首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cellular machinery responsible for conveying proteins between the endoplasmic reticulum and the Golgi is being investigated using genetics and biochemistry. A role for vesicles in mediating protein traffic between the ER and the Golgi has been established by characterizing yeast mutants defective in this process, and by using recently developed cell-free assays that measure ER to Golgi transport. These tools have also allowed the identification of several proteins crucial to intracellular protein trafficking. The characterization and possible functions of several GTP-binding proteins, peripheral membrane proteins, and an integral membrane protein during ER to Golgi transport are discussed here.  相似文献   

2.
The morphology and subcellular positioning of the Golgi complex depend on both microtubule and actin cytoskeletons. In contrast to microtubules, the role of actin cytoskeleton in the secretory pathway in mammalian cells has not been clearly established. Using cytochalasin D, we have previously shown that microfilaments are not involved in the endoplasmic reticulum–Golgi membrane dynamics. However, it has been reported that, unlike botulinum C2 toxin and latrunculins, cytochalasin D does not produce net depolymerization of actin filaments. Therefore, we have reassessed the functional role of actin microfilaments in the early steps of the biosynthetic pathway using C2 toxin and latrunculin B. The anterograde endoplasmic reticulum-to-Golgi transport monitored with the vesicular stomatitis virus-G protein remained unaltered in cells treated with cytochalasin D, latrunculin B or C2 toxin. Conversely, the brefeldin A-induced Golgi membrane fusion into the endoplasmic reticulum, the Golgi-to-endoplasmic reticulum transport of a Shiga toxin mutant form, and the subcellular distribution of the KDEL receptor were all impaired when actin microfilaments were depolymerized by latrunculin B or C2 toxin. These findings, together with the fact that COPI-coated and uncoated vesicles contain β/γ-actin isoforms, indicate that actin microfilaments are involved in the endoplasmic reticulum/Golgi interface, facilitating the retrograde Golgi-to-endoplasmic reticulum membrane transport, which could be mediated by the orchestrated movement of transport intermediates along microtubule and microfilament tracks.  相似文献   

3.
Actin is involved in the organization of the Golgi complex and Golgi-to-ER protein transport in mammalian cells. Little, however, is known about the regulation of the Golgi-associated actin cytoskeleton. We provide evidence that Cdc42, a small GTPase that regulates actin dynamics, controls Golgi-to-ER protein transport. We located GFP-Cdc42 in the lateral portions of Golgi cisternae and in COPI-coated and non-coated Golgi-associated transport intermediates. Overexpression of Cdc42 and its activated form Cdc42V12 inhibited the retrograde transport of Shiga toxin from the Golgi complex to the ER, the redistribution of the KDEL receptor, and the ER accumulation of Golgi-resident proteins induced by the active GTP-bound mutant of Sar1 (Sar1[H79G]). Coexpression of wild-type or activated Cdc42 and N-WASP also inhibited Golgi-to-ER transport, but this was not the case in cells expressing Cdc42V12 and N-WASP(Delta WA), a mutant form of N-WASP that lacks Arp2/3 binding. Furthermore, Cdc42V12 recruited GFP-N-WASP to the Golgi complex. We therefore conclude that Cdc42 regulates Golgi-to-ER protein transport in an N-WASP-dependent manner.  相似文献   

4.
The cytosolic coat-protein complex COP-I interacts with cytoplasmic 'retrieval' signals present in membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi complex, and is required for both anterograde and retrograde transport in the secretory pathway. Here we study the role of COP-I in Golgi-to-ER transport of several distinct marker molecules. Microinjection of anti-COP-I antibodies inhibits retrieval of the lectin-like molecule ERGIC-53 and of the KDEL receptor from the Golgi to the ER. Transport to the ER of protein toxins, which contain a sequence that is recognized by the KDEL receptor, is also inhibited. In contrast, microinjection of anti-COP-I antibodies or expression of a GTP-restricted Arf-1 mutant does not interfere with Golgi-to-ER transport of Shiga toxin/Shiga-like toxin-1 or with the apparent recycling to the ER of Golgi-resident glycosylation enzymes. Overexpression of a GDP-restricted mutant of Rab6 blocks transport to the ER of Shiga toxin/Shiga-like toxin-1 and glycosylation enzymes, but not of ERGIC-53, the KDEL receptor or KDEL-containing toxins. These data indicate the existence of at least two distinct pathways for Golgi-to-ER transport, one COP-I dependent and the other COP-I independent. The COP-I-independent pathway is specifically regulated by Rab6 and is used by Golgi glycosylation enzymes and Shiga toxin/Shiga-like toxin-1.  相似文献   

