首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some behaviours that typically increase fitness at the individual level may reduce population persistence, particularly in the face of environmental changes. Sexual cannibalism is an extreme mating behaviour which typically involves a male being devoured by the female immediately before, during or after copulation, and is widespread amongst predatory invertebrates. Although the individual‐level effects of sexual cannibalism are reasonably well understood, very little is known about the population‐level effects. We constructed both a mathematical model and an individual‐based model to predict how sexual cannibalism might affect population growth rate and extinction risk. We found that in the absence of any cannibalism‐derived fecundity benefit, sexual cannibalism is always detrimental to population growth rate and leads to a higher population extinction risk. Increasing the fecundity benefits of sexual cannibalism leads to a consistently higher population growth rate and likely a lower extinction risk. However, even if cannibalism‐derived fecundity benefits are large, very high rates of sexual cannibalism (>70%) can still drive the population to negative growth and potential extinction. Pre‐copulatory cannibalism was particularly damaging for population growth rates and was the main predictor of growth declining below the replacement rate. Surprisingly, post‐copulatory cannibalism had a largely positive effect on population growth rate when fecundity benefits were present. This study is the first to formally estimate the population‐level effects of sexual cannibalism. We highlight the detrimental effect sexual cannibalism may have on population viability if (1) cannibalism rates become high, and/or (2) cannibalism‐derived fecundity benefits become low. Decreased food availability could plausibly both increase the frequency of cannibalism, and reduce the fecundity benefit of cannibalism, suggesting that sexual cannibalism may increase the risk of population collapse in the face of environmental change.  相似文献   

2.
The relative importance of environmental colour for extinction risk compared with other aspects of environmental noise (mean and interannual variability) is poorly understood. Such knowledge is currently relevant, as climate change can cause the mean, variability and temporal autocorrelation of environmental variables to change. Here, we predict that the extinction risk of a shorebird population increases with the colour of a key environmental variable: winter temperature. However, the effect is weak compared with the impact of changes in the mean and interannual variability of temperature. Extinction risk was largely insensitive to noise colour, because demographic rates are poor in tracking the colour of the environment. We show that three mechanisms-which probably act in many species-can cause poor environmental tracking: (i) demographic rates that depend nonlinearly on environmental variables filter the noise colour, (ii) demographic rates typically depend on several environmental signals that do not change colour synchronously, and (iii) demographic stochasticity whitens the colour of demographic rates at low population size. We argue that the common practice of assuming perfect environmental tracking may result in overemphasizing the importance of noise colour for extinction risk. Consequently, ignoring environmental autocorrelation in population viability analysis could be less problematic than generally thought.  相似文献   

3.
Disease models usually assume disease to act independently of other mortality- and morbidity-causing factors. Alternatively, disease may function as a competing risk factor, for example, killing already moribund hosts. Using tuberculosis (TB) in African buffalo as a model system, we explore consequences of competing or independent disease effects for host population dynamics. We include scenarios with density-dependent and density-independent effects of environmental variation, exemplified by variable food availability (driven by rainfall) and catastrophic droughts, respectively. Independent disease effects reduce population size linearly with prevalence, irrespective of the nature of environmental variation. Competing disease risks alter population size only if density-independent variation is present; then, disease reduces population size nonlinearly. Field data indicate that the net effect of TB on buffalo likely falls between the extremes of total independence and competition with other risk factors: TB increases mortality and decreases fecundity in some prime-aged buffalo, suggesting independent disease risks in these individuals, while similar disease effects in senescent buffalo may act as competing risks. Moreover, increased survival and fecundity of TB-negative buffalo may compensate for some disease-related losses. Model assumptions on independent or competing disease risks and environmental variability should be considered explicitly when assessing disease effects on wildlife populations.  相似文献   

