamine-induced lipolysis, but was able to antagonize the effects of insulin on these processes. The same antibody antagonized the insulin-like effect of another antibody with which it competed in binding to insulin receptor, but not the effect of an antibody which bound independently to the receptor. It is concluded that binding of ligand at or close to the insulin-binding site is neither necessary nor sufficient to trigger insulin-like metabolic effects, which may rather depend on some general property of antibodies, such as their ability to cross-link and aggregate receptor molecules.  相似文献   

9.
The aim of this experiment was to study the influence of 18-hour food deprivation on basal and stimulated lipolysis in adipocytes obtained from young male Wistar rats. Fat cells from fed and fasted rats were isolated from the epididymal adipose tissue by collagenase digestion. Adipocytes were incubated in Krebs-Ringer buffer (pH 7.4, 37 degrees C) without agents affecting lipolysis and with different lipolytic stimulators (epinephrine, forskolin, dibutyryl-cAMP, theophylline, DPCPX, amrinone) or inhibitors (PIA, H-89, insulin). After 60 min of incubation, glycerol and, in some cases, also fatty acids released from adipocytes to the incubation medium were determined. Basal lipolysis was substantially potentiated in cells of fasted rats in comparison to adipocytes isolated from fed animals. The inhibition of protein kinase A activity by H-89 partially suppressed lipolysis in both groups of adipocytes, but did not eliminate this difference. The agonist of adenosine A (1) receptor also did not suppress fasting-enhanced basal lipolysis. The epinephrine-induced triglyceride breakdown was also enhanced by fasting. Similarly, the direct activation of adenylyl cyclase by forskolin or protein kinase A by dibutyryl-cAMP resulted in a higher lipolytic response in cells derived from fasted animals. These results indicate that the fasting-induced rise in lipolysis results predominantly from changes in the lipolytic cascade downstream from protein kinase A. The antagonism of the adenosine A (1) receptor and the inhibition of cAMP phosphodiesterase also induced lipolysis, which was potentiated by food deprivation. Moreover, the rise in basal and epinephrine-stimulated lipolysis in adipocytes of fasted rats was shown to be associated with a diminished non-esterified fatty acids/glycerol molar ratio. This effect was presumably due to increased re-esterification of triglyceride-derived fatty acids in cells of fasted rats. Comparing fed and fasted rats for the antilipolytic effect of insulin in adipocytes revealed that short-term food deprivation resulted in a substantial deterioration of the ability of insulin to suppress epinephrine-induced lipolysis.  相似文献   

10.
The amount of triacylglycerol (TAG) that accumulates in adipose tissue depends on 2 opposing processes: lipogenesis and lipolysis. We have previously shown that the weight and lipid content of epididymal (EPI) adipose tissue increases in growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The aim of this work was to study the pathways involved in lipogenesis and lipolysis, which ultimately regulate lipid accumulation in the tissue. De novo fatty acid synthesis was evaluated in vivo and was similar for rats fed an LPHC diet or a control diet; however, the LPHC-fed rats had decreased lipoprotein lipase activity in the EPI adipose tissue, which suggests that there was a decreased uptake of fatty acids from the circulating lipoproteins. The LPHC diet did not affect synthesis of glycerol-3-phosphate (G3P) via glycolysis or glyceroneogenesis. Glycerokinase activity - i.e., the phosphorylation of glycerol from the hydrolysis of endogenous TAG to form G3P - was also not affected in LPHC-fed rats. In contrast, adipocytes from LPHC animals had a reduced lipolytic response when stimulated by norepinephrine, even though the basal adipocyte lipolytic rate was similar for both of the groups. Thus, the results suggest that the reduction of lipolytic activity stimulated by norepinephrine seems essential for the TAG increase observed in the EPI adipose tissue of LPHC animals, probably by impairment of the process of activation of lipolysis by norepinephrine.  相似文献   

