首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lectin-binding protein (lectin binder) from the garden pea (Pisum sativum) was studied. It is a glycoprotein composed of four subunits of about 50 000 Da. Its amino-acid composition and molecular mass differ from those of lectin and of storage proteins. The interaction between lectin and lectin binder is demonstrated and quantified by several different methods and is shown to be specifically sugar-dependent. A biological function of lectin binders and lectins is discussed.  相似文献   

2.
A lectin from Amaranthus hypochondriacus var. Mexico (AHML) was purified by affinity chromatography using asialofetuin-Sepharose 4B. AHML is specific for N-acetyl-d-galactosamine as are the other Amaranthus lectins. AHML has no carbohydrate moiety and requires no metal ion for the hemagglutination activity. The pI of AHML is 6.8. AHML has a native molecular mass of 45.0 kDa and is composed of homo-subunits having molecular masses of 36.8 kDa.  相似文献   

3.
The seeds of winged bean, Psophocarpus tetragonolobus(L.)DC, contain two distinct groups of lectins characterized by different erythrocyte hemagglutinating specificities and isoelectric points. Three acidic lectins (I, II, and III) (pI approximately 5.5) were purified to apparent homogeneity by chromatography on Ultrogel AcA44 and SP-Sephadex C-25. These lectins are glycoproteins with relative molecular mass of 54,000. The total carbohydrate content of the acidic lectins was 7% and was comprised of mannose, N-acetylglucosamine, fucose, and xylose in amounts corresponding to 9.2, 4.8, 1.6, and 7.0 mol/54,000 g, respectively. Electrophoresis in dodecyl sulfate, in the presence and absence of 2-mercaptoethanol, gave a single subunit of apparent relative molecular mass 30-32,000, somewhat higher than expected from the native relative molecular mass. On isoelectric focusing in 8 M urea the subunits of the acidic lectins did not show any significant charge heterogeneity as found for the winged bean basic lectins. The acidic lectins have very similar amino acid compositions. They contain essentially no half-cystine, 1-2 methionine residues, and are rich in acidic and hydroxy amino acids. The amino-terminal sequences of lectins II and III were identical while the amino-terminal sequence of lectin I contained five differences in the first 25 residues; the acidic lectins showed extensive sequence homology with the winged bean basic lectins, the other one-chain subunit lectins and the beta subunit of the two-chain subunit legume lectins. The acidic lectins agglutinated trypsinized human (type A, B, AB, and O) erythrocytes but not trypsinized rabbit erythrocytes. They were inhibited by various D-galactose derivatives and D-galactose-containing disaccharides and trisaccharides. N-Acetylgalactosamine was the best inhibitor, and the specificity appears to be directed to beta-D-galactosides. However, compared with winged bean basic lectins and soybean lectin, the winged bean acidic lectins show a low affinity for the inhibitory sugars.  相似文献   

4.
An N-acetylgalactosamine-specific lectin has been isolated from root stocks of Bryonia dioica by affinity chromatography on fetuin-agarose. It is a dimeric protein composed of two different subunits of relative molecular masses 32,000 and 30,000, held together by intermolecular disulphide bonds. Although most abundant in root stocks, the lectin occurs in all vegetative parts of the plant but not in seeds. Bryony lectin differs from other Cucurbitaceae lectins and from all known N-acetylgalactosamine-specific lectins.Abbreviations BDA Bryonia dioica agglutinin - Mr relative molecular mass - PBS phosphate-buffered saline - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   

5.
Auxin-induced elongation of epicotyl segments of azuki bean ( Vigna angularis Ohwi and Ohashi cv. Takara) was suppressed by fucose-binding lectins from Tetragonolobus purpureus Moench and Ulex europaeus L. These lectins also inhibited auxin-induced cell wall loosening (decrease in the minimum stress-relaxation time of the cell walls) of segments. Auxin caused a decrease in molecular mass of xyloglucans extracted with 24% KOH from the cell walls. The lectins inhibited auxin-induced changes in molecular mass of the xyloglucans. The autolytic release of xylose-containing products from the pectinase-treated cell walls was also suppressed by the lectins. Fucose-binding lectins pretreated with fucose exhibited little or no inhibitory effect on auxin-induced elongation, cell wall loosning, or breakdown of xyloglucans. These results support the view that the breakdown of xyloglucans is involved in the cell wall loosening responsible for auxin-induced elongation in dicotyledons.  相似文献   