4.
Group living is found in only 10–15% of carnivorans and can shape demographic processes. Sociality is associated with benefits including increased ability to acquire resources, decreased risk of mortality, and increased reproductive success. We hypothesized that carnivore group size is influenced by conditions related to competition, prey, and mortality risk, which should affect benefits and costs of sociality and resulting demographic processes. We evaluated our hypotheses with gray wolves (Canis lupus) using a 14-year dataset from a large, heavily managed population in the northern Rocky Mountains, USA. Annual mean group size ranged 4.86–7.03 and averaged 5.92 overall. Most groups were relatively small, with 80% containing ≤8 members. Groups were larger in areas with higher densities of conspecific groups, and smaller where prey availability was low. Group sizes remained largely stable while the population was unharvested or under low-intensity harvest but declined under high-intensity harvest. Results support the hypothesis that as habitat becomes saturated, inclusive fitness may become increasingly important such that subordinates delay dispersal. In addition to direct implications for birth and deaths, conditions related to prey and mortality risk may also influence dispersal decisions. Our work also provided a model to predict group size of wolves in our system, directly fulfilling a management need.  相似文献   

5.
The demographic variance of an age-structured population is defined. This parameter is further split into components generated by demographic stochasticity in each vital rate. The applicability of these parameters are investigated by checking how an age-structured population process can be approximated by a diffusion with only three parameters. These are the deterministic growth rate computed from the expected projection matrix and the environmental and demographic variances. We also consider age-structured populations where the fecundity at any stage is either zero or one, and there is neither environmental stochasticity nor dependence between individual fecundity and survival. In this case the demographic variance is uniquely determined by the vital rates defining the projection matrix. The demographic variance for a long-lived bird species, the wandering albatross in the southwestern part of the Indian Ocean, is estimated. We also compute estimates of the age-specific contributions to the total demographic variance from survival, fecundity and the covariance between survival and fecundity.  相似文献   

6.
There is increasing evidence of indirect effects of hunting on populations. In species with sexually selected infanticide (SSI), hunting may decrease juvenile survival by increasing male turnover. We aimed to evaluate the relative importance of direct and indirect effects of hunting via SSI on the population dynamics of the Scandinavian brown bear (Ursus arctos). We performed prospective and retrospective demographic perturbation analyses for periods with low and high hunting pressures. All demographic rates, except yearling survival, were lower under high hunting pressure, which led to a decline in population growth under high hunting pressure (λ = 0.975; 95% CI = 0.914–1.011). Hunting had negative indirect effects on the population through an increase in SSI, which lowered cub survival and possibly also fecundity rates. Our study suggests that SSI could explain 13.6% of the variation in population growth. Hunting also affected the relative importance of survival and fecundity of adult females for population growth, with fecundity being more important under low hunting pressure and survival more important under high hunting pressure. Our study sheds light on the importance of direct and indirect effects of hunting on population dynamics, and supports the contention that hunting can have indirect negative effects on populations through SSI.  相似文献   

7.
1 Population growth of four arthropod pests on agricultural crops, the pea aphid, the bird‐cherry oat aphid, the Mediterranean fruit fly, and the two‐spotted spider mite, was modelled using stage matrix models. 2 Temperature was included as a variable in the model, affecting fecundity, mortality and growth rate. Linear temperature dependence was used to describe fecundity and individual growth rate in the matrix model. Life table data collected at various constant experimental temperatures were used to parameterize the model. 3 Sensitivity analysis identified the most influential demographic parameters determining the growth rate of the population at different temperature regimes. Mortality of young adults and immature stages were found to be the most important parameters in determining population growth for all species presented. However, high temperatures increased the relative impact of individual growth rates and fecundity on the growth of the population.  相似文献   

8.
Genetically controlled self‐incompatibility systems represent links between genetic diversity and plant demography with the potential to directly impact on population dynamics. We use an individual‐based spatial simulation to investigate the demographic and genetic consequences of different self‐incompatibility systems for plants that vary in reproductive capacity and lifespan. The results support the idea that, in the absence of inbreeding effects, populations of self‐incompatible species will often be smaller and less viable than self‐compatible species, particularly for shorter‐lived organisms or where potential fecundity is low. At high ovule production and low mortality, self‐incompatible and self‐compatible species are demographically similar, thus self‐incompatibility does not automatically lead to reduced mate availability or population viability. Overall, sporophytic codominant self‐incompatibility was more limiting than gametophytic or sporophytic dominant systems, which generally behaved in a similar fashion. Under a narrow range of conditions, the sporophytic dominant system maintained marginally greater mate availability owing to the production of S locus homozygotes. While self‐incompatibility reduces population size and persistence for a broad range of conditions, the actual number of S alleles, beyond that required for reproduction, is important for only a subset of life histories. For these situations, results suggest that addition of new S alleles may result in significant demographic rescue.  相似文献   

