首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Rutberg, Blanka (Karolinska Institutet, Stockholm, Sweden), and Lars Rutberg. Bacteriophage-induced functions in Escherichia coli K(lambda) infected with rII mutants of bacteriophage T4. J. Bacteriol. 91:76-80. 1966.-When Escherichia coli K(lambda) was infected with rII mutants of phage T4, deoxycytidine triphosphatase, one of the phage-induced early enzymes, was produced at initially the same rate as in r(+)-infected cells. Deoxyribonuclease activity was one-third to one-half of that of r(+)-infected cells. This lower deoxyribonuclease activity was observed also in other hosts or when infection was made with rI or rIII mutants. Presence of chloramphenicol did not allow a continued synthesis of phage deoxyribonucleic acid in rII-infected K(lambda). No phage lysozyme was detected nor was any antiphage serum-blocking antigen found in rII-infected K(lambda). It is suggested that the rII gene is of significance for the expression of phage-induced late functions in the host K(lambda).  相似文献   

2.
Infection of nonlysogenic Escherichia coli CR34(S) (Thy(-)) with bacteriophage lambda C(I)857 resulted in the formation of twisted circular double-stranded phage deoxyribonucleic acid (DNA; species I). When such infected bacteria were incubated in the absence of thymine, there was a significant decrease in the amount of species I DNA after 60 min of incubation. A similar loss of species I lambda DNA during incubation in a thymine-deficient medium was also observed after infection of the endonuclease I-deficient strain, E. coli 1100(S) (Thy(-)). This destruction of twisted, circular lambda DNA in thymine-deprived cells did not occur in the presence of chloramphenicol nor in lysogenic E. coli CR34 carrying a noninducible lambda prophage. It is therefore concluded that the endonuclease which attacks this circular configuration of lambda DNA is newly synthesized after infection and is directed by the phage chromosome.  相似文献   

3.
We investigated the capacity of Escherichia coli mutants defective in the single-strand deoxyribonucleic acid (DNA)-binding protein to amplify the synthesis of the recA protein, induce prophage lambda, and degrade their DNA after treatment with ultraviolet radiation, mitomycin C, or bleomycin. The thermosensitive ssbA1 strain induced recA protein and lambda phage normally at 30 degrees C, but no induction was observed at 42 degrees C when ultraviolet radiation or mitomycin C was used. The lexC113 mutant did not amplify recA protein synthesis or induce phage lambda at either 30 or 42 degrees C with those agents. Bleomycin was able to elicit induction of recA and phage lambda in both mutants at any temperature. After induction with ultraviolet radiation at the elevated temperature, no DNA degradation was observed for 40 min, but at later times there was increased degradation in the lexC113 strain, compared with the wild type, and even greater degradation in the ssbA1 mutant. We discuss the role of single-strand DNA-binding protein in induction and the possibility that the lexC product may exert its influence on recA and lambda induction at the level of the single-strand DNA gap.  相似文献   

4.
Barnhart, Benjamin J. (Los Alamos Scientific Laboratory, University of California, Los Alamos, N.M.). Kinetics of bacteriophage lambda deoxyribonucleic acid infection of Escherichia coli. J. Bacteriol. 90:1617-1623. 1965.-The kinetics of Escherichia coli K-12 infection by phage lambda deoxyribonucleic acid (DNA) were determined. An initial lag of 55 to 80 sec was found to be the time required for infecting DNA to become deoxyribonuclease-insensitive at 33 C. When cell-DNA interactions were stopped by washing away unbound DNA, the already bound DNA continued to infect the cell at rates described by linear kinetics with no apparent lag. Whereas the lag period was relatively insensitive to DNA and cell concentrations, both the lag and the subsequent linear portions of the rate curves were temperature-sensitive. Cell and DNA dose-response curves prescribed hyperbolic functions. Similarities between lambda DNA infection of E. coli and bacterial transformation systems are discussed.  相似文献   