11.
Resveratrol is a naturally occurring diphenolic compound exerting numerous beneficial effects in the organism. The present study demonstrated its short-term, direct influence on lipogenesis, lipolysis and the antilipolytic action of insulin in freshly isolated rat adipocytes. In fat cells incubated for 90 min with 125 and 250 μM resveratrol (but not with 62.5 μM resveratrol), basal and insulin-induced lipogenesis from glucose was significantly reduced. The antilipogenic effect was accompanied by a significant diminution of CO2 release and enhanced production of lactate. The inhibition of glucose conversion to lipids found in the presence of resveratrol was not attenuated by activator of protein kinase C. However, acetate conversion to lipids appeared to be insensitive to resveratrol.In adipocytes incubated for 90 min with epinephrine, 10 and 100 μM resveratrol significantly enhanced lipolysis, especially at lower concentrations of the hormone. However, the lipolytic response to dibutyryl-cAMP, a direct activator of protein kinase A, was unchanged. Further studies demonstrated that, in cells stimulated with epinephrine, 1, 10 and 100 μM resveratrol significantly enhanced glycerol release despite the presence of insulin or H-89, an inhibitor of protein kinase A. The influence of resveratrol on epinephrine-induced lipolysis and on the antilipolytic action of insulin was not abated by the blocking of estrogen receptor and was accompanied by a significant (with the exception of 1 μM resveratrol in experiment with insulin) increase in cAMP in adipocytes. It was also revealed that resveratrol did not change the proportion between glycerol and fatty acids released from adipocytes exposed to epinephrine.Results of the present study revealed that resveratrol reduced glucose conversion to lipids in adipocytes, probably due to disturbed mitochondrial metabolism of the sugar. Moreover, resveratrol increased epinephrine-induced lipolysis. This effect was found also in the presence of insulin and resulted from the synergistic action of resveratrol and epinephrine. The obtained results provided evidence that resveratrol affects lipogenesis and lipolysis in adipocytes contributing to reduced lipid accumulation in these cells.  相似文献   

12.
Using cross-linking techniques, we compared the properties of the growth hormone (GH) receptor in freshly isolated adipocytes from normal rats, from GH deficient rats, and in preincubated adipocytes from normal rats. Bound [125I]iodo-hGH was cross-linked to adipocytes with disuccinimidyl suberate, and membrane proteins labelled with [125I]iodo-hGH were visualized using sodium dodecyl sulfate polyacrylamide gel electrophoresis and autoradiography. All of the adipocytes tested exhibited a prominent Mr = 134,000 band and additional less intense bands in the presence of reductant. No significant differences in the overall banding pattern of membrane proteins were evident in reducing or nonreducing gels, using adipocytes from rats made GH deficient by hypophysectomy or by treatment with antibodies against rat GH, or in fresh and preincubated cells from normal rats. Taken together with binding studies, these findings suggest that differences in the ability of GH to stimulate glucose oxidation in rat adipose tissue probably involve differences distal to the GH receptor.  相似文献   

13.
The natural 20 kDa-variant of human growth hormone (hGH) binds with high affinity to IM-9 human lymphocyte receptors, in agreement with its potency in biological assays for growth promoting and lactogenic activities. In contrast, 20 kDa-hGH has only 3% of the potency of 22 kDa-hGH in binding to the receptors of normal and hypophysectomized rat adipocytes. In agreement with the binding potency, 20 kDa-hGH is only 3% as potent as 22 kDa-hGH in stimulating lipogenesis in normal rat adipocytes preincubated for a few hours in hGH-free medium. The 20 kDa-hGH is also much weaker than 22 kDa-hGH in stimulating lipogenesis in adipocytes from hypophysectomized rats. These data strongly support the concept that the rat adipocyte receptor, which mediates the insulin-like effects of growth hormone, is different from the receptor found on human IM-9 lymphocytes. Preincubation of rat adipocytes with hGH induces a refractoriness to subsequent activation of lipogenesis by hGH but does not abolish the response to insulin, while preincubation with insulin slightly potentiates the hGH response and does not change the insulin response. Additivity studies and a detailed comparison of the lipogenic effects of insulin and hGH suggest that hGH shares only a subset of the metabolic pathways activated by insulin.  相似文献   