6.
Galactoside-inhibitable lectins have been isolated from rabbit, rat, mouse, pig, lamb, calf, and human spleens. Native molecular mass, subunit structure, pI, and hemagglutinating activity have been compared for these lectins. The yields of lectin varied from 1.8 mg/kg for rabbit spleen to 79 mg/kg for lamb spleen. Pig, lamb, calf, and human spleen lectins yielded single protein peaks when subjected to Superose 12 fast-protein liquid chromatography. The apparent molecular mass for these lectins was 33-34 kDa. In contrast, rat and mouse spleen lectin preparations were separated into three components ranging from 8.4 to 34 kDa. Superose 12 chromatography of rabbit spleen lectin revealed the presence of at least six components. Gradient slab gel sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed the presence of single polypeptides for pig, calf, lamb, and human lectins corresponding to a molecular mass of 14-14.5 kDa. Multiple polypeptides were detected for the mouse, rat, and rabbit lectins. The molecular mass of the major polypeptides were 15, 15, and 17 kDa for rat, mouse, and rabbit, respectively. The presence of isolectins in all preparations was shown by isoelectric focusing. The major isolectins were acidic proteins with pI 4.38-4.80. Hemagglutination and hemagglutination inhibition assays demonstrated similarities as well as differences among the lectin preparations. Hemagglutinating activity could not be demonstrated in rabbit spleen extracts nor for isolated putative lectin. Human buffy coat cells were reversibly agglutinated by calf and human spleen lectins, demonstrating the presence of leucocyte cell surface lectin receptors.  相似文献   

7.
8.
A new lectin from Aplysia dactylomela eggs (ADEL) was isolated by affinity chromatography on HCl-activated Sepharose? media. Hemagglutination caused by ADEL was inhibited by several galactosides, mainly galacturonic acid (Ka = 6.05 × 106 M?1). The primary structure of ADEL consists of 217 residues, including 11 half-cystines involved in five intrachain and one interchain disulfide bond, resulting in a molecular mass of 57,228 ± 2 Da, as determined by matrix-assisted laser desorption/ionization time of flight mass spectrometry. ADEL showed high similarity with lectins isolated from Aplysia eggs, but not with other known lectins, indicating that these lectins could be grouped into a new family of animal lectins. Three glycosylation sites were found in its polypeptide backbone. Data from peptide-N-glycosidase F digestion and MS suggest that all oligosaccharides attached to ADEL are high in mannose. The secondary structure of ADEL is predominantly β-sheet, and its tertiary structure is sensitive to the presence of ligands, as observed by CD. A 3D structure model of ADEL was created and shows two domains connected by a short loop. Domain A is composed of a flat three-stranded and a curved five-stranded β-sheet, while domain B presents a flat three-stranded and a curved four-stranded β-sheet. Molecular docking revealed favorable binding energies for interactions between lectin and galacturonic acid, lactose, galactosamine, and galactose. Moreover, ADEL was able to agglutinate and inhibit biofilm formation of Staphylococcus aureus, suggesting that this lectin may be a potential alternative to conventional use of antimicrobial agents in the treatment of infections caused by Staphylococcal biofilms.  相似文献   

