首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SUMMARY 1. Grazing and photosynthetic contributions to the carbon balance of planktonic, mixotrophic cryptophytes in Lakes Fryxell and Hoare in the Taylor Valley, Antarctica were measured during November and December 2000.
2. The cryptophytes never became entirely photosynthetic, although carbon derived from grazing decreased in December. Individual grazing rates ranged between 5.28 and 10.08 bacteria cell−1 day−1 in Lake Fryxell and 0.36–11.76 bacteria cell−1 day−1 in Lake Hoare. Grazing rates varied temporally and with depth in the water column. In Lake Fryxell, which is a meromictic lake, highest grazing occurred just above the chemocline. Individual photosynthetic rates ranged from 0.23 to 1.35 pg C cell−1 h−1 in Lake Fryxell and 0.074 to 1.08 pg C cell−1 h−1 in Lake Hoare.
3. Carbon acquisition by the cryptophyte community gained through grazing ranged between 8 and 31% during November in Lake Fryxell, dropping to between 2 and 24% in December. In Lake Hoare grazing contributed 12–21% of the community carbon budget in November and 1–28% in December. Around 4% of the carbon acquired from grazing and photosynthesis was remineralised through respiration.
4. Mixotrophy is probably a major survival strategy for cryptophytes in the extreme lakes of the Dry Valleys, because perennial ice-cover severely limits light penetration to the water column, whereas these phytoflagellates are not normally mixotrophic in lower latitude lakes. The evidence suggests that mixotrophy may be a mechanism for supplementing the carbon budget, as well as a means of acquiring nutrients for growth.  相似文献   

2.
1. The ingestion rates of planktonic, mixotrophic cryptophytes in two perennially ice-covered Antarctic lakes in the McMurdo Dry Valleys, were investigated during the summer of 1997–1998.
2. In Lake Fryxell, which is meromictic, ingestion rates increased with depth in November and were highest in a cryptophyte maximum close to the chemocline. In Lake Hoare, which is unstratified and freshwater, there was no significant difference in ingestion rates with depth. In both lakes, the highest ingestion rates occurred in early summer, decreasing in December and January. Ingestion rates varied between 0.2 bacteria cell−1 h−1 and 3.6 bacteria cell−1 h−1.
3. During November, mixotrophic cryptophytes removed up to 13% of bacterial biomass day−1 and had a greater grazing impact than heterotrophic nanoflagellates (HNAN). As summer progressed, the grazing impact of cryptophytes and HNAN became similar.
4. The maximum depth of cryptophytes in Lake Fryxell was predated by a population of the ciliate Plagiocampa. Plagiocampa had an ingestion rate of 0.13–0.19 cryptophytes cell−1 h−1. The grazing impact on the cryptophyte community was insignificant. However, the ciliate appeared to be indulging in temporary mixotrophy, sequestering the cryptophytes for a number of weeks before digesting them.
5. It is suggested that mixotrophy is an important survival strategy in the extreme lake ecosystems of the McMurdo Dry Valleys.  相似文献   

3.
Abstract Eight species of halophilic Archaea were tested for the presence of isocitrate lyase activity. High activities (up to 100 nmol min−1 mg protein−1) were detected in Haloferax mediterranei and Haloferax volcanii when grown in medium containing acetate as the principal carbon source. Little activity was found in representatives of the genera Halobacterium and Haloarcula . Isocitrate lyase from Haloferax mediterranei required high potassium chloride concentrations, optimal activity being found at 1.5–3 M potassium chloride and pH 7.0. Replacement of potassium chloride by sodium chloride resulted in much lower activities. Sulfhydryl compounds (cysteine, glutathione) were not stimulatory. In other properties (stimulation by magnesium ions, sensitivity to different inhibitors) the enzyme resembled isocitrate lyases from representatives of the Bacteria and Eucarya.  相似文献   

4.
1. Isocitrate lyase activity was measured in non-induced Chlorella fusca var. vacuolata cells. 2. During exponential autotrophic growth about 1-2 molecules of the enzyme per cell were present. 3. In light-limited cultures the amount of the enzyme increased to 10-20 molecules/cell. 4. When autotrophic cultures were placed in the dark, the basal activity of isocitrate lyase increased after a 2h lag so that after 8h in the dark there was a 500-fold increase in activity. 5. When isocitrate lyase was induced (by addition of acetate and removal of illumination) in autotrophic cultures which had been growing exponentially, the full induced rate of enzyme synthesis was obtained after 70-80min. 6. When light-limited autotrophic cultures were induced, the rate of isocitrate lyase synthesis was maximal after only 40-50min. 7. These data are consistent with a catabolite-repression control co-ordinated with photosynthetic activity,which may be independent of the specific inducing effect of acetate.  相似文献   

