首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A method is described for the highly selective modification of the alpha-amino groups at the N-termini of unprotected peptides to form stable, modified peptide intermediates which can be covalently coupled to other molecules or to a solid support. Acylation with iodoacetic anhydride at pH 6.0 occurs with 90-98% selectivity for the alpha-amino group, depending on the N-terminal residue (as shown with a series of model hexapeptides containing a competing Lys residue). Although Cys residues must be protected (reversibly or irreversibly) before the anhydride reaction, there are no detectable side reactions of the alpha-amino moiety--of the reagent or of modified peptide--with the side chains of His, Met, or Lys. The reaction works well in denaturants, so that inhibitory effects of noncovalent structure can be minimized. In a second step the iodoacetyl-peptide can be reacted with a thiol group on a protein, on a solid chromatography matrix, on a spectroscopic probe, etc. This is illustrated by reaction of a series of N alpha-iodoacetyl-peptides with murine interferon-gamma, which contains a C-terminal Cys residue. Data are presented which suggest that this iodoacetic anhydride scheme is superior in selectivity for alpha-amino groups to conventional chemical approaches to cross-linking such as use of 2-iminothiolane or N-hydroxysuccinimide-activated carboxylic acid esters. The reaction is ideally suited for modifying peptide fragments, as pure species or as mixtures, derived from proteolytic or chemical fragmentation of proteins. Furthermore, polypeptides synthesized biosynthetically, for example via recombinant DNA techniques, can be cross-linked in this way.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
In solid-phase peptide synthesis using N alpha-Boc-Nim-tosyl-histidine (Boc-His(Tos)), byproducts having extra Gly residues in the peptide chain were observed at a high rate. When a Boc-amino acid such as Asn was incorporated after assembly of Boc-His(Tos), the Nim-tosyl group was partially or fully cleaved by an activating agent, 1-hydroxybenzotriazole. In the successive coupling reactions, Boc-Gly was incorporated into the free Nim ring as well as the alpha-amino function, and the Nim-Gly was then transferred to the alpha-amino group of Gly of the peptide chain after removal of these Boc groups to give extra Gly residues at the position of Gly. This was observed in only the coupling reaction with Boc-Gly and could be circumvented using a more stable Nim protecting group for His, such as a dinitrophenyl group.  相似文献   

3.
A novel method is described for the cyclization of peptides--or segments of polypeptides--which requires a free N-terminal alpha-amino group and a distal amino acid residue containing a nucleophilic side chain. The reaction is conducted in two steps, both in the aqueous phase. The first step involves acylation of the N-terminal alpha-amino group with iodoacetic anhydride at pH 6. This acylation reaction has greater than 90% specificity for peptide alpha-amino groups and gives no alkylation of Arg, His, Lys or Met by the iodoacetate side product (R. Wetzel et al., Bioconjugate Chem., 1, 114-122, 1990). In the second step, the acylation reaction mixture or the isolated iodoacetyl-peptide is incubated at room temperature to give the cyclic peptide formed by reaction of the nucleophilic side chain with the iodoacetyl moiety. The pH dependence of the cyclization reaction by Met, Lys, Arg or His is consistent with the pKa of the nucleophilic side chain. Thus, peptides containing Met plus other nucleophilic amino acids should preferentially cyclize via Met at low pH. In this paper, preparation of cyclic peptides containing 3-6 amino acids is described; the full range of ring sizes and sequences which can undergo this cyclization has not been further explored. Preliminary results suggest that this method is also fairly general with respect to the amino acid sequence being cyclized. The reaction appears to be particularly suited for cyclization via Lys and Met side chains. All of the cyclized products are sufficiently stable for many biological applications.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
An N-terminal histidine residue of a protein or peptide has two functional groups, viz., an alpha-amino group and an imidazole group. A new procedure, based on the competitive labeling approach described by Duggleby and Kaplan [Duggleby, R. G., & Kaplan, H. (1975) Biochemistry 14, 5168-5175], has been developed by which the chemical reactivity of each functional group in such a residue can be determined as a function of pH. Only very small amounts of material are required, which makes it possible to determine the chemical properties in dilute solution or in proteins and polypeptides that can be obtained in only minute quantities. With this approach, the reactivity of the alpha-amino group of histidylglycine toward 1-fluoro-2,4-dinitrobenzene gave an apparent pKa value of 7.64 +/- 0.07 at 37 degrees C, in good agreement with a value of 7.69 +/- 0.02 obtained by acid-base titration. However, the reactivity of the imidazole function gave an apparent pKa value of 7.16 +/- 0.07 as compared to the pKa value of 5.85 +/- 0.01 obtained by acid-base titration. Similarly, in glucagon and vasoactive intestinal peptide (VIP), apparent pKa values of 7.60 +/- 0.04 and 7.88 +/- 0.18, respectively, were obtained for the alpha-amino of their N-terminal histidine, and pKa values of 7.43 +/- 0.09 and 7.59 +/- 0.18 were obtained for the imidazole function.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The nonenzymatic rates of deamidation of Asn residues in a series of pentapeptides with the sequences VSNXV and VXNSV, where X is one of 10 different amino acids, were determined at neutral, alkaline, and acid pH values. The results demonstrate that in neutral and alkaline solutions the amino acid residue on the amino side of the Asn had little or no effect on the rate of deamidation regardless of its charge or size. The group on the carboxyl side of Asn affected the rate of deamidation significantly. Increasing size and branching in the side chain of this residue decreased the rate of deamidation by as much as 70-fold compared to glycine in the N-G sequence, which had the greatest rate of deamidation. In acidic solution, the rate of deamidation of the Asn residue was not affected by the amino acid sequence of the peptide. The products for each deamidation reaction were tested for the formation of isoAsp residues. In neutral and alkaline solutions, all products showed that the isoAsp:Asp peptide products were formed in about a 3:1 ratio. In acidic solution, the Asp peptide was the only deamidation product formed. All peptides in which a Ser residue follows the Asn residue were found to undergo a peptide cleavage reaction in neutral and alkaline solutions, yielding a tripeptide and a dipeptide. The rate of the cleavage reaction was about 10% of the rate of the deamidation pathway at neutral and alkaline pH values. The rates of deamidation of Asn residues in the peptides studied were not affected by ionic strength, and were not specific base catalyzed. General base catalysis was observed for small bases like ammonia. A model for the deamidation reaction is proposed to account for the observed effects.  相似文献   

