首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-reinnvervation of fast (extensor digitorum longus) and slow (soleus) twitch muscles of the rabbit showed essentially complete fast to slow and slow to fast conversion, respectively, 11-12 mo after surgery with respect to a number of physiological parameters including intrinsic shortening, velocity, and isometric twitch time to peak. There was pronounced bu incomplete biochemical conversion as judged by Ca2+ uptake by sarcoplasmic reticulum, myosin ATPase, alkali lability, and light chain complement. The question of trophic substances of neural origin is discussed in light of the fact that chronic stimulation for 15 wk of a fast muscle produces complete biochemical and physiological conversion to the slow type.  相似文献   

2.
Single muscle fibers were isolated from soleus and extensor digitorum longus muscle of adult rats. The muscle fiber type of single fibers was determined physiologically by the skinned fiber method according to the sensitivity to strontium (Sr) ions. The fiber type of single fibers was contrasted to the pattern of myosin light chains analyzed by one and two dimensional gel-electrophoreses. All the type 2 fibers isolated from soleus muscle contained both fast and slow types of myosin light chains.  相似文献   

3.
1. Combined histochemical and biochemical single-fibre analyses [Staron & Pette (1987) Biochem. J. 243, 687-693], were used to investigate the rabbit tibialis-anterior fibre population. 2. This muscle is composed of four histochemically defined fibre types (I, IIC, IIA and IIB). 3. Type I fibres contain slow myosin light chains LC1s and LC2 and the slow myosin heavy chain HCI, and types IIA and IIB contain the fast myosin light chains LC1f, LC2f and LC3f and the fast heavy chains HCIIa and HCIIb respectively. 4. A small fraction of fibres (IIAB), histochemically intermediate between types IIA and IIB, contain the fast light myosin chains but display a coexistence of HCIIa and HCIIb. 5. Similarly to the soleus muscle, C fibres in the tibialis anterior muscle contain both fast and slow myosin light chains and heavy chains. The IIC fibres show a predominance of the fast forms and the IC fibres (histochemically intermediate between types I and IIC) a predominance of the slow forms. 6. A total of 60 theoretical isomyosins can be derived from these findings on the distribution of fast and slow myosin light and heavy chains in the fibres of rabbit tibialis anterior muscle.  相似文献   

4.
The histochemical ATPase activity and the myosin light chains of a rat fast muscle (extensor digitorum longus, EDL) and a rat slow muscle (soleus) during development have been investigated. Both muscles initially synthesize fast myosin light chains and show the intense histochemical ATPase activity characteristic of adult fast muscle fibers. After birth, the soleus begins to accumulate slow fibers with their characteristic low histochemical ATPase activity, and slow myosin light chains begin to appear. Sciatic neurectomy prevents the development of slow fibers and the synthesis of slow myosin light chains in the soleus, while the EDL is unaffected. Similarly, cordotomy of an adult rat results, in the soleus, in the appearance of fibers with more intense staining for ATPase and an increase in fast myosin light chains. The EDL is unchanged by cordotomy. As a result, we suggest that slow muscle development, but not fast muscle development, is dependent upon the functional activity of the nervous system.  相似文献   

5.
The total content of myosin heavy chains (MHC) and their isoform pattern were studied by biochemical methods in the slow-twitch (soleus) and fast-twitch (extensor digitorum longus) muscles of adult rat during atrophy after denervation and recovery after self-reinnervation. The pattern of fibre types, in terms of ultrastructure, was studied in parallel. After denervation, total MHC content decreased sooner in the slow-twitch muscle than in the fast-twitch. The ratio of MHC-1 and the MHC-2B isoforms to the MHC-2A isoform decreased in the slow and the fast denervated muscles, respectively. After reinnervation of the slow muscle, the normal pattern of MHC recovered within 10 days and the type 1 isoform increased above the normal. In the reinnervated fast muscle, the 2B/2A isoform ratio continued to decrease. Traces of the embryonic MHC isoform, identified by immunochemistry, were found in both denervated and reinnervated slow and fast muscles. A shift in fibre types was similar to that found in the MHC isoforms. Within 2 months of recovery a tendency to normalization was observed. The results show that (a) MHC-2B isoform and the morphological characteristics of the 2B-type muscle fibres are susceptible to lack of innervation, similar to those of type 1, (b) during muscle recovery induced by reinnervation the MHC isoforms and muscle fibres shift transiently to type 1 in the soleus and to type 2A in the extensor digitorum longus muscles, and (c) the embryonic isoform of MHC may appear in the adult skeletal muscles if innervation is disturbed.  相似文献   