14.
beta-Lipotropin, a pituitary peptide, is a potent stimulator of lipolysis in rabbit adipose tissue in vitro and in vivo. Insulin inhibited the beta-lipotropin (1-100 nM)-stimulated glycerol release from rabbit adipocytes and fat pads significantly at concentrations of 10 and 100 microM. Both these concentrations of insulin also decreased the degradation of beta-lipotropin in intact adipose tissue to the same extent as the lipolytic activity. Furthermore, insulin reduced the degradation of beta-lipotropin in rabbit adipose tissue homogenate. Like insulin, several lysosomotropic agents also decreased significantly the degradation and the lipolytic activity of beta-lipotropin. On the other hand, insulin-like growth factor I in lower concentrations (1-100 nM) did not effect degradation and lipolytic activity of beta-lipotropin in rabbit adipose tissue. Thus, a direct influence of insulin on lysosomal enzymes degrading beta-lipotropin in rabbit adipose tissue can be suggested.  相似文献   

15.
The influence of cyclic 3',5'-guanosine monophosphate (cGMP) on the lipolytic and antilipolytic (inhibition of glucagon-stimulated lipolysis) responses to GH (1 microgram/ml) was examined in chicken adipose tissue in vitro. Both 8-bromo-cGMP (0.1 mM) and sodium nitroprusside (1 mM) (a guanyl cyclase stimulator) completely inhibited the lipolytic effect of GH. A cGMP-lowering agent, LY83583 (10 microM), reversed the inhibitory effect of sodium nitroprusside on GH-stimulated lipolysis. Furthermore, the suppressive effects of insulin (100 ng/ml), insulin-like growth factor I (IGF-I) (100 ng/ml), or insulin-like growth factor II (IGF-II/MSA) (100 ng/ml), but not somatostatin (1 ng/ml), on GH-stimulated lipolysis were prevented by LY83583 addition. Neither 8-bromo-cGMP, sodium nitroprusside, nor LY83583 altered GH-induced inhibition of glucagon (1 ng/ml)-stimulated lipolysis. It is proposed that cGMP may mediate inhibitory control of GH-stimulated lipolysis by insulin, IGF-I, and IGF-II in chicken adipose tissue.  相似文献   

16.
The aim of the present study was to gain insight into the signaling pathway used by leptin to stimulate lipolysis. The lipolytic rate of white adipocytes from sex- and age-matched lean (+/+) and fa/fa rats was determined in the absence or presence of leptin together with a number of agents acting at different levels of the signaling cascade. Leptin did not modify FSK-, dbcAMP-, and IBMX-stimulated lipolysis. Lipolysis can also be maximally stimulated by lowering media adenosine levels with adenosine deaminase (ADA), i.e., in the ligand-free state. Although ADA produced near maximal lipolysis in adipocytes of lean animals, only half of the maximal lipolytic rate (50.9+/-3.2%) was achieved in fat cells from fa/fa rats (P=0.0034). In adipocytes from lean animals preincubated with ADA, leptin caused a concentration-related stimulation of lipolysis (P=0.0001). However, leptin had no effect on the lipolytic activity of adipocytes in the ligand-free state from fa/fa rats. The adenosine A1 receptor agonist CPA effectively inhibited basal lipolysis in both lean and obese adipocytes (P=0.0001 and P=0.0090, respectively). Leptin had no effect on the lipolytic rate of adipocytes isolated from fa/fa rats and preincubated with CPA. When adipocytes were incubated with the A1 receptor antagonist DPCPX, a significant increase in glycerol release was observed in fa/fa fat cells (P=0.009), whereas cells isolated from lean rats showed no differences to ADA-stimulated lipolysis. After pretreatment with PTX, which inactivates receptor-mediated Gi function, adipocytes of obese rats became as responsive to the stimulatory actions of ISO as cells from lean rats (P=0.0090 vs. ISO in fa/fa rats; P=0.2416 vs. lean rats, respectively). PTX treatment of lean cells, however, did not alter their response to this lipolytic agent. It can be concluded that the lipolytic effect of leptin is located at the adenylate cyclase/Gi proteins level and that leptin-induced lipolysis opposes the tonic inhibition of endogenous adenosine in white adipocytes.  相似文献   