6.
Influenza virus hemagglutinin (HA)-mediated membrane fusion involves insertion into target membranes of a stretch of amino acids located at the N-terminus of the HA(2) subunit of HA at low pH. The pK(a) of the alpha-amino group of (1)Gly of the fusion peptide was measured using (15)N NMR. The pK(a) of this group was found to be 8.69 in the presence of DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine). The high value of this pK(a) is indicative of stabilization of the protonated form of the amine group through noncovalent interactions. The shift reagent Pr(3+) had large effects on the (15)N resonance from the alpha-amino group of Gly(1) of the fusion peptide in DOPC vesicles, indicating that the terminal amino group was exposed to the bulk solvent, even at low pH. Furthermore, electron paramagnetic resonance studies on the fusion peptide region of spin-labeled derivatives of a larger HA construct are consistent with the N-terminus of this peptide being at the depth of the phosphate headgroups. We conclude that at both neutral and acidic pH, the N-terminal of the fusion peptide is close to the aqueous phase and is protonated. Thus neither a change in the state of ionization nor a significant increase in membrane insertion of this group is associated with increased fusogenicity at low pH.  相似文献   

7.
Reaction of an alpha-amino acid (alpha-AA) with 1,1-diphenylborinic acid (DPBA) leads to the formation of a kinetically stable adduct at pH 2-5 in which both the alpha-amino and the alpha-carboxyl groups are bound to boron forming a cyclic mixed anhydride termed a boroxazolidone. In this adduct, the greater than N:B bond is coordinate, involving the free electron pair of nitrogen, thereby satisfying the octet rule for the second electron shell of boron (Group IIIA). Consequently, the alpha-amino function of the boroxazolidone can be primary, secondary, or tertiary, as demonstrated by boroxazolidone formation with glycine, N-methylglycine, and N,N-dimethylglycine. On reaction with DPBA, the alpha-AA moiety of N-terminal gamma-glutamyl peptides is also derivatized as demonstrated by the formation of a glutathione boroxazolidone. The 1,1-diphenylboroxazolidone adducts of alpha-AA may be separated by reversed-phase (RP)-HPLC (AA-DPBA/RP-HPLC) enabling the derivatization procedure to be used as a precolumn reaction for alpha-AA analysis. Under the conditions we describe here, DPBA is not stably reactive with the epsilon-amino group of lysine. Furthermore, it does not complex with amide bonds of the peptide backbone or to any side chains of the common amino acids. Reaction of an alpha-AA mixture with DPBA, followed by RP-HPLC (AA-DPBA/RP-HPLC) is then a simple method by which to analyze alpha-AA in a mixture with peptides and amines. Precolumn reaction with DPBA may be used to separate peptides from alpha-AA and from those peptides which contain an alpha-AA moiety. Unreacted peptides are bound only weakly to the HPLC column and thus are separated from reacted alpha-amino acids which are retained as 1,1-diphenylboroxazolidones until their selective elution. This method is particularly suited for the analysis of alpha-amino acids that are derived from post-translational modification of protein side chains.  相似文献   

