首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Glutamine was found to be converted to NH3 and pyroglutamic acid (5-oxo-2-pyrrolidine carboxylic acid; 5-oxoproline) under conditions of growth for Methanobacterium thermoautotrophicum at rates sufficient to satisfy the organism's nitrogen requirements.  相似文献   

3.
The effect of tyrosine nitration on mammalian GS activity and stability was studied in vitro. Peroxynitrite at a concentration of 5 micro mol/l produced tyrosine nitration and inactivation of GS, whereas 50 micro mol/l peroxynitrite additionally increased S-nitrosylation and carbonylation and degradation of GS by the 20S proteasome. (-)Epicatechin completely prevented both, tyrosine nitration and inactivation of GS by peroxynitrite (5 micro mol/l). Further, a putative "denitrase" activity restored the activity of peroxynitrite (5 micro mol/l)-treated GS. The data point to a potential regulation of GS activity by a reversible tyrosine nitration. High levels of oxidative stress may irreversibly damage and predispose the enzyme to proteasomal degradation.  相似文献   

4.
5.
6.
Streptococcus bovis JB1 cells energized with glucose transported glutamine at a rate of 7 nmol/mg of protein per min at a pH of 5.0 to 7.5; sodium had little effect on the transport rate. Because valinomycin-treated cells loaded with K and diluted into Na (pH 6.5) to create an artificial delta psi took up little glutamine, it appeared that transport was driven by phosphate-bond energy rather than proton motive force. The kinetics of glutamine transport by glucose-energized cells were biphasic, and it appeared that facilitated diffusion was also involved, particularly at high glutamine concentrations. Glucose-depleted cultures took up glutamine and produced ammonia, but the rate of transport per unit of glutamine (V/S) by nonenergized cells was at least 1,000-fold less than the V/S by glucose-energized cells. Glutamine was converted to pyroglutamate and ammonia by a pathway that did not involve a glutaminase reaction or glutamate production. No ammonia production from pyroglutamate was detected. S. bovis was unable to take up glutamate, but intracellular glutamate concentrations were as high as 7 mM. Glutamate was produced from ammonia via a glutamate dehydrogenase reaction. Cells contained high concentrations of 2-oxoglutarate and NADPH that inhibited glutamate deamination and favored glutamate formation. Since the carbon skeleton of glutamine was lost as pyroglutamate, glutamate formation occurred at the expense of glucose. Arginine deamination is often used as a taxonomic tool in classifying streptococci, and it had generally been assumed that other amino acids could not be fermented. To our knowledge, this is the first report of glutamine conversion to pyroglutamate and ammonia in streptococci.  相似文献   

7.
Glutamine is a major source of energy, carbon, and nitrogen for mammalian cells. The amount of glutamine present in commercial mammalian cell media is, however, not necessarily balanced with cell requirements. Therefore, the effects of glutamine limitation on the physiology of two mammalian cell lines were studied in steady-state chemostat cultures fed with IMDM medium with 5% serum. The cell lines used were MN12, a mouse-mouse hybridoma, and SP2/0-Ag14, a mouse myeloma often used in hybridoma fusions. Cultures, grown at a fixed dilution rate of 0.03 h(-1), were fed with media containing glutamine concentrations ranging from 0.5 to 4 mmol L(-1). Biomass dry weight and cell number were linearly proportional to the glutamine concentrations fed, between 0.5 and 2 mmol L(-1), and glutamine was completely consumed by both cell lines. From this it was concluded that glutamine was the growth-limiting substrate in this concentration range and that the standard formulation of IMDM medium contains a twofold excess of glutamine. In glutamine-limited cultures, the specific rates of ammonia and alanine production were low compared to glutamine-excess cultures containing 4 mmol L(-1) glutamine in the feed medium. The specific consumption rates of nearly all amino acids decreased with increasing glutamine feed, indicating that, in their metabolic function, they may partially be replaced by glutamine. Both cell lines reacted similarly to differences in glutamine feeding in all aspects investigated, except for glucose metabolism, In SP2/0-Ag14 glutamine feed concentrations did not affect the specific glucose consumption, whereas in MN12 this parameter increased with increasing amounts of glutamine fed. This systematic study using controlled culture conditions together with a detailed analysis of culture data shows that, although cells may react similarly in many aspects, cell-line-specific characteristics may be encountered even with respect to fundamental physiological responses like the interaction of the glutamine and glucose metabolism. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 272-286, 1997.  相似文献   