9.
In this paper, we use a modeling approach to explore the population regulatory consequences of individual choices for where to breed in heterogeneous environments. In contrast to standard models, we focus on individuals that interact only indirectly through their choices of breeding sites (i.e., individuals preempt the occupation of a breeding site by others when they choose to breed there). We consider the consequences of individuals choosing breeding sites either randomly or sequentially from best to worst. Our analysis shows that average per-capita fecundity of the population is independent of the number of occupied breeding sites if individuals choose sites at random and that variation in average per-capita fecundity increases as population size declines. In contrast, if individuals choose breeding sites sequentially from highest to lowest quality, then as population size increases average per-capita fecundity declines and variation in average per-capita fecundity increases. Consequently, aggregate population-level demographic rates can change in ways that generate population regulation, even when change in population size does not change the demographic performance of any individual on any particular breeding site. However, such regulation occurs only when individuals make adaptive choices of where to breed. Because variation in average per-capita fecundity decreases when population size declines, populations regulated in a site-dependent manner should be much less susceptible to the vicissitudes of small population size than those which choose breeding sites at random.  相似文献   

10.
Survival and fecundity are basic components of demography and therefore have a strong influence on population dynamics. These two key parameters and their relationship are crucial to understand the evolution of life histories. It remains, however, to be empirically established how life span, fecundity, and population dynamics are linked in different organism groups. We conducted a comparative study based on demographic data sets of 55 populations of 23 perennial herbs for which structured demographic models and among-year natural variation in demographic attributes were available. Life span (from 4 to 128 yr old), estimated by using an algorithm, was inversely correlated with the deviance of the population growth rate from equilibrium as well as with among-year population fluctuations. Temporal variability was greater for short-lived species than for the long-lived ones because fecundity was more variable than survival and relatively more important for population dynamics for the short-lived species. The relationship between life span and population stability suggests that selection for longevity may have played an important role in the life history evolution of plants because of its ability to buffer temporal fluctuations in population size.  相似文献   

11.
12.
Summary Most species of woodlice in temperate habitats have discrete breeding seasons. It is hypothesised that breeding synchronises with favourable environmental conditions to maximise offspring growth and survivorship (Willows 1984). We measured the breeding phenology of a species introduced to a tropical environment, primarily to consider the assumption that life histories in the tropics will differ fundamentally from those in temperate habitats. In addition to breeding phenology we considered variation in reproductive effort between individual females and the division of this effort between the size and number of young.A continuous breeding phenology was observed in a synanthropic population of Porcellionides pruinosus within the tropics. Reproductive effort varied between months, showed a weak relationship with female size and was independent of female fecundity. Female sizefecundity relationships varied between samples and when the proportion of reproductive females was high size-fecundity slopes were steeper than at other times. Mean offspring size varied between months and there was a wide range in offspring size within broods. Offspring size was not related to female body mass, reproductive effort or fecundity; consequently brood mass increased linearly with an increase in fecundity. Increased reproductive effort goes into more rather than larger offspring.We propose that the continuous breeding in this population was the result of the constant presence of an environmental cue to reproduction evolved in temperate habitats. Continuous breeding is not necessarily equivocal to high individual reproductive success even though overall population growth may be rapid. However, variation in reproductive effort suggests that individuals respond to current environmental conditions on short time scales.  相似文献   

13.
In asymmetric competition between two individuals of the same or different species, one individual has a distinct advantage over the other due to a particular beneficial trait. An important trait that induces asymmetric competition is size (body size in animals, height in plants). There is usually a trade-off between fecundity and the trait that leads to competitive superiority (e.g. seed number vs seed size), enabling coexistence of populations with different trait values. These predictions on coexistence are based on classic deterministic models. Here, we explore the behaviour of a stochastic model of asymmetric competition where stochasticity is assumed to be demographic. We derive approximations for the temporal variance and covariance of the population sizes of the coexisting species. The derivations highlight that the variability of the population size of a species strongly depends on the stochastic fluctuations of species with higher trait values, while they are less influenced by species with lower trait values. Particularly, species with intermediate trait values are strongly affected resulting in relatively high variability. As a result these species have a relative high probability of extinction even though they have a larger population size than species with high trait values. We confirm these approximations with individual-based simulations. Thus, our analysis can explain gaps in size distributions as an emergent property of systems with a fecundity–competition trade-off.  相似文献   