8.
A simple method for introducing, in buffered saline, a reactive sulfhydryl group on water-soluble molecules bearing an alkyl-amino group is described. This method is based on the use of two water-soluble reagents: 2-iminothiolane and 6,6'-dithiodinicotinic acid. The first one is open upon reaction with an amino group, and the generated thiol group is immediately protected by action of the second reagent. The optimal conditions were determined by taking into account the stability and the reactivity of both reagents with regards to pH and temperature. This method was validated through two applications, the substitution of bovine serum albumin with a bromoacetyl peptide and the substitution of an amino link at the 5' end of an oligonucleotide by reaction with either a fluorescent tag, iodoacetamidofluorescein, or a bromoacetyl peptide, upon reduction of the protected disulfide bridge with a third water-soluble reagent, namely tris(2-carboxyethyl)phosphine.  相似文献   

9.
1. Isoionic chemical modification of amino groups of trypsin (EC 3.4.21.4) was studied for the purpose of obtaining a well-defined modified trypsin with minimum changes in physicochemical properties and with sufficient stability at neutral pH. Acetamidination with methyl acetimidate hydrochloride proceeded very rapidly at pH9.8 and 5degrees C and all 14 epsilon-amino groups were modified in 2h. The reaction was limited to epsilon-amino groups. The alpha-amino group of N-terminal isoleucine was modified only by repeated reactions in the presence of 5.5 M-guanidine or 8 M-urea. 2. The epsilon-acetamidinated derivative of beta-trypsin retained enzymic activity at values comparable with those of native enzyme tested with alpha-N-benzoyl-L-arginine ethyl ester and alpha-N-benzoyl-L-arginine p-nitroanilide as substrates; it also showed substrate activation comparable with that of native enzyme. The acetamidination of alpha-trypsin resulted in approx. 50% decrease in its esterolytic activity. 3. The epsilon-acetamidinated beta-trypsin was very stable at pH8 and 25degrees C in the absence of Ca2+. The activity of 0.04% (W/V) enzyme solution remained practically unchanged for 10h, and after 24h 90% of the activity was still retained. Possible autolytic cleavage of peptide bonds of acetamidinated enzymes was followed by N-terminal analysis by using automated Edman degradation. Only the Arg(105)-Val(106) bond was found to be cleaved to an appreciable extent. Thus beta-trypsin can be stabilized simply by complete acetamidination of epsilon-amino groups without modifying guanidino groups of arginine residues. Acetamidinated alpha-trypsin was unstable, but its inactivation at a neutral pH could not be attributed to the cleavage of a single specific peptide bond. 4. The acetamidination of the alpha-amino group of the N-terminal isoleucine results in the inactivation of esterolytic activity. However, this enzyme retained the ability to react with p-nitrophenyl p'-guanidinobenzoate. 5. It was concluded that acetamidination of beta-trypsin is a convenient method for preparing a well-defined stable and soluble trypsin derivative without appreciable change in its physical properties.  相似文献   