8.
9.
10.
To test the significance of the purine nucleotide cycle in renal ammoniagenesis, studies were conducted with rat kidney cortical slices using glutamate or glutamine labelled in the alpha-amino group with 15N. Glucose production by normal kidney slices with 2 mM-glutamine was equal to that with 3 mM-glutamate. With L-[15N]glutamate as sole substrate, one-third of the total ammonia produced by kidney slices was labelled, indicating significant deamination of glutamate or other amino acids from the cellular pool. Ammonia produced from the amino group of L-[alpha-15N]glutamine was 4-fold higher than from glutamate at similar glucose production rates. Glucose and ammonia formation from glutamine by kidney slices obtained from rats with chronic metabolic acidosis was found to be 70% higher than by normal kidney slices. The contribution of the amino group of glutamine to total ammonia production was similar in both types of kidneys. No 15N was found in the amino group of adenine nucleotides after incubation of kidney slices from normal or chronically acidotic rats with labelled glutamine. Addition of Pi, a strong inhibitor of AMP deaminase, had no effect on ammonia formation from glutamine. Likewise, fructose, which may induce a decrease in endogenous Pi, had no effect on ammonia formation. The data obtained suggest that the contribution of the purine nucleotide cycle to ammonia formation from glutamine in rat renal tissue is insignificant.  相似文献   

11.
12.
Mammalian S-adenosylmethionine decarboxylase was expressed at a high level in an Escherichia coli mutant deficient in this enzyme. The proenzyme form of this enzyme was cleaved and processed to the mature decarboxylase which contains two pairs of nonidentical subunits, the larger of which contains a pyruvate prosthetic group. In order to determine the site of formation of the pyruvate, two approaches were used. First, the mammalian S-adenosylmethionine decarboxylase produced in E. coli was purified to homogeneity and the pyruvate converted to alanine by a reductive amination. The large subunit was then isolated by reversed phase high pressure liquid chromatography and the amino-terminal sequence determined and compared with the sequence of the proenzyme derived from its cDNA. These results indicated that the bond between glutamic acid 67 and serine 68 was the site of cleavage. Second, each of the serine residues in portion of the proenzyme likely to contain the cleavage site were altered by site-directed mutagenesis and the RNA produced from plasmids containing these mutations was translated in a reticulocyte lysate. The translation products were tested for processing and for S-adenosylmethionine decarboxylase activity. Altering the serine residues at positions 50, 66, and 69 to alanines had little effect but changing serine at position 68 to alanine completely prevented both processing and activity. These results indicate that the serine residue at position 68 of the proenzyme which is in the underlined position in the sequence -Leu-Ser-Glu-Ser-Ser-Met- is the residue which is converted to the pyruvate prosthetic group in human S-adenosylmethionine decarboxylase.  相似文献   

13.
Treatment of partially hepatectomized male rats with urethan 6 hr after operation resulted in 50–55% inhibition of the incorporation of orotic acid-5-3H into nuclear ribosomal RNA and heterogeneous RNA 18 hr later. Neither partially hepatectomized female rats similarly treated with urethan nor operated male animals treated with an equitoxic dose of butyl carbamate presented evidence of an impairment of nuclear RNA synthesis.  相似文献   