5.
Neo1p from Saccharomyces cerevisiae is an essential P-type ATPase and potential aminophospholipid translocase (flippase) in the Drs2p family. We have previously implicated Drs2p in protein transport steps in the late secretory pathway requiring ADP-ribosylation factor (ARF) and clathrin. Here, we present evidence that epitope-tagged Neo1p localizes to the endoplasmic reticulum (ER) and Golgi complex and is required for a retrograde transport pathway between these organelles. Using conditional alleles of NEO1, we find that loss of Neo1p function causes cargo-specific defects in anterograde protein transport early in the secretory pathway and perturbs glycosylation in the Golgi complex. Rer1-GFP, a protein that cycles between the ER and Golgi complex in COPI and COPII vesicles, is mislocalized to the vacuole in neo1-ts at the nonpermissive temperature. These phenotypes suggest that the anterograde protein transport defect is a secondary consequence of a defect in a COPI-dependent retrograde pathway. We propose that loss of lipid asymmetry in the cis Golgi perturbs retrograde protein transport to the ER.  相似文献   

6.
Using either permeabilized cells or microsomes we have reconstituted the early events of the yeast secretory pathway in vitro. In the first stage of the reaction approximately 50-70% of the prepro-alpha-factor, synthesized in a yeast translation lysate, is translocated into the endoplasmic reticulum (ER) of permeabilized yeast cells or directly into yeast microsomes. In the second stage of the reaction 48-66% of the ER form of alpha-factor (26,000 D) is then converted to the high molecular weight Golgi form in the presence of ATP, soluble factors and an acceptor membrane fraction; GTP gamma S inhibits this transport reaction. Donor, acceptor, and soluble fractions can be separated in this assay. This has enabled us to determine the defective fraction in sec23, a secretory mutant that blocks ER to Golgi transport in vivo. When fractions were prepared from mutant cells grown at the permissive or restrictive temperature and then assayed in vitro, the acceptor Golgi fraction was found to be defective.  相似文献   

7.
《The Journal of cell biology》1993,122(6):1155-1167
Using a novel in vitro assay which allows us to distinguish vesicle budding from subsequent targeting and fusion steps, we provide the first biological evidence that beta-COP, a component of non-clathrin- coated vesicles believed to mediate intraGolgi transport, is essential for transport of protein from the ER to the cis-Golgi compartment. Incubation in the presence of beta-COP specific antibodies and F(ab) fragments prevents the exit of vesicular stomatitis virus glycoprotein (VSV-G) from the ER. These results demonstrate that beta-COP is required for the assembly of coat complexes mediating vesicle budding. Fractionation of rat liver cytosol revealed that a major biologically active form of beta-COP was found in a high molecular pool (> 1,000 kD) distinct from coatomer and which promoted efficient vesicle budding from the ER. Surprisingly, rab1B could be quantitatively coprecipitated with this beta-COP containing complex and was also essential for function. We suggest that beta-COP functions in an early step during vesicle formation and that rab1B may be recruited as a component of a precoat complex which participates in the export of protein from the ER via vesicular carriers.  相似文献   