10.
Unfolding in the N-terminal region of RNase A was studied by the nonradiative energy-transfer technique. RNase A was labeled with a nonfluorescent acceptor (2,4-dinitrophenyl) on the alpha-amino group and a fluorescent donor (ethylenediamine monoamide of 2-naphthoxyacetic acid) on a carboxyl group in the vicinity of residue 50 (75% at Glu-49 and 25% at Asp-53). The distribution of donor labeling sites does not affect the results of this study since they are close in both the sequence and the three-dimensional structure. The sites of labeling were determined by peptide mapping. The derivatives possessed full enzymatic activity and underwent reversible thermal transitions. However, there were some quantitative differences in the thermodynamic parameters. When the carboxyl groups were masked, there was a 5 degrees C lowering of the melting temperature at pH 2 and 4, and no significant change in delta H(Tm). Labeling of the alpha-amino group had no effect on the melting temperature or delta H(Tm) at pH 2 but did result in a dramatic decrease in delta H(Tm) of the unfolding reaction at pH 4. The melting temperature did not change appreciably at pH 4, indicating that an enthalpy/entropy compensation had occurred. The efficiencies of energy transfer determined with both fluorescence intensity and lifetime measurements were in reasonably good agreement. The transfer efficiency dropped from about 60% under folding conditions to roughly 20% when the derivatives were unfolded with disulfide bonds intact and was further reduced to 5% when the disulfide bonds were reduced. The interprobe separation distance was estimated to be 35 +/- 2 A under folding conditions. The contribution to the interprobe distance resulting from the finite size of the probes was treated by using simple geometric considerations and a rotational isomeric state model of the donor probe linkage. With this model, the estimated average interprobe distance of 36 A is in excellent agreement with the experimental result cited above.  相似文献   

11.
The orientation and motion of a model lysine-terminated transmembrane polypeptide were investigated by molecular dynamics simulation. Recent 2H NMR studies of synthetic polypeptides with deuterated alanine side chains suggest that such transmembrane polypeptides undergo fast, axially symmetric reorientation about the bilayer normal but have a preferred average azimuthal orientation about the helix axis. In this work, interactions that might contribute to this behavior were investigated in a simulated system consisting of 64 molecules of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and one alpha-helical polypeptide with the sequence acetyl-KK-(LA)11-KK-amide. In one simulation, initiated with the peptide oriented along the bilayer normal, the system was allowed to evolve for 8.5 ns at 1 atm of pressure and a temperature of 55 degrees C. A second simulation was initiated with the peptide orientation chosen to match a set of experimentally observed alanine methyl deuteron quadrupole splittings and allowed to proceed for 10 ns. Simulated alanine methyl group orientations were found to be inequivalent, a result that is consistent with 2H NMR observations of specifically labeled polypeptides in POPC bilayers. Helix tilt varied substantially over the durations of both simulations. In the first simulation, the peptide tended toward an orientation about the helix axis similar to that suggested by experiment. In the second simulation, orientation about the helix axis tended to return to this value after an excursion. These results provide some insight into how interactions at the bilayer surface can constrain reorientation about the helix axis while accommodating large changes in helix tilt.  相似文献   

12.
alpha-Aminoisobutyric acid (Aib), one of the Calpha,alpha-disubstituted glycines, is a sterically hindered amino acid that acts as a conformational constraint in peptides. However, studies for the application of the ability of Aib to control conformation are quite few. The paper focuses on the molecular recognition ability of acyclic oligopeptides containing Aib. Liquid-liquid extraction of nine kinds of metal ions from aqueous layers to nonpolar organic layers with acyclic tetrapeptides, X-Trp-Xaa2-Gly-Xaa4-NH-Ar (X = H or C6H5CH2OCO (Z), Xaa2 = Aib or Gly, Xaa4 = Leu or Ala, Ar = phenyl or 3,5-dimethylphenyl) was examined using picrate as the anion of ion pairs. The extraction behaviour of the metal ions with the tetrapeptides was investigated in the pH range from 3 to 9. In the case of basic pH regions, Cu(II) and Ag(I) were effectively extracted with Trp-Aib-Gly-Leu-NH-Ar. Pd(II) was specifically extracted with Trp-Aib-Gly-Leu-NH-Ar in acidic pH regions. The extraction percent (%E) of the peptide host, which has a 3,5-dimethylphenyl group, was even larger than that of the host, which has a phenyl group. Moreover, Pd(II) was extracted with a peptide host which has Leu and a 3,5-dimethylphenyl group in the absence of picrate as the anion of ion pairs. The free alpha-amino group, the turn conformation and the hydrophobicity of peptide molecules were important factors for the extraction of the metals.  相似文献   

13.
The L2/HNK-1 carbohydrate is carried by many neural recognition molecules and is involved in neural cell interactions during development, regeneration in the peripheral nervous system, synaptic plasticity, and autoimmune-based neuropathies. Its key structure consists of a sulfated glucuronic acid linked to lactosaminyl residues. Because of its biological importance but limited availability, the phage display method was used to isolate a collection of peptide mimics that bind specifically to an L2/HNK-1 antibody. The phages isolated from a 15-mer peptide library by adsorption to this antibody share a consensus sequence of amino acids. The peptide mimicked several important functions of the L2/HNK-1 carbohydrate, such as binding to motor neurons in vitro, and preferential promotion of in vitro neurite outgrowth from motor axons compared with sensory neurons. A scrambled version of the peptide had no activity. The combined observations indicate that we have isolated a mimic of the L2/HNK-1 carbohydrate that is able to act as its functional substitute.  相似文献   