5.
Relative growth rate, isocitrate lyase activity, chlorophyll, protein, lipid, and soluble carbohydrate contents were investigated in Chlamydomonas humicola Lucksch during auto-, mixo-, and heterotrnphic growth. Mixotrophic cells have a relative growth rate of 1.66 d –1as compared to 0.78 d –1 and 0.21 d –1 for hetero- and autotrophic cells, respectively. Addition of acetate to autotrophic cells resulted in an increase in cell dry weight during the first day, followed by a rapid decrease and stabilization at 40 pg·cell –1. Cellular yield of mixotrophu cells, on a dry weight basis, was 6.6 times that of heterotrophic cells and 21.9 limes that of autotrophic ones. After 4 d, mixotrophic cells were characterized by higher chlorophyll (3.6% dry weight [d.w.]) and protein (58.6% d.w.) contents and lower lipid (4.8% d.w.) and soluble carbohydrate (1.3% d.w.) contents than those of autotrophic (2.6% d.w. chlorophyll, 31.0% d.w. protein, 10.2% d.w. lipid, and 6.5% d.w. soluble carbohydrate) and heterotrophic (1.5% d.w. chlorophyll, 36.9% d.w. protein, 5.6% d.w. lipid, and 6.0% d.w. soluble carbohydrate) cells. The ratio of chlorophyll a/b was highest in heterotrophic cells due to lower chlorophyll b content. Isocitrate lyase activity, a key enzyme in ecetate assimitation, could not be detected in autotrophic cells. Addition of 10 mM acetate to the culture medium of hetero- and mixotrophic cells resulted in increased isocitrate lyase activity with a maximum after 24 h, followed by a decline in activity over a 7-d period. After 7 d of growth, only 0.01 mM acetate was found in the culture medium of mixotrophic cells as compared to 3.2 mM in the medium of heterotrophic ones, from an initial concentration of 10 mM.  相似文献   

6.
Abstract Batch mating experiments were employed to study the kinetics of the conjugal transfer of a TOL plasmid, using the transconjugant strain Pseudomonas aeruginosa PAO 1162 (TOL) as the plasmid donor and Pseudomonas putida PB 2442 and Pseudomonas aeruginosa PAO 1162N as the plasmid recipients. Transfer rates from PAO 1162 (TOL) to PAO 1162N and PB 2442 measured for exponentially grown PAO 1162 (TOL) were 1.81 × 10−14 (standard error (S.E.) 1.25 × 10−15) ml·cell−1min−1 and 3.32 × 10−13 (S.E. 4.42 × 10−14) ml·cell−1min−1, respectively. The instability of the TOL plasmid in PAO 1162 (TOL) was evaluated under conditions that were non-selective for maintenance of the TOL catabolic functions. The measured rates of instability were 6.7 10−6 to 8.3 10−6 min−1, and the loss of the catabolic functions was mainly caused by structural instability of the plasmid.  相似文献   

7.
Copper uptake by free and immobilized cyanobacterium   总被引:1,自引:0,他引:1  
Abstract Copper uptake in free and immobilized cells of the cyanobacterium Nostoc calcicola has been examined. The immobilized cells invariably maintained a higher profile of Cu intake rate (12.7 nmol mg−1 protein min−1) over the free cells (6.0 nmol mg−1 protein min−1). The total Cu uptake in immobilized cells was almost two and a half-times more than their free cell counterpart under identical experimental conditions. Also, the immobilized cells showed a stronger positive correlation between Cu adsorption and uptake. The results have been discussed in terms of improved metabolic efficiency of immobilized cells.  相似文献   

8.
A species-specific 16S rRNA oligonucleotide probe (ASRB1) was developed for the detection of Desulforhabdus amnigenus in anaerobic granular sludge. The presence of nucleic acids from cells of D. amnigenus in granular sludge was determined using ASRB1 as a specific primer for polymerase chain reaction (PCR) amplification or as a probe for dot blot hybridizations. The detection threshold and the reproducibility of these two methods were determined with sludge amended with 104–1010 D. amnigenus cells per gram of volatile suspended solids (VSS). For D. amnigenus cells with a ribosomal RNA content of 15 fg cell−1, the lowest number of target cells detected by hybridization was 1 × 108 cells g−1 VSS. With the PCR amplification method the lowest number of target cells which could be detected was 1 × 107 g−1 VSS. This corresponds to a threshold level for hybridization of 0·1–0·001‰ of the total bacterial sludge population, while the threshold level obtained with the PCR approach amounted to 0·01–0·0001‰. The rRNA content of D. amnigenus was found to be affected by the growth rate and the growth phase, and it ranged from 19 fg cell−1 in slow-growing cultures to 90 fg cell−1 in fast-growing cultures. Therefore, the detection threshold of the dot blot hybridization method for fast-growing cells is lower than for slow-growing cells.  相似文献   