17.
The lipolytic activities of porcine pituitary fractions and purified growth hormone (GH) from human (h), porcine (p), ovine (o) and rabbit (Rb) origin as well as ovine placental lactogen (oPL), were compared to that of ACTH on rabbit adipocytes. All the GH preparations and oPL were equivalent in inhibiting the binding of labelled oGH to liver plasma membranes from pregnant rabbits. ACTH, and to a lesser extent porcine pituitary fractions and hGH, stimulated free fatty acid production by isolated adipocytes. The sensitivity of the adipocytes to these factors was increased when adenosine deaminase was added to the incubation medium. But, RbGH, pGH, oGH and oPL had no effect. We conclude that GH is not directly involved in the control of lipolysis in rabbit adipocytes and that the effect of hGH is rather due to a contamination of this preparation by other pituitary factors.  相似文献   

18.
The effects of somatostatin, insulin, insulin-like growth factor I (IGF-I), and insulin-like growth factor II (IGF-II)/MSA on growth hormone (GH) (1 microgram/ml)-induced lipolysis were examined employing chicken adipose tissue in vitro. Basal and GH-stimulated glycerol release were inhibited by somatostatin (1 ng/ml) and by IGF-II/MSA (10 and 100 ng/ml). Insulin and IGF-I (10 and 100 ng/ml) completely inhibited the lipolytic response to GH without affecting basal glycerol release. Insulin and IGF-I were equipotent in inhibiting GH-induced lipolysis while IGF-II is only 16% as potent as insulin.  相似文献   

19.
Patients with glucocorticoid (GC) excess, Cushing's syndrome, develop a classic phenotype characterized by central obesity and insulin resistance. GCs are known to increase the release of fatty acids from adipose, by stimulating lipolysis, however, the impact of GCs on the processes that regulate lipid accumulation has not been explored. Intracellular levels of active GC are dependent upon the activity of 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) and we have hypothesized that 11β-HSD1 activity can regulate lipid homeostasis in human adipose tissue (Chub-S7 cell line and primary cultures of human subcutaneous (sc) and omental (om) adipocytes. Across adipocyte differentiation, lipogenesis increased whilst β-oxidation decreased. GC treatment decreased lipogenesis but did not alter rates of β-oxidation in Chub-S7 cells, whilst insulin increased lipogenesis in all adipocyte cell models. Low dose Dexamethasone pre-treatment (5 nM) of Chub-S7 cells augmented the ability of insulin to stimulate lipogenesis and there was no evidence of adipose tissue insulin resistance in primary sc cells. Both cortisol and cortisone decreased lipogenesis; selective 11β-HSD1 inhibition completely abolished cortisone-mediated repression of lipogenesis. GCs have potent actions upon lipid homeostasis and these effects are dependent upon interactions with insulin. These in vitro data suggest that manipulation of GC availability through selective 11β-HSD1 inhibition modifies lipid homeostasis in human adipocytes.  相似文献   

20.
The acute effects of injections of the human growth hormone-like factor purified from plerocercoids of the tapeworm Spirometra mansonoides on carbohydrate, lipid, and protein metabolisms were determined in intact rats. Male rats were injected ip with saline, insulin, or various doses of partially purified PGF. The rats injected with insulin had significantly reduced serum glucose concentrations but no dose of PGF caused a change in serum glucose levels. Insulin and PGF stimulated [14C]glucose and [14C]leucine oxidation to 14CO2 in adipose tissue and muscle and increased incorporation of both [14C]glucose carbons into lipids and [14C]leucine into protein in fat and muscle. The responses to PGF were dose-dependent and persisted after 3 hr of incubation in vitro. Injections of naloxone prior to injecting PGF to block the stress response did not prevent the stimulation of insulin-like responses by PGF. Therefore, PGF has intrinsic insulin-like activities in normal male rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号