14.
Bovine pancreatic carboxypeptidase A (EC 3.4.12.2) was treated with dimethyl (2-hydroxy-5-nitrobenzyl)sulfonium chloride at pH 7.5, resulting in a preparation which consisted primarily of a monohydroxynitrobenzylated derivative of the enzyme. Samples of the hydroxynitrobenzylated enzyme were subjected to tryptic digestion and to cyanogen bromide cleavage, and resulting peptides were isolated chromatographically. One tryptic hydroxynitrobenzyl-containing peptide was isolated; its amino acid composition was that of the N-terminal tryptic segment of carboxypeptidase Agamma (residues 8--35). Likewise, CNBr cleavage of the hydroxynitrobenzylated enzyme revealed that the hydroxynitrobenzyl group resided in the N-terminal fragment, FN (residues 8--22). Neither of these hydroxynitrobenzylated peptides contains Trp, the amino acid residue which is characteristically the site of hydroxynitrobenzylation in proteins, and each was found to contain approximately one less Asx than the corresponding native peptide. Both dansylation and automated Edman degradation procedures revealed that the N-terminal Asn of carboxypeptidase Agamma had been modified by hydroxynitrobenzylation of the enzyme. Thus the sulfonium salt reacts with carboxypeptidase A in the same manner as that established earlier for 2-hydroxy-5-nitrobenzyl bromide (Radhakrishnan, T.M., Bradshaw, R.A., Deranleau, D.A. and Neurath, H. (1970) FEBS Lett. 7, 72--76). Such reactivity of the alpha-amino group presumably reflects its unique location with respect to Trp residues in the tertiary structure of the enzyme.  相似文献   

15.
A chemical derivative of bovine pancreatic ribonuclease A (RNase A) has been prepared by reaction with fluorescein-isothiocyanate at pH 6. This derivative has a fluorescein group covalently attached to the alpha-amino group of the protein. The enzymic properties of the modified protein are similar to those of RNase A. It is shown that the pK of the fluorescein group can be used as an index of protein conformation to monitor structural changes in the protein. In this work, the binding of a specific inhibitor (cytidine 2'-monophosphate) to RNase A, the isomerization process occurring in RNase A around pH 6, and the thermal unfolding of RNase A, were studied by mean of the pK changes of the fluorescein group. The results obtained by this method are fully consistent with those obtained by other methods. It is proposed that using ionizable reporter groups and their changes in pK to monitor conformational changes in proteins may be a sensitive tool both in equilibrium and kinetic studies.  相似文献   

16.
G Gaudriault  J P Vincent 《Peptides》1992,13(6):1187-1192
Incorporation of N-succinimidyl-3(4-hydroxyphenyl) propionate (Bolton-Hunter reagent) or its 125I-labeled derivative into peptides can be selectively directed towards either alpha- or epsilon-amine functions by modifying the pH of the reaction. Acylation of alpha-amino groups is favored at pH 6.5 whereas epsilon-amino groups react more readily at pH 8.5. We have taken advantage of this result to prepare two new 125I-labeled analogues of substance P and neurotensin that bind selectively and reversibly to their respective receptors. The method described here is of general interest and can be used to incorporate various reporter groups into peptide structures.  相似文献   

17.
1. The diminution of the quantity of pigment formed in the ninhydrin colorimetric reaction or the titre in two types of formol titration of a protein after substitution is used to determine the degree of substitution achieved at the various amino groups of a protein. 2. The determination of the substitution achieved at alpha-amino plus in-amino groups by the ninhydrin colorimetric method as described by Cobbett, Gibbs & Leach (1964) has been modified to correct for the hydrolysis of the peptide chain which takes place during colour development. 3. The degree of substitution at the in-amino groups was determined by the formol titration carried out at pH9, essentially as described by the above authors. 4. Substitution at the alpha-amino plus in-amino plus imidazole groups was determined from the diminution of the titre of a modified formol titration. This titration was carried out by adjusting the protein solution to pH6.5 followed by the addition of formaldehyde and then titrating to pH9.0. 5. The three methods have been applied to carbamoylated and benzenesulphonylated gelatin derivatives. The values for the degrees of substitution obtained by the ninhydrin (alpha-amino plus in-amino) and the formol (pH9.0, in-amino) methods were shown to be almost identical. The values from the formol (pH6.5-9.0, alpha-amino plus in-amino plus imidazole) titration were consistently lower than the values obtained by the other methods and corresponded to no substitution having taken place at the imidazole groups by the preparative methods employed. 6. The application of the methods to other protein systems is discussed.  相似文献   