8.
In plant cells, the organization of the Golgi apparatus and its interrelationships with the endoplasmic reticulum differ from those in mammalian and yeast cells. Endoplasmic reticulum and Golgi apparatus can now be visualized in plant cells in vivo with green fluorescent protein (GFP) specifically directed to these compartments. This makes it possible to study the dynamics of the membrane transport between these two organelles in the living cells. The GFP approach, in conjunction with a considerable volume of data about proteins participating in the transport between endoplasmic reticulum and Golgi in yeast and mammalian cells and the identification of their putative plant homologues, should allow the establishment of an experimental model in which to test the involvement of the candidate proteins in plants. As a first step towards the development of such a system, we are using Sar1, a small G-protein necessary for vesicle budding from the endoplasmic reticulum. This work has demonstrated that the introduction of Sar1 mutants blocks the transport from endoplasmic reticulum to Golgi in vivo in tobacco leaf epidermal cells and has therefore confirmed the feasibility of this approach to test the function of other proteins that are presumably involved in this step of endomembrane trafficking in plant cells.  相似文献   

9.
We have studied the role of a previously described tubulovesicular compartment near the cis-Golgi apparatus in endoplasmic reticulum (ER)-to-Golgi protein transport by light and immunoelectron microscopy in Vero cells. The compartment is defined by a 53-kDa transmembrane protein designated p53. When transport of the vesicular stomatitis virus strain ts045 G protein was arrested at 39.5 degrees C, the G protein accumulated in the ER but had access to the p53 compartment. At 15 degrees C, the G protein was exported from the ER into the p53 compartment which formed a compact structure composed of vesicular and tubular profiles in close proximity to the Golgi. Upon raising the temperature to 32 degrees C, the G protein migrated through the Golgi apparatus while the p53 compartment resumed its normal structure again. These results establish the p53 compartment as the 15 degrees C intermediate of the ER-to-Golgi protein transport pathway.  相似文献   

10.
《The Journal of cell biology》1989,109(4):1439-1444
We have previously shown that Xenopus oocytes arrested at second meiotic metaphase lost their characteristic multicisternal Golgi apparati and cannot secrete proteins into the surrounding medium. In this paper, we extend these studies to ask whether intracellular transport events affecting the movement of secretory proteins from the endoplasmic reticulum to the Golgi apparatus are also similarly inhibited in such oocytes. Using the acquisition of resistance to endoglycosidase H (endo H) as an assay for movement to the Golgi, we find that within 6 h, up to 66% of the influenza virus membrane protein, hemagglutinin (HA), synthesized from injected synthetic RNA, can move to the Golgi apparati in nonmatured oocytes; indeed after longer periods some correctly folded HA can be detected at the cell surface where it distributes in a nonpolarized fashion. In matured oocytes, up to 49% of the HA becomes endo H resistant in the same 6-h period. We conclude that movement from the endoplasmic reticulum to the Golgi can occur in matured oocytes despite the dramatic fragmentation of the Golgi apparati that we observe to occur on maturation. This observation of residual protein movement during meiotic metaphase contrasts with the situation at mitotic metabphase in cultured mammalian cells where all movement ceases, but resembles that in the budding yeast Saccharomyces cerevisiae where transport is unaffected.  相似文献   

11.
Transport of the vesicular stomatitis virus-encoded glycoprotein (G protein) between the endoplasmic reticulum (ER) and the cis Golgi compartment has been reconstituted in a cell-free system. Transfer is measured by the processing of the high mannose (man GlcNAc2) ER form of G protein to the man5GlcNAc5 form by the cis Golgi enzyme alpha-mannosidase I. G protein is rapidly and efficiently transported to the Golgi complex by a process resembling that observed in vivo. G protein is trimmed from the high mannose form to the man5GlcNAc2 form without the appearance of the intermediate man GlcNAc2 oligosaccharide species, as is observed in vivo. G protein is found in a sealed membrane-bound compartment before and after incubation. Processing in vitro is sensitive to detergent, and the Golgi alpha-mannosidase I inhibitor 1-deoxymannorjirimycin. Transport between the ER and Golgi complex in vitro requires the addition of a high speed supernatant (cytosol) of cell homogenates, and requires energy in the form of ATP. Efficient reconstitution of export of protein from the ER requires the preparation of homogenates from mitotic cell populations in which the nuclear envelope, ER, and Golgi compartments have been physiologically disassembled before cell homogenization. These results suggest that the high efficiency of transport observed here may require reassembly of functional organelles in vitro.  相似文献   