9.
Only a few animal phyla have been screened for the presence and distribution of lectins. Probably the most intensively studied group is the mollusk. In this investigation, 22 species from 12 families of tropical sponges collected in Los Roques National Park (Venezuela) were screened for the presence of lectins. Nine saline extracts exhibited strong hemagglutinating activity against pronase-treated hamster red blood cells; five of these reacted against rabbit red blood cells, four with trypsin-treated bovine red blood cells, and five with human red blood cells regardless of the blood group type. Extracts from the three species studied from genus Aplysina (archeri, lawnosa, and cauliformis) were highly reactive and panagglutinating against the panel of red blood cells tested. The lectins from A. archeri and A. lawnosa were purified to homogeneity by ammonium sulfate fractionation, affinity chromatography on p-aminobenzyl-beta-1-thiogalactopyranoside-agarose, and gel filtration chromatography. Both lectins exhibited a native molecular mass of 63 kDa and by SDS-polyacrylamide gel electrophoresis under reducing conditions have an apparent molecular mass of 16 kDa, thus suggesting they occur as homotetramers. The purified lectins contain 3-4 mol of divalent cation per molecule, which are essential for their biological activity. Hapten inhibition of hemagglutination was carried out to define the sugar binding specificity of the purified A. archeri lectin. The results indicate a preference of the lectin for nonreducing beta-linked d-Gal residues being the best inhibitors of red blood cells binding methyl-beta-d-Gal and thiodigalactoside (Gal beta 1-4-thiogalactopyranoside). The behavior of several glycans on immobilized lectin affinity chromatography confirmed and extended the specificity data obtained by hapten inhibition.  相似文献   

10.
A mannose/glucose-specific lectin was isolated from seeds of Parkia platycephala, the most primitive subfamily of Leguminosae plants. The molecular mass of the purified lectin determined by mass spectrometry was 47 946 +/- 6 Da (by electrospray ionization) and 47 951 +/- 9 Da (by matrix-assisted laser-desoption ionization). The apparent molecular mass of the lectin in solutions of pH in the range 4.5-8.5 determined by analytical ultracentrifugation equilibrium sedimentation was 94 +/- 3 kDa, showing that the protein behaved as a non-pH-dependent dimer. The amino-acid sequence of the Parkia lectin was determined by Edman degradation of overlapping peptides. This is the first report of the primary structure of a Mimosoideae lectin. The protein contained a blocked N-terminus and a single, nonglycosylated polypeptide chain composed of three tandemly arranged homologous domains. Each of these domains shares sequence similarity with jacalin-related lectin monomers from Asteraceae, Convolvulaceae, Moraceae, Musaceae, Gramineae, and Fagaceae plant families. Based on this homology, we predict that each Parkia lectin repeat may display a beta prism fold similar to that observed in the crystal structure of the lectin from Helianthus tuberosus. The P. platycephala lectin also shows sequence similarity with stress- and pathogen-upregulated defence genes of a number of different plants, suggesting a common ancestry for jacalin-related lectins and inducible defence proteins.  相似文献   

11.
The toxin from Ustilago maydis virus P4 was purified to homogeneity and characterized. The native molecular mass, using size-exclusion HPLC was estimated to be 7.2 kDa. The purified toxin was composed of a single subunit. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis under reduced and nonreduced conditions resulted in estimated molecular masses of 8.4 and 7.4 kDa, respectively. The purified toxin was found to be glycosylated when tested for carbohydrates using the phenol-sulfuric acid method, Schiff's base reagent, and a Glycan detection kit and when probed against different biotinylated lectins. Partial amino acid sequence analysis of the purified toxin indicated a free N-terminus, 16% glycine, and 23% basic amino acid residues. No homology was found to either the alpha or the beta subunit of the toxin encoded by U. maydis infected with the P6 virus.  相似文献   

12.
A glucose/mannose-binding lectin was isolated from seeds of Parkia discolor (Mimosoideae) using affinity chromatography on Sephadex G-100 gel. The protein presented a unique component in SDS-PAGE corresponding to a molecular mass of 58,000 Da, which is very similar to that of a closely related lectin from Parkia platycephala. Among the simple sugars tested, mannose was the best inhibitor, but biantennary glycans, containing the trimannoside core, present in N-glycoproteins, also seem to be powerful inhibitors of the haemagglutinating activity induced by the purified lectin. The protein was characterised by high content of glycine and proline and absence of cysteine. Rabbit antibodies, anti-P. platycephala seed lectin, recognised the P. discolor lectin. However, no cross-reaction was observed when a set of other legume lectins from sub-family Papilionoideae and others from families Moraceae and Euphorbiaceae were assayed with the Parkia lectins. This suggests that Parkia lectins comprise a new group of legume lectins exhibiting distinct characteristics.  相似文献   