14.
Genetic quality of individuals impacts population dynamics   总被引:5,自引:4,他引:1  
Ample evidence exists that an increase in the inbreeding level of a population reduces the value of fitness components such as fecundity and survival. It does not follow, however, that these decreases in the components of fitness impact population dynamics in a way that increases extinction risk, because virtually all species produce far more offspring than can actually survive. We analyzed the effects of the genetic quality (mean fitness) of individuals on the population growth rate of seven natural populations in each of two species of wolf spider in the genus Rabidosa , statistically controlling for environmental factors. We show that populations of different sizes, and different inbreeding levels, differ in population dynamics for both species. Differences in population growth rates are especially pronounced during stressful environmental conditions (low food availability) and the stressful environment affects smaller populations (<500 individuals) disproportionately. Thus, even in an invertebrate with an extremely high potential growth rate and strong density-dependent mortality rates, genetic factors contribute directly to population dynamics and, therefore, to extinction risk. This is only the second study to demonstrate an impact of the genetic quality of individual genotypes on population dynamics in a wild population and the first to document strong inbreeding–environment interactions for fitness among populations. Endangered species typically exist at sizes of a few hundred individuals and human activities degrade habitats making them innately more stressful (e.g. global climate change). Therefore, the interaction between genetic factors and environmental stress has important implications for efforts aimed at conserving the Earth's biodiversity.  相似文献   

15.
Demographic processes and the structure of a population of agile gibbons (Hylobates agilis) were investigated over 6 years in the Gunung Palung Reserve, Indonesia. Estimates of population size, density, and biomass revealed a population whose groups were stable in size and composition. Demographic processes place gibbons at risk, however, to short-term changes in their environment. Patterns of survival, fecundity, mortality, and dispersal combined to produce negative rates of growth. In addition, a top-heavy age-class distribution, with adults forming a large fraction of animals, makes it unlikely that this population could recover rapidly from a decline in numbers. Two behavioral factors, territoriality and monogamy, account for the size and stability of gibbon groups. Monogamy imposes limits on group size, while mating patterns and territoriality decrease the impact of sources of high mortality common in other primate species. These relationships underscore the fundamental importance of behavioral influence on demographic processes and social structure.  相似文献   

16.
Wildlife agencies typically attempt to manage carnivore numbers in localized game management units through hunting, and do not always consider the potential influences of immigration and emigration on the outcome of those hunting practices. However, such a closed population structure may not be an appropriate model for management of carnivore populations where immigration and emigration are important population parameters. The closed population hypothesis predicts that high hunting mortality will reduce numbers and densities of carnivores and that low hunting mortality will increase numbers and densities. By contrast, the open population hypothesis predicts that high hunting mortality may not reduce carnivore densities because of compensatory immigration, and low hunting mortality may not result in more carnivores because of compensatory emigration. Previous research supported the open population hypothesis with high immigration rates in a heavily hunted (hunting mortality rate=0.24) cougar population in northern Washington. We test the open population hypothesis and high emigration rates in a lightly hunted (hunting mortality rate=0.11) cougar population in central Washington by monitoring demography from 2002 to 2007. We used a dual sex survival/fecundity Leslie matrix to estimate closed population growth and annual census counts to estimate open population growth. The observed open population growth rate of 0.98 was lower than the closed survival/fecundity growth rates of 1.13 (deterministic) and 1.10 (stochastic), and suggests a 12–15% annual emigration rate. Our data support the open population hypothesis for lightly hunted populations of carnivores. Low hunting mortality did not result in increased numbers and densities of cougars, as commonly believed because of compensatory emigration.  相似文献   