12.
The vectorial transport of vesicular stomatitis virus (VSV) G protein between the ER and the cis and medial Golgi compartments has been reconstituted using semi-intact (perforated) cells. The transport of VSV-G protein between successive compartments is measured by the sequential processing of the two N-linked oligosaccharide chains present on VSV-G protein to the endoglycosidase (endo) H-resistant structures which have unique electrophoretic mobilities during sodium dodecyl sulfate-gel electrophoresis. The appearance of a form of VSV-G which contains only one endo H-resistant oligosaccharide chain (GH1) is kinetically and biochemically indistinguishable from the appearance of the Man5, endo D-sensitive form (GD), the latter being a processing reaction diagnostic of transport from the ER to the cis Golgi compartment. These results provide evidence that the cis Golgi compartment may contain in addition to alpha-1,2-mannosidase I, both N-acetylglueosamine transferase I and alpha-1,2-mannosidase II. VSV-G protein is subsequently processed to the form which contains two endo H-resistant oligosaccharides (GH2) after a second wave of vesicular transport. Processing of GH1 to GH2 in vitro occurs only after a lag period following the appearance of GH1; processing is sensitive to N-ethylmaleimide, guanosine-5'-O-(3-thiotriphosphate), and a synthetic peptide homologous to the rab1 protein effector domain, and processing is inhibited in the absence of free Ca2+ (in the presence of EGTA), reagents which potently inhibit ER to cis Golgi transport. These results suggest that VSV-G protein proceeds through at least two rounds of vesicular transport from the ER to the medial Golgi compartment for processing to the GH2 form, providing a model system to study the regulation of the vectorial membrane fission and fusion events involved in vesicular trafficking and organelle dynamics in the early stages of the secretory pathway.  相似文献   

13.
We have identified a vesicle fraction that contains alpha 1-antitrypsin and other human HepG2 hepatoma secretory proteins en route from the rough endoplasmic reticulum (RER) to the cis face of the Golgi complex. [35S]Methionine pulse-labeled cells were chased for various periods of time, and then a postnuclear supernatant fraction was resolved on a shallow sucrose-D2O gradient. This intermediate fraction has a density lighter than RER or Golgi vesicles. Most alpha 1-antitrypsin in this fraction (P1) bears N-linked oligosaccharides of composition similar to that of alpha 1-antitrypsin within the RER; mainly Man8GlcNac2 with lesser amounts of Man7GlcNac2 and Man9GlcNac2; this suggests that the protein has not yet reacted with alpha-mannosidase-I on the cis face of the Golgi complex. This light vesicle species is the first post-ER fraction to be filled by labeled alpha 1-antitrypsin after a short chase, and newly made secretory proteins enter this compartment in proportion to their rate of exit from the RER and their rate of secretion from the cells: alpha 1-antitrypsin and albumin faster than preC3 and alpha 1-antichymotrypsin, faster, in turn, then transferrin. Deoxynojirimycin, a drug that blocks removal of glucose residues from alpha 1-antitrypsin in the RER and blocks its intracellular maturation, also blocks its appearance in this intermediate compartment. Upon further chase of the cells, we detect sequential maturation of alpha 1- antitrypsin to two other intracellular forms: first, P2, a form that has the same gel mobility as P1 but that bears an endoglycosidase H- resistant oligosaccharide and is found in a compartment--probably the medial Golgi complex--of density higher than that of the intermediate that contains P1; and second, the mature sialylated form of alpha 1- antitrypsin.  相似文献   