14.
Group B streptococci were labeled either by growing the cells in [14C]fructose or by using the surface label 4,4'-[3H]diisothiocyano-1,2-diphenylethane-2,2'-disulfonic acid, which reacts with amino groups. A quantitative assay was developed by using these labeled bacteria to study the adherence of streptococci to canine kidney epithelial cells. The bacteria adhered to kidney cells that had been infected with influenza A virus, but did not adhere to uninfected cells. The binding of 3H-labeled group B streptococci was proportional to the number of bacteria added and showed saturation kinetics. The binding was blocked by the addition of unlabeled group B streptococci but was not affected by addition of streptococci from other groups. It was also blocked by mixing the 3H-labeled streptococci with influenza A virus before adding the bacteria to the kidney cells. When the kidney cells were infected with influenza virus in the presence of either tunicamycin or streptovirudin, these antibiotics inhibited the appearance of viral hemagglutinin in the kidney cells and also prevented the release of mature virus. In these experiments, the adherence of 3h-labeled streptococci was also inhibited. Tunicamycin was shown to block the incorporation of [14C]mannose into lipid-linked oligosaccharides and glycoprotein in both normal and virus-infected kidney cells. These data give strong support to the notion that adherence of streptococci to mammalian cells involves recognition of viral hemagglutinin, a glycoprotein whose synthesis is blocked by certain antibiotics.  相似文献   

15.
16.
The concept of exponential growth by mammalian cells in culture is based upon the apparent linearity of semilogarithmic data plots. This method of graphical analysis is known to be an unreliable test of the exponential hypothesis. We have re-examined the question of growth exponentiality using the more sensitive method of Smith plots, in which specific growth rate is plotted against either time or density on transformed graphical coordinates which linearize the mathematical expression of the growth hypothesis being tested. With exponential growth, data points fall on a horizontal straight line when specific growth rate is plotted against time or density. Using both our own and literature data, we have performed Smith plot analyses on the growth of 125 different mammalian and avian cell lines. Of these, only eleven exhibited an exponential phase. The remaining cell lines all had non-exponential growth patterns. The most common of these consisted of an initial period of growth acceleration followed by a later phase of deceleratory growth. A smaller number of lines exhibited deceleratory kinetics at all times after plating. We conclude that mammalian cell growth in culture is predominantly non-exponential, and that the apparent exponentiality of semilogarithmic data plots is usually a methodological artifact.  相似文献   

17.
Industrial therapeutic protein production has been greatly improved through fed‐batch development. In this study, improvement to the productivity of a tissue‐plasminogen activator (t‐PA) expressing Chinese hamster ovary (CHO) cell line was investigated in shake flask culture through the optimization of the fed‐batch feed and the reduction of ammonia generation by glutamine replacement. The t‐PA titer was increased from 33 mg/L under batch conditions to 250 mg/L with daily feeding starting after three days of culture. A commercially available fed‐batch feed was supplemented with cotton seed hydrolysate and the four depleted amino acids, aspartic acid, asparagine, cysteine, and tyrosine. The fed‐batch operation increased the generation of by‐products such as lactate and ammonia that can adversely affect the fed‐batch performance. To reduce the ammonia production, a glutamine‐containing dipeptide, pyruvate, glutamate, and wheat gluten hydrolysate, were investigated as glutamine substitutes. To minimize the lag phase as the cells adjusted to the new energy source, a feed glutamine replacement process was developed where the cells were initially cultured with a glutamine containing basal medium to establish cell growth followed by feeding with a feed containing the glutamine substitutes. This two‐step feed glutamine replacement process not only reduced the ammonia levels by over 45% but, in the case of using wheat gluten hydrolysate, almost doubled the t‐PA titer to over 420 mg/L without compromising the t‐PA product quality or glycosylation pattern. The feed glutamine replacement process combined with optimizing other feed medium components provided a simple, practical, and effective fed‐batch strategy that could be applied to the production of other recombinant therapeutic proteins. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