18.
1. When ribonuclease T1 [EC 3.1.4.8] was treated with trypsin [EC 3.4.21.4] at pH 7.5 and 37 degrees, activity was lost fairly slowly. At higher temperatures, however, the rate of inactivation was markedly accelerated. The half life of the activity was about 2.5 h at 50 degrees and 1 h at 60 degrees. 3'-GMP and guanosine protected the enzyme significantly from tryptic inactivation. 2. Upon tryptic digestion at 50 degrees, the Lys-Tyr (41-42) and Arg-Val (77-78) bonds were cleaved fairly specifically, yielding two peptide fragments. One was a 36 residue peptide comprizing residues 42 to 77. The other was a 68 residue peptide composed of two peptide chains cross-linked by a disulfide bond between half-cystines -6 and -103, comprizing residues 1 to 41 and 78 to 104. 3. When the trinitrophenylated enzyme, in which the alpha-amino group of alanine-1 and the episolone-amino group of lysine 41 were selectively modified, was treated with trypsin at 37 degrees, the activity was lost fairly rapidly with a half life of about 4 h. In this case, tryptic hydrolysis occurred fairly selectively at the single Arg-Val bond. Thus the enzyme could be inactivated by cleavage of a single peptide bond in the molecule, an indication of the importance of the peptide region involving the single arginine residue at position 77 in the activity of ribonuclease T1.  相似文献   

19.
O Gursky  J Badger  Y Li    D L Caspar 《Biophysical journal》1992,63(5):1210-1220
To determine the effect of variations in the charge distribution on the conformation of a protein molecule, we have solved the structures of bovine cubic insulin over a pH range from 7 to 11 in 0.1 M and 1 M sodium salt solutions. The x-ray data were collected beyond 2-A resolution and the R factors for the refined models ranged from 0.16 to 0.20. Whereas the positions of most protein and well-ordered solvent atoms are conserved, about 30% of residues alter their predominant conformation as the pH is changed. Conformational switching of A5 Gln and B10 His correlates with the pH dependence of monovalent cation binding to insulin in cubic crystals. Shifts in the relative positions of the A chain NH2-terminal and B chain COOH-terminal groups are probably due to titration of the A1 alpha-amino group. Two alternative positions of B25 Phe and A21 Asn observed in cubic insulin at pH 11 are similar to those found in two independent molecules of the 2Zn insulin dimer at pH 6.4. The conformational changes of the insulin amino acids appear to be only loosely coupled at distant protein sites. Shifts in the equilibrium between distinct conformational substates as the charge distribution on the protein is altered are analogous to the electrostatically triggered movements that occur in many functional protein reactions.  相似文献   

20.
We examine the role of the conformational restriction imposed by constrained ends of a protein loop on the determination of a strained loop conformation. The Lys 116-Pro 117 peptide bond of staphylococcal nuclease A exists in equilibrium between the cis and trans isomers. The folded protein favors the strained cis isomer with an occupancy of 90%. This peptide bond is contained in a solvent-exposed, flexible loop of residues 112-117 whose ends are anchored by Val 111 and Asn 118. Asn 118 is constrained by 2 side-chain hydrogen bonds. We investigate the importance of this constraint by replacing Asn 118 with aspartate, alanine, and glycine. We found that removing 1 or more of the hydrogen bonds observed in Asn 118 stabilizes the trans configuration over the cis configuration. By protonating the Asp 118 side chain of N118D through decreased pH, the hydrogen bonding character of Asp 118 approached that of Asn 118 in nuclease A, and the cis configuration was stabilized relative to the trans configuration. These data suggest that the rigid anchoring of the loop end is important in establishing the strained cis conformation. The segment of residues 112-117 in nuclease A provides a promising model system for study of the basic principles that determine polypeptide conformations. Such studies could be useful in the rational design or redesign of protein molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号