6.
Three monoclonal antibodies, LM5, F2 and F39 raised to chicken fast skeletal muscle myosin, specific for myosin heavy chain (MHC) subunit, were used to study the composition and distribution of this protein in some vertebrate skeletal muscles. These antibodies in immunohistochemical investigations did not react with the majority of the type I fibres in most muscles. Antibodies LM5 and F39 stained all the type II fibres in all the adult chicken skeletal muscles studied. Antibody F2 also stained all the type II fibres in most chicken skeletal muscles tested except in gastrocnemius in which a proportion of both the type IIA and IIB fibres either did not stain or stained only weakly. Antibody F2 unlike LM5 and F39 stained most of the type IIIB fibres in anterior latissimus dorsi (ALD) and IB fibres in red strip of chicken Pectoralis muscle. Antibodies LM5 and F2 in the rat diaphragm reacted with all the type IIA and IIB fibres, while antibody F39 stained only the type IIB fibres darkly with most IIA fibres being either not stained or only weakly stained. In the rat extensor digitorum longus (EDL) and tibialis anterior (TA) muscles, antibody LM5 stained all the IIA and IIB fibres. Antibody F2 in these muscles stained all the type IIA fibres but only a proportion of the IIB fibres. The remaining IIB fibres were either unstained or only weakly positive. Antibody F39 in rat EDL and TA muscles did not only distinguish subgroups of IIB fibres (dark, intermediate and negative or very weak) but also of the IIA fibres. These three antibodies used together therefore detected a great deal of heterogeneity in the myosin heavy chain composition and muscle fibre types of several skeletal muscles.  相似文献   

7.
Summary Three monoclonal antibodies, LM5, F2 and F39 raised to chicken fast skeletal muscle myosin, specific for myosin heavy chain (MHC) subunit, were used to study the composition and distribution of this protein in some vertebrate skeletal muscles. These antibodies in immunohistochemical investigations did not react with the majority of the type I fibres in most muscles. Antibodies LM5 and F39 stained all the type II fibres in all the adult chicken skeletal muscles studied. Antibody F2 also stained all the type II fibres in most chicken skeletal muscles tested except in gastrocnemius in which a proportion of both the type IIA and IIB fibres either did not stain or stained only weakly. Antibody F2 unlike LM5 and F39 stained most of the type IIIB fibres in anterior latissimus dorsi (ALD) and IB fibres in red strip of chicken Pectoralis muscle. Antibodies LM5 and F2 in the rat diaphragm reacted with all the type IIA and IIB fibres, while antibody F39 stained only the type IIB fibres darkly with most IIA fibres being either not stained or only weakly stained. In the rat extensor digitorum longus (EDL) and tibialis anterior (TA) muscles, antibody LM5 stained all the IIA and IIB fibres. Antibody F2 in these muscles stained all the type IIA fibres but only a proportion of the IIB fibres. The remaining IIB fibres were either unstained or only weakly positive. Antibody F39 in rat EDL and TA muscles did not only distinguish subgroups of IIB fibres (dark, intermediate and negative or very weak) but also of the IIA fibres. These three antibodies used together therefore detected a great deal of heterogeneity in the myosin heavy chain composition and muscle fibre types of several skeletal muscles.  相似文献   

8.
Repetitive low frequency stimulation results in potentiation of twitch force development in fast-twitch skeletal muscle due to myosin regulatory light chain (RLC) phosphorylation by Ca(2+)/calmodulin (CaM)-dependent skeletal muscle myosin light chain kinase (skMLCK). We generated transgenic mice that express an skMLCK CaM biosensor in skeletal muscle to determine whether skMLCK or CaM is limiting to twitch force potentiation. Three transgenic mouse lines exhibited up to 22-fold increases in skMLCK protein expression in fast-twitch extensor digitorum longus muscle containing type IIa and IIb fibers, with comparable expressions in slow-twitch soleus muscle containing type I and IIa fibers. The high expressing lines showed a more rapid RLC phosphorylation and force potentiation in extensor digitorum longus muscle with low frequency electrical stimulation. Surprisingly, overexpression of skMLCK in soleus muscle did not recapitulate the fast-twitch potentiation response despite marked enhancement of both fast-twitch and slow-twitch RLC phosphorylation. Analysis of calmodulin binding to the biosensor showed a frequency-dependent activation to a maximal extent of 60%. Because skMLCK transgene expression is 22-fold greater than the wild-type kinase, skMLCK rather than calmodulin is normally limiting for RLC phosphorylation and twitch force potentiation. The kinase activation rate (10.6 s(-1)) was only 3.6-fold slower than the contraction rate, whereas the inactivation rate (2.8 s(-1)) was 12-fold slower than relaxation. The slower rate of kinase inactivation in vivo with repetitive contractions provides a biochemical memory via RLC phosphorylation. Importantly, RLC phosphorylation plays a prominent role in skeletal muscle force potentiation of fast-twitch type IIb but not type I or IIa fibers.  相似文献   