9.
Metabolism of a desert stream   总被引:8,自引:0,他引:8  
SUMMARY. Rates of photosynthesis and community respiration were determined for benthic assemblages in Sycamore Creek, a Sonoran Desert stream in Arizona. Benthos in this stream can be separated into (1) mats of Cladophora glomerata and associated epiphytes and (2) assemblages of epipelic diatoms and blue-green algae. Community respiration and net photosynthesis were measured for these assemblages using submerged light-dark chambers in situ . Multiple regression analysis was used to predict (1) gross photosynthesis as a function of photosynthetically active radiation, temperature and chlorophyll-α concentration; and (2) community respiration as a function of temperature and biomass.
Calculations suggest that Sycamore Creek is autotrophic during the summer ( P/R = 1.7) and that the rates of gross photosynthesis ( P =8.5 g O2 m−2 day−1) and community respiration ( R = 5.1 g O2 m−2 day−1) are high for a small stream. Considerable difference exists between the Cladophora mat assemblages, in which mean P is 12.5gO2m−2 day−1and the P/R ratio is 2.3, and the epipelic assemblages in which mean P is 4.4 g O2m−2 day−1 and P/R is 0.96. The high rate of gross photosynthesis, low litter inputs, high biomass of algae and the intermittent but severe floods that characterize Sycamore Creek indicate that this stream and other similar desert streams are net exporters of organic matter and are, thereby, truly autotrophic stream ecosystems.  相似文献   

10.
Abstract In Methanothrix soehngenii acetate is first activated by an acetate thiokinase rather than a phosphotransacetylase. The specific activity of the acetate thiokinase was 5.29 μmol acetate activated min−1 mg−1 protein with a half maximum rate at 0.74 mM acetate and at 0.047 mM CoA. In cell-free extracts a CO-dehydrogenase activity was measured of 3.02 μmol min−1 mg−1 protein with a half maximum rate at 0.44 mM CO and at 0.18 mM methylviologen. NADP and NAD could not replace methylviologen. F420 showed only low activity as electron acceptor.  相似文献   

11.
In the unicellular green alga Chlorogonium elongatum the level of isocitrate lyase (ICL), the rate of its synthesis and the level of ICL-mRNA measured by in vitro translation are considerably increased after addition of acetate to the culture medium of autotrophically precultured cells. Almost identical increases are obtained independently of whether the cells are cultured after the addition of acetate in the dark (heterotrophically) or in the light (mixotrophically). Transfer of heterotrophic cells to autotrophic conditions results in a fast decrease of ICL-mRNA and ICL protein, while a transfer to mixotrophic conditions causes no alterations in both molecular species. Therefore the concentration of ICL and its translatable mRNA is controlled only by acetate and is unaffected by light.  相似文献   

12.
K. Christian    B. Green    G. Bedford    K. Newgrain 《Journal of Zoology》1996,240(2):383-396
The field metabolic rates (FMR) and water fluxes of Varanus scalaris were measured during the wet and dry seasons by the doubly-labelled water technique. Seasonal measurements of standard (night-time) metabolism (SMR) and resting (daytime) metabolism (RMR) were made in the laboratory at 18, 24, 30 and 36°C, and maximal oxygen consumption was measured at 36°C on a motorized treadmill. This population was active throughout the year. In the wet season, the mean FMR was 7.8 kJ day−1 (128.0 kJkg−1 day−1; mean mass = 66.4 g, n = 13), and during the dry season the mean was 5.0 kJ day−1 (67.6 kJ kg−1 day−1; mean mass = 77.4 g, n = 17). The mean water flux rates for these animals were 3.6 and 1.2 ml day−1, respectively (60.4 and 16.6 ml kg−1 day−1). The seasonal means of FMR and water flux were significantly different by ANCOVA ( P < 0.0001). Measurements of SMR and RMR were significantly higher in the wet season (ANCOVA: P < 0.0001), but we found no difference in the maximal oxygen consumption between seasons (ANCOVA: P = 0.6). The maximal oxygen consumption of the lizards on the treadmill (2.9 ml min−1= 1.8 ml g−1 h−1), mean mass = 97.4 g, n = 16) was 20 times that of the SMR at the same temperature during the dry season, and 11 times that of the SMR during the wet season. The seasonal differences in FMR were attributable to: changes in SMR (12.2%) and RMR (16.4%); differences in night-time body temperatures (11.3) and daytime body temperatures (16.4%); and activity (broadly defined to include locomotion, digestion, and reproductive costs (43.7%).  相似文献   