14.
Antibodies to the Golgi complex and the rough endoplasmic reticulum   总被引:120,自引:78,他引:42       下载免费PDF全文
Rabbits were immunized with membrane fractions from either the Golgi complex or the rough endoplasmic reticulum (RER) by injection into the popliteal lymph nodes. The antisera were then tested by indirect immunofluorescence on tissue culture cells or frozen, thin sections of tissue. There were may unwanted antibodies to cell components other than the RER or the Golgi complex, and these were removed by suitable absorption steps. These steps were carried out until the pattern of fluorescent labeling was that expected for the Golgi complex or RER. Electron microscopic studies, using immunoperoxidase labeling of normal rat kidney (NRK) cells, showed that the anti-Golgi antibodies labeled the stacks of flattened cisternae that comprise the central feature of the Golgi complex, many of the smooth vesicles around the stacks, and a few coated vesicles. These antibodies were directed, almost entirely, against a single polypeptide with an apparent molecular weight of 135,000. The endoplasmic reticulum (ER) in NRK cells is an extensive, reticular network that pervades the entire cell cytoplasm and includes the nuclear membrane. The anit-RER antibodies labeled this structure alone at the light and electron microscopic levels. They were largely directed against four polypeptides with apparent molecular weights of 29,000, 58,000, 66,000, and 91,000. Some examples are presented, using immunofluorescence microscopy, where these antibodies have been used to study the Golgi complex and RER under a variety of physiological and experimental condition . For biochemical studies, these antibodies should prove useful in identifying the origin of isolated membranes, particularly those from organelles such as the Golgi complex, which tend to lose their characteristic morphology during isolation.  相似文献   

15.
Semi-intact cells, a cell population in which the plasma membrane is perforated to expose intact intracellular organelles (Beckers, C. J. M., Keller, D. S., and Balch, W. E. (1987) Cell 50, 523-534), efficiently reconstitute vesicular trafficking of protein from the endoplasmic reticulum (ER) to the cis Golgi compartment. We now extend these studies to biochemically dissect transport of protein between the ER and the Golgi into a series of sequential intermediate steps involved in the budding and fusion of carrier vesicles. At least two broad categories of transport intermediates can be detected, those that involve early steps in transport and those involved in late, fusion-related events. Early transport steps require the transport of protein through a novel intermediate compartment in which protein accumulates at reduced temperature (15 degrees C). We demonstrate that both entry and exit from this 15 degrees C compartment can be successfully reconstituted in vitro. A late step in delivery of protein to the cis Golgi compartment requires Ca2+ (pCa7) and is coincident with a step which is sensitive to a peptide analog which blocks interaction between the Rab family of small GTP-binding proteins and a downstream effector protein(s) (Plutner, H., Schwaninger, R., Pind, S., and Balch, W. E. (1990) EMBO J. 9, 2375-2384). The combined results suggest that a single round of vesicular transport between the ER and the Golgi involves a rapid transit through N-ethylmaleimide-sensitive, guanosine 5'-(3-O-thio)triphosphate-sensitive, ATP- and cytosol-dependent step(s) involved in vesicle formation or transport to a novel intermediate compartment, followed by a regulated fusion event triggered in the presence of Ca2+ and functional components interacting with member(s) of the Rab gene family.  相似文献   

16.
L Hicke  R Schekman 《The EMBO journal》1989,8(6):1677-1684
The SEC23 gene product (Sec23p) is required for transport of secretory, plasma membrane, and vacuolar proteins from the endoplasmic reticulum to the Golgi complex in Saccharomyces cerevisiae. Molecular cloning and biochemical characterization demonstrate that Sec23p is an 84 kd unglycosylated protein that resides on the cytoplasmic surface of a large structure, possibly membrane or cytoskeleton. Vigorous homogenization of yeast cells or treatment of yeast lysates with reagents that desorb peripheral membrane proteins releases Sec23p in a soluble form. Protein transport from the endoplasmic reticulum to the Golgi in vitro depends upon active Sec23p. Thermosensitive transport in sec23 mutant lysates is restored to normal when a soluble form of wild-type Sec23p is added, providing a biochemical complementation assay for Sec23p function. Gel filtration of yeast cytosol indicates that functional Sec23p is a large oligomer or part of a multicomponent complex.  相似文献   