13.
The marine sponge Geodia cydonium contains several lectins.The main component, called lectin-1, is composed of three tofour identical subunits. The subunits of the lectins were clonedfrom a cDNA library; two clones were obtained. From the deducedaa sequence of one clone, LECT-1, a mol. wt of 15 313 Da iscalculated; this value is in good agreement with mass spectrometricanalysis of 15 453 25 Da. The sequence of another clone, LECT-2,was analysed and the aa sequence was deduced (15 433 Da). Thetwo subunits have a framework sequence of 38 conserved aa whichare characteristic for the carbohydrate-binding site of vertebrateS-type lectins. Clustering of lectin sequences of various speciesfollowing their pairwise comparison establishes a dendrogram,which reveals that the sponge lectin could be considered asthe ancestor for vertebrate S-type lectins. Geodia cydonium lectin sponges S-type lectin  相似文献   

14.
Two proteinaceous alpha-amylase inhibitors termed alphaAI-Pa1 and alphaAI-Pa2 were purified from seeds of a cultivated tepary bean (Phaseolus acutifolius A. Gray, cv. PI311897). The two inhibitors differed in their specificity towards alpha-amylases of insect pests such as bruchids, although neither showed any inhibitory activity against alpha-amylases of mammalian, bacterial or fungal origin. AlphaAI-Pa2 resembles two common bean inhibitors, alphaAI-1 and alphaAI-2, in several characteristics such as N-terminal amino acid sequences and oligomeric structure being composed of alpha and beta subunits. In contrast alphaAI-Pa1 is composed of a single glycopolypeptide with a molecular mass of 35 kDa, and its N-terminal amino acid sequence resembled that of seed lectins in tepary bean and common bean. The information on the two tepary bean alpha-amylase inhibitors may be useful not only for providing insight into critical structure for the specificity towards different alpha-amylase enzymes but also for enhancing insect resistance in crops.  相似文献   

15.
Bulbs from three species of the plant family Amaryllidaceae ( Narcissus pseudonurcissus L., Leucojum aestivum L. and Leucojum vernum L.) were found to contain mannose-specific lectins. These lectins were serologically identical to a previously reported Amaryllidaceae lectin from Galanthus nivalis L. bulbs, but had a different molecular structure. The lectins described in this paper are dimeric proteins composed of subunits of 13 kDa, which are not held together by disulphide bridges. In hapten-inhibition assays Amaryllidaceae lectins exhibited exclusive specificity towards mannose. Furthermore, they all had a high specific agglutination activity with trypsin-treated rabbit erythrocytes, whereas human red blood cells were not agglutinated.  相似文献   

16.
The molecular recognition of a novel kind of hybrid conjugates, composed of artificial biomimetic beta-peptide oligomers with an O-linked natural N-acetyl-galactosamine (the Tn-antigen) residue, by four different GalNAc specific lectins was investigated using surface plasmon biosensor technology. The influence of the peptide and the glycosyl moiety on the recognition was studied using two glycosylated beta(3)-heptapeptides, a glycosylated alpha-heptapeptide, two beta-amino acid containing dipeptides, and monomeric alphaGalNAc-O-Thr. Although all four lectins displayed a decreased affinity for the carbohydrate residue when attached to a peptide, as compared to the monomeric Tn-antigen, the peptide part was found to have distinct effects on the binding kinetics-indicating that varying degrees of protein-peptide interactions occurred in the recognition process. Likewise, the lectins did not discriminate between beta(3)-peptides and the alpha-peptide, but the beta-linkage of the galactose had a detrimental effect for at least two of the lectins.  相似文献   