13.
Spinach plants ( Spinacia oleracea L. cv. Subito) were grown in a complete nutrient solution under ample light intensity (14 h day−1 at 660 μmol m−2 s−1) before being transferred either to a minus-N solution (experiment 1), or to limiting light conditions (6 h day−1 at 220 μmol m−2 s−1; experiment 2). Shoot growth in experiment 1 decreased significantly from 0.24 day−1 to 0.07 day−1 after the fourth day of transfer. Root relative growth rate increased after 1 day from 0.25 to 0.31 day−1, but decreased on the fifth day after transfer to 0.11 day−1. Shoot growth in experiment 2 decreased significantly from 0.25 to 0.17 day−1 after the fourth day of transfer, while root growth decreased to half of its original level (0.25 day−1) already on the second day. Growth substrate levels in the plants (free sugars, free amino acids) and starch levels depended on the plant age, the moment in the diurnal cycle, and the imposed treatment. Fluctuations in shoot growth or root growth resulting from the light or N limitation could not be explained by a correspondent increase or decrease in the levels of growth substrates. The hypotheses underlying the functional equilibrium theory, assuming shoot and root growth to be controlled by N- and C-containing substrates respectively, and several other growth and partitioning models are therefore questioned. A neglect of the osmotic role of the free sugars in these models might be the explanation for this.  相似文献   

14.
Oxic–anoxic interfaces harbor significant numbers and activity of chemolithoautotrophic microorganisms, known to oxidize reduced sulfur or nitrogen species. However, measurements of in situ distribution of bulk carbon dioxide (CO2) assimilation rates and active autotrophic microorganisms have challenged the common concept that aerobic and denitrifying sulfur oxidizers are the predominant autotrophs in pelagic oxic–anoxic interfaces. Here, we provide a comparative investigation of nutrient, sulfur, and manganese chemistry, microbial biomass distribution, as well as CO2 fixation at the pelagic redoxcline of the eastern Gotland Basin, Baltic Sea. Opposing gradients of oxygen, nitrate, and sulfide approached the detection limits at the chemocline at 204 m water depth. No overlap of oxygen or nitrate with sulfide was observed, whereas particulate manganese was detected down to 220 m. More than 70% of the bulk dark CO2 assimilation, totaling 9.3 mmol C m−2 day−1, was found in the absence of oxygen, nitrite, and nitrate and could not be stimulated by their addition. Maximum fixation rates of up to 1.1 μmol C L−1 day−1 were surprisingly susceptible to altered redox potential or sulfide concentration. These results suggest that novel redox-sensitive pathways of microbial sulfide oxidation could account for a significant fraction of chemolithoautotrophic growth beneath pelagic chemoclines. A mechanism of coupled activity of sulfur-oxidizing and sulfur-reducing microorganisms is proposed.  相似文献   

15.
Abstract The kinetics of bacterial adherence to hexadecane were measured using disposable polystyrene cuvettes. The rate of adherence was exponential, and was itself linearly dependent on the water:hexadecane ratio employed. The dependency of the rate of adherence on the water:hexadecane ratio, termed the removal coefficient, varied from 4.7 min−1 for Streptococcus pyogenes to 72 min−1 for Acinetobacter calcoaceticus . The removal coefficient of Serratia marcescens was a function of growth temperature, 48 min−1 following growth at 30°C as opposed to 5.8 min−1 for 35°C-grown cells.  相似文献   

16.
Growth of captive juvenile Pacific halibut was linearly related to energy consumption (J g−1 day−1) at 4°C by the following equation: growth (% body weight (b.w.) day−1)=0–007 (consumption J g−1 day−1)– 0.192; r2 =0.81. Weight gain was independent of size for fish between 9 and 7000 g when growth was expressed as a function of consumption in J g−1 day−1. Maintenance ration determined in feeding–growth experiments averaged 27.4 J g−1 day−1 at 4–0°C. Small halibut ate significantly more food than large fish. Single meals following 2 day fasts averaged 4.1% b.w. for halibut under 100 g, 1.72% b.w. for 1.2 kg fish and 1.1% B.W. for 6.8 kg fish. Both large and small size categories of halibut tended to evacuate their meal in about 3 days even though small fish ate relatively larger meals. Minimum estimates for daily ration to achieve growth rates observed in the Gulf of Alaska were approximately 0.5 to 2.4% b.w. day−1 depending on fish size and whether northern shrimp or yellowfin sole were their prey.  相似文献   