18.
Amammalian cell line, J774, was susceptible to both synthetic and natural photosensitising agents after irradiation with long-wave ultraviolet light. Both UV-A light and psoralen did not affect cell growth individually; a reduction invisual confluency was achieved only when psoralen and UV-A light were used in combination. The maximum visual confluency decreased by 55% when 50 ppm psoralen was added to a growing culture and irradiated with UV light for 3 min. Decreasing the UV-A exposure times from 3min to 3 s did not greatly affect the maximum total visual confluence reached using different synthetic psoralen concentrations, but did affect the rate at which cell death occurred. The 3 min exposure time resulted in a rapid decrease in cell numbers in comparison to 3s exposure time. Synthetic psoralen was found to have an increasing photosensitising activity with increasing concentration using a logarithmic shift between 0.5 ppm and 50 ppm. A visual confluency of 45 % was achieved using concentrations of 50 ppm psoralen, and 70% visual confluency using 0.5 ppm. Natural mixtures of furanocoumarins containing psoralens, obtained from two separate parsley sources, were found to have greater efficacy at inhibiting the growth cycle of the cells when compared to the synthetic psoralen. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
The effect of ammonia on Chinese hamster ovary (CHO) cell growth and galactosylation of recombinant immunoglobulin (rIgG) was investigated using shaking flasks with serum free media containing 0–15 mM NH4Cl. The elevated ammonia inhibited cell growth and negatively affected the galactosylation of rIgG. At 15 mM NH4Cl, the proportions of monogalactosylated glycan with fucosex (monogalactosylated glycan with fucose) and digalactosylated glycan with fucose (G2F) were 23.9% and 6.3% lower than those at 0 mM NH4Cl, respectively. To reduce ammonia formation by cells, glutamate was examined as a substitute for glutamine. The use of glutamate reduced the accumulation of ammonia and enhanced the production of rIgG while depressing cell growth. At 6 mM glutamate, ammonia level did not exceed 2 mM, which is only one third of that at 6 mM glutamine. Also, a 1.7-fold increase in the titer of rIgG and specific rIgG productivity, q rIgG, was achieved at 6 mM glutamate. The galactosylation of rIgG was favorable at 6 mM glutamate. The proportion of galactosylated glycans, G1F and G2F, at 6 mM glutamate was 59.8%, but it was 50.4% at 6 mM glutamine. The use of glutamate also increased complement-dependent cytotoxicity activity, one of the effector functions of rIgG. Taken together, substitution of glutamine by glutamate can be considered relevant for the production of rIgG in CHO cells since glutamate not only enhances q rIgG but also generates a higher galactosylation essential for the effector function of rIgG.  相似文献   

20.
Eosinophil cationic protein (ECP), one of the major components of basic granules of eosinophils, is cytotoxic to tracheal epithelium. However, the extent of this effect on other cell types has not been evaluated in vitro. In this study, we evaluated the effect of ECP on 13 mammalian cell lines. ECP inhibited the growth of several cell lines including those derived from carcinoma and leukemia in a dose-dependent manner. The IC(50) values on A431 cells, MDA-MB-453 cells, HL-60 cells and K562 cells were estimated to be approximately 1-5 microm. ECP significantly suppressed the size of colonies of A431 cells, and decreased K562 cells in G1/G0 phase. However, there was little evidence that ECP killed cells in either cell line. These effects of ECP were not enhanced by extending its N-terminus. Rhodamine B isothiocyanate-labeled ECP started to bind to A431 cells after 0.5 h and accumulated for up to 24 h, indicating that specific affinity for the cell surface may be important. The affinity of ECP for heparin was assessed and found to be reduced when tryptophan residues, one of which is located at a position in the catalytic subsite of ribonuclease in ECP, were modified. The growth-inhibitory effect was also attenuated by this modification. These results suggest that growth inhibition by ECP is dependent on cell type and is cytostatic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号