5.
Twenty-eight coliphages were studied for their susceptibility to four systems of host control variation in Escherichia coli. Both temperate and virulent phages were studied, including phages with ribonucleic acid, double- and single-stranded deoxyribonucleic acid (DNA) and glucosylated DNA. The systems examined were E. coli C-K, K-B, B-K, and K-K(P1). The C-K, K-B, and B-K systems affected temperate phages and nonlysogenizing mutants derived from temperate phages. In general, these systems did not restrict virulent phages. Phage 21e, a variant of phage 21, lost the ability to undergo restriction in the C-K and B-K systems, but retained susceptibility to the K-B and K-K(P1) systems. This suggests that the genetic site(s) on the phage, as well as in the host, determines susceptibility to host-controlled variation. Both temperate and dependent virulent phages were susceptible to the host control system resulting from the presence of prophage P1. The autonomous and small virulents were not susceptible. In a given system, the various susceptible phages differed widely in their efficiency of plating on the restricting host. If the few infections that occur arise in rare special cells, then different populations of special cells are available to different phage species. For most phage types, when a susceptible phage infected a nonrestricting host, the progeny showed the specificity appropriate to that host. Behavior of T3 was exceptional, however. When T3 obtained from E. coli K infected E. coli C or B, some of the progeny phages retained K host specificity, whereas others acquired the specificity of the new host.  相似文献   

6.
Gough, Michael (Brown University, Providence, R.I.), and Seymour Lederberg. Methylated bases in the host-modified deoxyribonucleic acid of Escherichia coli and bacteriophage lambda. J. Bacteriol. 91:1460-1468. 1966.-The deoxyribonucleic acid (DNA) from strains of Escherichia coli and phage lambda was examined to determine whether the types or amounts of methionine-derived methylated bases present correlated with the host-specific modification of that DNA. The DNA of strain C600 (which has K-12 modification specificity) and of a modificationless mutant of C600 are similar in their content of 5-methylcytosine and 6-methylaminopurine. Strains Bc251 and its P1-lysogen differ in P1-controlled specificity, but they have the same content of 6-methylaminopurine, and both lack 5-methylcytosine in their DNA. Phage lambda contains the same methylated bases as its host of origin, but in reduced amounts and in different proportions. Although minor amounts of these methylated bases may have importance as a result of their location, the presence of the majority of these methylated bases is irrelevant to the specificity of host modification of DNA.  相似文献   

7.
The effect of thymine deprivation on the integrity of phage lambda, sex factor, and chromosomal deoxyribonucleic acid (DNA) in Escherichia coli CR34 (lambda ind(-)) was examined by sedimenting cell lysates through alkaline sucrose gradients. Both sex factor and chromosomal DNAs showed evidence of being degraded during the starvation period. In contrast, no loss of closed circular lambda DNA was observed.  相似文献   

8.
Treatment of Escherichia coli K-12 infected by lambda CIts857 with colicin CA42-E2 resulted in partial inhibition of the infectious process. Uninfected bacteria were killed by colicin with a probability of about five times that with which similarly treated lambda-infected bacteria lose plaque-forming ability. The lambda deoxyribonucleic acid (DNA), when present in a bacterial cell either as the replicating DNA of infectious phage or as the nonreplicating DNA of superinfecting phage, was degraded to acid-soluble material after colicin treatment. Analysis of the intermediates of DNA breakdown has revealed that degradation of the DNA to acid-soluble material is preceded by endonucleolytic fragmentation of the chromosome at a limited number of sites. This is the same mechanism of degradation previously observed for E. coli DNA after colicin treatment.  相似文献   

9.
In Escherichia coli K-12 mutants which had a new nalidixic acid resistance mutation at about 82 min on the chromosome map, cell growth was resistant to or hypersusceptible to nalidixic acid, oxolinic acid, piromidic acid, pipemidic acid, and novobiocin. Deoxyribonucleic acid gyrase activity as tested by supercoiling of lambda phage deoxyribonucleic acid inside the mutants was similarly resistant or hypersusceptible to the compounds. The drug concentrations required for gyrase inhibition were much higher than those for cell growth inhibition but similar to those for inhibition of lambda phage multiplication. Transduction analysis with lambda phages carrying the chromosomal fragment of the tnaA-gyrB region suggested that one of the mutations, nal-31, was located on the gyrB gene.  相似文献   

10.
We have shown that a mutation in the cro gene of phage lambda greatly reduces zygotic induction. This observation has allowed us to move this phage on an episome into cells of Klebsiella aerogenes where it grows as well as in cells of Escherichia coli. This technique should allow the introduction of various derivatives of lambda into any organism which is able to receive deoxyribonucleic acid from E. coli.  相似文献   