17.
Young lemon sharks, Negaprion brevirostris , were kept under controlled conditions in an aquarium and fed blue runner, Caranx crysos , at different ration levels. The relationship between feeding rate and growth rate was best described by a von Bertalanffy growth curve, which predicted a maximum growth rate of 140 kJ kg−1 day−1 (0·66% b.w. day−1), a maintenance ration of 199 kJ kg−1 day−1 (1·06% b.w. day−1), and losses due to starvation of -236kJ kg−1 day−1 (1·11% b.w. day−1). The relationship between gross conversion efficiency ( K 1) and feeding rate was also examined. K1 ranged from - 64 to 25% and did not drop at high ration levels. Activity levels of both starved sharks and sharks fed at maintenance were not significantly different (0·2 body lengths s−1). K 1 values generated from both laboratory and field data suggest that young lemon sharks can convert food to new tissue as efficiently as teleosts.  相似文献   

18.
For wild red snapper Lutjanus campechanus , mean otolith increment deposition rate after marking with oxytetracycline dihydrate (OTC) was daily (0.97 increments day−1) when growth rates were fast (0.63 mm fork length, L F day−1), but were not daily (0.82 increments day−1) when somatic growth was slow (0.2 mm L F day−1). For reared larvae ( n =8), increment deposition rates were daily (0.99–1.03 increments day−1), and growth rates ranged from 0.6 to 0.9 mm L F day−1. Growth rate affected increment deposition rate as a threshold function, i.e. when growth rate was <0.3 mm L F day−1, deposition was less than daily, but above this level increment deposition did not exceed a daily rate. As growth rates increased increment widths increased. Examination of a sub-sample ( n =8) of the otoliths from the slowest growing wild fish by scanning electron microscopy did not increase increment counts. Because L. campechanus are late spring-early summer spawners, young fish can expect maximum growth due to warm summer temperatures. Thus, daily ageing methods should be well suited to this species.  相似文献   

19.
Abstract Thermoanaerobacter thermohydrosulfuricus Rt8.B1 catabolized xylose by the pentose phosphate pathway, and xylose isomerase and xylulokinase were inducible. The uptake of xylose was by two low-affinity, inducible systems. Both systems were resistant to the protonophore, tetrachlorosalicylanilide, the F1F0-ATPase inhibitor, N , N -dicyclohexylcarboiimide, and the sodium/proton antiporter, monensin. The high capacity system (100 nmol min−1 (mg protein)−1) was only expressed when the bacterium was grown with a high concentration of xylose (50 mM). It took more than 60 mM xylose to saturate the high capacity system. When T. thermohydrosulfuricus was grown with a low concentration of xylose (5 mM), xylose uptake was saturated by as little as 10 mM xylose (18 nmol min−1 (mg protein)−1). Cells grown with 50 mM xylose could not transport glucose, and high capacity xylose transport was not inhibited by glucose or non-metabolizable glucose analogues. Cells grown with 5 mM xylose transported glucose at a rapid rate (30 nmol min−1 (mg protein)−1), and low capacity xylose uptake was competitively inhibited by either glucose or 2-deoxy-glucose. Because the glucose uptake of cells grown on 5 mM xylose was competitively inhibited by xylose, it appeared that the low capacity xylose uptake system was a glucose/xylose carrier.  相似文献   

20.
Blue-spotted trevally, Caranx bucculentus , were fed different rations of pilchard and prawn in order to investigate feeding and growth relationships. Maintenance rations at 25.5° C amounted to 3.7% B.W. day−1 and 2.7% B.W. day−1 for prawns and pilchards, respectively. Additional feeding experiments at 28.9° C yielded a maintenance ration of prawns of 3.8% B.W. day−1, suggesting there is very little if any temperature effect on the feeding-growth relationship over the range studied. Fish fed twice or more each day consumed about 7.3 ± 1.4% B.W. day−1.
Given the biomass of this trevally in Albatross Bay, Gulf of Carpentaria, and the contribution of prawns to its diet, we estimate consumption of commercial prawns at 25 ± 5 g.ha−1 day−1 or 11 g kg−1 day−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号