17.
Dietary long chain fatty acids are absorbed in the intestine, esterified to triacylglycerol, and packaged in the unique lipoprotein of the intestine, the chylomicron. The rate-limiting step in the transit of chylomicrons through the enterocyte is the exit of chylomicrons from the endoplasmic reticulum in prechylomicron transport vesicles (PCTV) that transport chylomicrons to the cis-Golgi. Because chylomicrons are 250 nm in average diameter and lipid absorption is intermittent, we postulated that a unique SNARE pairing would be utilized to fuse PCTV with their target membrane, cis-Golgi. PCTV loaded with [(3)H]triacylglycerol were incubated with cis-Golgi and were separated from the Golgi by a sucrose step gradient. PCTV-chylomicrons acquire apolipoprotein-AI (apoAI) only after fusion with the Golgi. PCTV became isodense with Golgi upon incubation and were considered fused when their cargo chylomicrons acquired apoAI but docked when they did not. PCTV, docked with cis-Golgi, were solubilized in 2% Triton X-100, and proteins were immunoprecipitated using VAMP7 or rBet1 antibodies. In both cases, a 112-kDa complex was identified in nonboiled samples that dissociated upon boiling. The constituents of the complex were VAMP7, syntaxin 5, vti1a, and rBet1. Antibodies to each SNARE component significantly inhibited fusion of PCTV with cis-Golgi. Membrin, Sec22b, and Ykt6 were not found in the 112-kDa complex. We conclude that the PCTV-cis-Golgi SNARE complex is composed of VAMP7, syntaxin 5, Bet1, and vti1a.  相似文献   

18.
The involvement of GTP-binding proteins in the intracellular transport of the secretory glycoprotein alpha 1-antitrypsin was investigated in streptolysin O-permeabilized HepG2 cells. This permeabilization procedure allows ready access to the intracellular milieu of the membrane-impermeant, nonhydrolyzable GTP analog GTP gamma S. In streptolysin O-permeabilized HepG2 cells, the constitutive secretory pathway remains functional and is sensitive to GTP gamma S. Exposure of HepG2 cells to brefeldin A resulted in redistribution of Golgi-resident glycosyltransferases (including both alpha 2----3 and alpha 2----6 sialyltransferases) to the ER. This redistribution was sensitive to GTP gamma S. Our results suggest that GTP-binding proteins are involved in the regulation not only of the anterograde, but also of the retrograde, pathway.  相似文献   

19.
Rough endoplasmic reticulum (RER) transport vesicles were generated from gastric mucous cell RER microsomes in the presence of labeled precursors of phospholipids. The vesicles contained 7-10% of their proteins in the form of apomucin (cargo), and 80% of de novo synthesized phosphatidylcholine (PC) was incorporated into the vesicular membrane. In the absence of choline and ethanolamine precursors or in the presence of 3 mM N-ethylmaleimide (NEM), an inhibitor of CTP:phosphocholine cytidylyltransferase, formation of the transport vesicles, their enrichment in the newly synthesized PC, and the total synthesis of PC decreased by 86%, whereas in the presence of 3 mM Zn2+, complete blockage of vesicle formation and PC synthesis was observed. Analysis of the mucin-transporting vesicles indicated that the CTP:phosphocholine cytidylyltransferase and 1,2-diacyl-sn-glycerol:CDP-choline phosphotransferase remained associated with transport vesicles released from ER. The enzymes and other proteins separated from the vesicle surface prior to vesicle fusion with Golgi and the process was induced by phosphorylation. Based on the results of this study, it is proposed that the formation of the ER transport vesicles of gastric mucosal cells is in concert with synthesis of phospholipids and thus in part is regulated by phospholipid-synthesizing enzymes that reside on the membrane during its biogenesis and dissociate from its surface once the task is completed.  相似文献   

20.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a well-studied glycolytic protein with energy production as its implied occupation. It has established itself lately as a multifunctional protein. Recent studies have found GAPDH to be involved in a variety of nuclear and cytosolic pathways ranging from its role in apoptosis and regulation of gene expression to its involvement in regulation of Ca2+ influx from endoplasmic reticulum. Numerous studies also indicate that GAPDH interacts with microtubules and participates in cell membrane fusion. This review is focused on the cytosolic functions of the protein related to vesicular transport. Suggestions for future directions as well as the model of protein polymer structure and possible post-translational modifications as a basis for its multifunctional activities in the early secretory pathway are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号