17.
A lectin, monospecific for human blood group A red blood cells was extracted from seeds of Crotalaria striata and purified by molecular sieving on Sephadex G-100 and ion-exchange on DEAE-cellulose. A molecular mass of 30 kDa was determined by SDS-polyacrylamide gel electrophoresis under non-reducing and reducing conditions. Molecular sieving on a Superose 12 column indicated a molecular mass of 110 kDa, suggesting the tetrameric nature of the native protein. Amino-acid composition showed the presence of aminated carbohydrate residues on the lectin. N-terminal amino-acid sequencing showed a striking similarity with the N-terminal sequence of the lectin from Crotalaria juncea, which is blood-group non-specific. The potency order of agglutination inhibition with galactose containing monosaccharides was N-acetyl-D-galactosamine greater than D-galactose greater than D-galactosamine as found for blood-group-A-specific lectins from other species.  相似文献   

18.
A new type of cereal lectin from leaves of couch grass (Agropyrum repens)   总被引:1,自引:0,他引:1  
Extracts from couch grass (Agropyrum repens) leaves contain relatively high lectin concentrations. Preliminary experiments with crude extracts indicated that the leaf lectin differs from the embryo lectin of the same species and other Gramineae embryo lectins with respect to its sugar and blood group specificity, and serological properties. A comparison of the biochemical, physicochemical and biological properties of purified lectins from couch grass leaves and embryos, and wheat germ agglutinin revealed that the leaf lectin has the same molecular structure as the embryo lectins. It is a dimer composed of two identical subunits, which, however, are slightly larger than embryo lectin subunits. Structural differences between both couch grass lectins were further inferred from in vitro subunit exchange experiments and serological analyses. Whereas the embryo lectin readily forms heterodimers with embryo lectins from other cereal species and also is serologically indistinguishable from them, the leaf lectin does not exchange subunits with the same embryo lectins and is serologically different. In addition, couch grass leaf lectin exhibits specificity for N-acetylgalactosamine and agglutinates preferentially blood-group-A erythrocytes whereas the embryo lectin is not inhibited by N-acetylgalactosamine and exhibits no blood-group specificity. It was observed also that the lectin content of couch grass leaves varies enormously during the seasons.  相似文献   

19.
Two anti-H(O) lectins were separated from extracts of Cytisus sessilifolius seeds by successive affinity chromatographies on columns of di-N-acetylchitobiose- and galactose-Sepharose 4B. One was found to be inhibited most by di-N-acetylchitotriose or tri-N-acetylchitotriose [Cytisus-type anti-H(O) lectin designated as Cytisus sessilifolius lectin I (CSA-I)] and the other anti-H(O) lectin was inhibited by galactose or lactose and designated as Cytisus sessilifolius lectin II (CSA-II). These two anti-H(O) lectins were further purified by gel filtration on TSK-Gel G3000SW. These preparations were homogeneous as judged by polyacrylamide gel electrophoresis and gel filtration. The molecular masses of the purified lectins I and II were found to be 95,000 and 68,000 Da, respectively, by gel filtration on TSK-Gel G3000SW. On polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and 2-mercaptoethanol, both lectins gave a single component of molecular masses of 27,000 +/- 2,000 and 34,000 +/- 2,000 Da, respectively, suggesting that the lectins I and II were composed of four and two apparently identical subunits, respectively. Lectins I and II contain 38% and 13% carbohydrate, respectively, and only very small amounts of cysteine and methionine, but they are rich in aspartic acid, serine and glycine. The N-terminal amino-acid sequences of these two lectins were determined and compared with those of several lectins already published.  相似文献   

20.
Molecular characterization of seven Diocleinae lectins was assessed by sequence analysis, determination of molecular masses by mass spectrometry, and analytical ultracentrifugation equilibrium sedimentation. The lectins show distinct pH-dependent dimer-tetramer equilibria, which we hypothesize are due to small primary structure differences at key positions. Lectins from Dioclea guianensis, Dioclea virgata, and Cratylia floribunda seeds have been crystallized and preliminary X-ray diffraction analyses are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号