11.
Escherichia coli uvrA, polA and uvrD cells carrying non-UV-inducible prophage lambdac1857ind- were infected with 3H-thymidine labelled homoimmune phage lambdac1857, and the effect of UV-irradiation of super-infecting phage and lysogenic bacterial cells on the content of intracellular covalently-closed lambda DNA circles (cccDNA) and pyrimidine dimer content in lambda DNA are studied. UV-irradiation of host cells results in two-fold increase of relative content of cccDNA of UV-irradiated phage lambda in uvrD mutant, while there is no such an effect in uvrA and polA mutants. In UV-irradiated or intact uvrA lysogens cccDNA molecules, forming after the infection with UV-irradiated phage lambda, contain pyrimidine dimers, but in uvrD mutant cccDNA in free of dimers. The data indicate that the repair system induced by UV-irradiation of uvrA and polA cells acts exclusively on the DNA defects appearing after (or in the course) of phage genomes replication. UV-inducible repair system in uvrD mutant can operate also on some intermediates of abortive excision repair, possibly on long single straided excision gaps.  相似文献   

12.
The fate of phage lambda DNA in lambda-infected Escherichia coli minicells harboring the plasmid ColE1, and in plasmid-free minicells, were studied. Binding of lambda DNA to the minicell membrane, and formation of the supercoiled covalently-closed circular structure has been demonstrated. Phage infection abolishes plasmid DNA synthesis. Only a very slight, non-replicative lambda DNA synthesis occurs, soon after infection. This synthesis is associated with fragments of lambda DNA arising during, or soon after its penetration.  相似文献   

13.
Starvation for a required amino acid of normal or RC(str)Escherichia coli infected with T-even phages arrests further synthesis of phage deoxyribonucleic acid (DNA). This amino acid control over phage DNA synthesis does not occur in RC(rel)E. coli mutants. Heat inactivation of a temperature-sensitive aminoacyl-transfer ribonucleic acid (RNA) synthetase similarly causes an arrest of phage DNA synthesis in infected cells of RC(str) phenotype but not in cells of RC(rel) phenotype. Inhibition of phage DNA synthesis in amino acid-starved RC(str) host cells can be reversed by addition of chloramphenicol to the culture. Thus, the general features of amino acid control over T-even phage DNA synthesis are entirely analogous to those known for amino acid control over net RNA synthesis of uninfected bacteria. This analogy shows that the bacterial rel locus controls a wider range of macromolecular syntheses than had been previously thought.  相似文献   

14.
A lambda lysogen with the prophage inserted into the arabinose B gene of Escherichia coli strain K-12 has been prepared. Induction of the phage from this lysogen yields viable phage at a frequency 4 X 10(-6) that found for induction of lysogens with phage inserted at the normal attachment site. Over 30% of the phage particles induced from the insertion in ara are arabinose-transducing phage. The excision end points of 62 independently isolated, nondefective araC-transducing phage containing less than the entire araC gene were genetically determined and were found to be randomly distributed through the araC gene. The amount of arabinose deoxyribonucleic acid contained on four selected transducing phage was determined by electron microscopy of deoxyribonucleic acid heteroduplexes, providing a physical map of the araC gene. The efficiency with which these phage transduce araC and araB point mutations was found to be approximately proportional to the homology length available for recombination.  相似文献   

15.
Wild-type bacteriophage T4 was enriched for mutants which fail to degrade Escherichia coli deoxyribonucleic acid (DNA) by the following method. E. coli B was labeled in DNA at high specific activity with tritiated thymidine ((3)H-dT) and infected at low multiplicity with unmutagenized T4D. At 25 min after infection, the culture was lysed and stored. Wild-type T4 degrades the host DNA and incorporates the (3)H-dT into the DNA of progeny phage; mutants which fail to degrade the host DNA make unlabeled progeny phage. Wild-type progeny are eventually inactivated by tritium decay; mutants survive. Such mutants were found at a frequency of about 1% in the survivors. Eight mutants are in a single complementation group called denA located near gene 63. Four of these mutants which were examined in detail leave the bulk of the host DNA in large fragments. All eight mutants exhibit much less than normal T4 endonuclease II activity. The mutants produce somewhat fewer phage and less DNA than does wild-type T4.  相似文献   

16.
R Kudrna  G Edlin 《Journal of virology》1975,15(6):1504-1506
Inhibition of protein synthesis in Escherichia coli by amino acid starvation or chloramphenicol addition increases the frequency of lysogeny by lambda phage two- to fourfold. Lambda cIII mutants, which normally lysogenize at very low frequencies, lysogenize at very high frequencies in the presence of chloramphenicol.  相似文献   