17.
Species that mature late, experience high levels of survival and have long generation times are more vulnerable to chronic increases in mortality than species with higher fecundity and more rapid turnover of generations. Many chelonians have low hatchling survival, slow growth, delayed sexual maturity and high subadult and adult survival. This constrains their ability to respond quickly to increases in adult mortality from harvesting or habitat alteration. In contrast, the northern snake-necked turtle Chelodina rugosa (Ogilby 1890) is fast-growing, early maturing and highly fecund relative to other turtles, and may be resilient to increased mortality. Here we provide correlative evidence spanning six study sites and three field seasons, indicating that C. rugosa is able to compensate demographically to conditions of relatively low subadult and adult survival, caused by pig Sus scrofa (Linnaeus 1758) predation and customary harvesting by humans. Recruitment and age specific fecundity tended to be greater in sites with low adult and subadult survival (and thus reduced densities of large turtles), owing to higher juvenile survival, a smaller size at onset of maturity and faster post-maturity growth. These patterns are consistent with compensatory density-dependent responses, and as such challenge the generality that high subadult and adult survival is crucial for achieving long-term population stability in long-lived vertebrates such as chelonians. We posit that long-lived species with 'fast' recruitment and a capacity for a compensatory demographic response, similar to C. rugosa, may be able to persist in the face of occasional or sustained adult harvest without inevitably threatening population viability.  相似文献   

18.
The stock of the European eel is considered to be outside safe biological limits, following a dramatic demographic decline in recent decades (90–99% drop) that involves a large number of factors including overfishing, contaminants and environmental fluctuations. The aim of the present study is to estimate the effective population size of the European eel and the possible existence of a genetic bottleneck, which is expected during or after a severe demographic crash. Using a panel of 22 EST-derived microsatellite loci, we found no evidence for a genetic bottleneck in the European eel as our data showed moderate to high levels of genetic diversity, no loss of allele size range or rare alleles, and a stationary population with growth values not statistically different from zero, which is confirmed by finding comparable value of short-term and long-term effective population size. Our results suggest that the observed demographic decline in the European eel did not entail a genetic decline of the same magnitude. Forward-time simulations confirmed that large exploited marine fish populations can undergo genetic bottleneck episodes and experience a loss of genetic variability. Simulations indicated that the failure to pick up the signal of a genetic bottleneck in the European eel is not due to lack of power. Although anthropogenic factors lowered the continental stock biomass, the observation of a stable genetic effective population size suggests that the eel crash was not due to a reduction in spawning stock abundance. Alternatively, we propose that overfishing, pollution and/or parasites might have affected individual fitness and fecundity, leading to an impoverished spawning stock that may fail to produce enough good quality eggs. A reduced reproduction success due to poor quality of the spawners may be exacerbated by oceanic processes inducing changes in primary production in the Sargasso Sea and/or pathway of transport across the Atlantic Ocean leading to a higher larval mortality.  相似文献   

19.
The physiological condition and fecundity of an organism is frequently controlled by diet. As changes in environmental conditions often cause organisms to alter their foraging behavior, a comprehensive understanding of how diet influences the fitness of an individual is central to predicting the effect of environmental change on population dynamics. We experimentally manipulated the diet of the economically and ecologically important blue crab, Callinectes sapidus, to approximate the effects of a dietary shift from primarily animal to plant tissue, a phenomenon commonly documented in crabs. Crabs whose diet consisted exclusively of animal tissue had markedly lower mortality and consumed substantially more food than crabs whose diet consisted exclusively of seaweed. The quantity of food consumed had a significant positive influence on reproductive effort and long-term energy stores. Additionally, seaweed diets produced a three-fold decrease in hepatopancreas lipid content and a simultaneous two-fold increase in crab aggression when compared to an animal diet. Our results reveal that the consumption of animal tissue substantially enhanced C. sapidus fitness, and suggest that a dietary shift to plant tissue may reduce crab population growth by decreasing fecundity as well as increasing mortality. This study has implications for C. sapidus fisheries.  相似文献   

20.
Laboratory studies of insects suggest that female fecundity may increase very rapidly with adult size and that mass may often increase close to exponentially with time during larval growth. These relationships make it difficult to see how realistic levels of larval mortality can outweigh the fecundity benefit of prolonged growth. Hence, it is unclear why many insects do not become bigger. In this study, we experimentally explore the relationship between female size and fecundity in the butterfly Pararge aegeria and show that thermally induced time limitation during oviposition may substantially reduce the fecundity benefit of larger females. We model time-limited oviposition under natural temperature conditions and show that fecundity is also likely to increase asymptotically with female size in the field. With realistic estimates of juvenile mortality, the model predicts optimal body sizes within the observed range even when larvae grow exponentially. We conclude that one important reason for why insects with a high capacity of larval growth do not evolve toward larger sizes may be that the fecundity benefit is in fact relatively limited under natural conditions. If so, these results may help resolve some of the inconsistencies between theory and empirical patterns in explaining optimal size in insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号