17.
Mathews, Christopher K. (Yale University, New Haven, Conn.). Phage growth and deoxyribonucleic acid synthesis in Escherichia coli infected by a thymine-requiring bacteriophage. J. Bacteriol. 90:648-652. 1965.-Cultures of Escherichia coli B infected with a mutant strain of phage T4 which cannot induce the formation of thymidylate synthetase produce deoxyribonucleic acid (DNA) at about two-thirds the rate of cultures infected with the parent strain. Under certain conditions the yield of viable phage observed with the mutant is one-third of that brought about by the wild-type strain. Addition of thymine increases both DNA synthesis and phage production in cells infected by the mutant. It is suggested that the ability to induce thymidylate synthetase formation in infected cells confers a selective advantage on the wild-type strain.  相似文献   

18.
In Escherichia coli K-12 strains infected with phage T4 which is defective in gene 30 [deoxyribonucleic acid (DNA) ligase] and in the rII gene (product unknown), near normal levels of DNA and viable phage were produced. Growth of such T4 ligase-rII double mutants was less efficient in E. coli B strains which show the "rapidlysis" phenotype of rII mutations. In pulse-chase experiments coupled with temperature shifts and with inhibition of DNA synthesis, it was observed that DNA synthesized by gene 30-defective phage is more susceptible to breakdown in vivo when the phage is carrying a wild-type rII gene. Breakdown was delayed or inhibited by continued DNA synthesis. Mutations of the rII gene decreased but did not completely abolish the breakdown. T4 ligase-rII double mutants had normal sensitivity to ultraviolet irradiation.  相似文献   

19.
A Ishikawa  H Ikeda 《Gene》1983,21(3):211-216
Dictyostelium discoideum myxamoebae were cultured with Escherichia coli cells infected with lambda phage in the presence of chloramphenicol. After eliminating the uningested bacteria by repeated centrifugation in a Percoll gradient, we examined the myxamoeba cytoplasm (not the food vacuole) for the presence of phage DNA. A significant amount of DNA extracted from the myxamoebae was hybridizable with purified phage lambda DNA, and capable of forming phage particles when packaged in vitro with phage lambda proteins. The EcoRI restriction maps of the phages recovered from the plaques were identical to that of the infecting phage. These results strongly suggest that phage DNA molecules were taken up by the cellular slime mold cells and that at least some fraction existed in intact form.  相似文献   

20.
In the Escherichia coli lysogen HfrH73 described by Shimada et al. (1973), none of the enzymes coded for by the leucine operon is synthesized due to an insertion of phage lambda into cistron leuA. The orientation of lambda in the chromosome is ara leuDCB lambda JAN leuA. After heat induction of the lysogen, plaque-forming transducing phages of two types are formed at low frequency. One type (e.g., lambda pleu9) transduces leuD, leuC, and leuB strains to prototrophy. The other type (e.g., lambda pleu 13) transduces leuA strains to prototrophy. lambda pleu 13 forms lysogens at low frequency (about 0.2%) by integration into the leucine operon. These lysogens are unstable, segregating phage-sensitive clones at high frequency (about 1%). Phages carrying different portions of the leucine operon were formed by aberrant excision after heat induction of strain CV437 (leuA371 lambda pleu13). A phage carrying the entire leucine operon (lambda K2) was constructed by a cross between lambda pleu9 and lambda pleu13. An analysis of leucine-forming enzyme levels in strains lysogenized with lambdaK2 indicated that leuO and leuP are present and functional in lambda K2. leu-specific messenger ribonucleic acid from E. coli hybridizes to the heavy (r) strand of lambdaK2. The leucine operon of lambda G4 pleuABCD (an S7 derivative of lambda K2) exists intact on a 7.3 x 10(6)-dalton fragment (lambdaG4EcoRI-B) generated by cleavage with endonuclease EcoRI. Heteroduplexes formed between lambda G4 and lambda show a 5.4 x 10(6)-dalton piece of bacterial deoxyribonucleic acid (DNA) replacing a 4.5 x 10(6)-dalton piece of lambda DNA starting at 0.46 fractional unit on the map of lambda. Fragment lambda G4EcoRI-B has about 0.6 x 10(6) daltons of lambda DNA from the b2 region at one end and about 1.4 x 10(6) daltons of lambda DNA from the int region at the other end.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号