9.
An experimental protocol designed to assess fatigability in motor units has been applied to two hindlimb muscles of anesthetized adult rats to study the effects of whole-muscle fatigue on the isometric twitch. Both soleus and extensor digitorum longus exhibited a linear relationship between fatigability (i.e., force decline after a 360-s fatigue test) and the magnitude of the twitch force following the fatigue test. Twitch force after the fatigue test was potentiated (i.e., greater than the value before the fatigue test) in many muscles, despite the development of considerable fatigue. This coexistence of fatigue and twitch potentiation was observed in 7% (5/70) of soleus and 48% (31/64) of extensor digitorum longus muscles. The coexistence was exhibited only by the least fatigable muscles of the fast-contracting extensor digitorum longus. The extensor digitorum longus muscles that did not exhibit twitch potentiation probably experienced a higher proportion of muscle-fiber inactivation, such as due to failure of neuromuscular propagation, that was induced by the fatigue regimen.  相似文献   

10.
Summary A quantitative modification of Meijer's calcium-lead capture method, for the demonstration of calcium-stimulated myofibrillar ATPase activity at physiological pH, is described. A range of myofibrillar ATPase activities has been found among fast muscle fibres in two mouse hind-limb muscles. The myofibrillar ATPase activity of fast muscle fibres is 1.5–3 times higher than the myofibrillar ATPase activity of slow muscle fibres.Myofibrillar ATPase activities and succinate dehydrogenase activities of individual muscle fibres have been determined in serial sections. Activities of the two enzymes are correlated positively in soleus (fast and slow fibres), and negatively in plantaris (almost all fast) and extensor digitorum longus muscle (all fast). However, this correlation is not significant among the oxidative fibres in the extensor digitorum longus. The fibres of the latter muscle cannot be classified satisfactorily into two sub-types.  相似文献   

11.
Summary Glucose-6-phosphate dehydrogenase activity increases following denervation of rat skeletal muscle. The specificity of this effect to muscle fibre type was studied. Basal activity of the dehydrogenase was higher in soleus, a muscle composed predominantly of type I fibres, than in extensor digitorum longus, a muscle composed predominantly of type IIa and b fibres. The enzymatic activity of the soleus was also greater than that of the red (RQ) and white (WQ) portions of quadriceps muscle (predominantly type IIa and type IIb fibres, respectively). Following denervation, glucose-6-phosphate dehydrogenase increased in extensor digitorum longus and RQ, but not in WQ or the soleus. Following chronic treatment of rats with 3,3,5-triiodothyronine, which converts type I muscle fibres to type II, the dehydrogenase activity increased in both denervated soleus and extensor digitorum longus. It is concluded that the effect of denervation on glucose-6-phosphate dehydrogenase activity is selective for type IIa (fast oxidative-glycolytic) muscle fibres.  相似文献   

12.
The effect of changes in muscle length on post-tetanic isometric twitch tension potentiation and myosin P-light chain phosphorylation-was studied at 23°C in the mouse extensor digitorum longus muscle. The length-tension relationship was determined for the same muscles after a 30 min period of quiescence and between 30 s and 3 min after a 1.5 s tetanus at L0. Isometric twitch tension is increased at all muscle lengths after the tetanus; however, the fractional increase in twitch tension rises from 0.2 at L0 to a maximum of 0.3 at 1.2 L0. The fractional increase in twitch tension measured at any fixed muscle length is constant between 30 s and 3 min post-tetanus. P-light chain phosphorylation remains constant between 30 s and 3 min post-tetanus followed by a slow decline to basal values. Under fixed length conditions, there is linear relationship between the relative magnitude of the twitch tension and the extent of P-light chain phosphor-ylation. Net myosin phosphorylalion measured after a 1.5 s tetanus at 1.23 L0 is 35% less than that obtained under the same conditions at L0. Thus, contraction-induced phosphorylation of P-light chain decreases with increased muscle length and post-tetanic potentiation at a constant level of P-light chain phosphorylation increases with increasing muscle length. These observations may be consistent with alterations in the sarcoplasmic Ca2+ ion transient as the muscle is lengthened.  相似文献   

13.
 The hypothesis that the limited adaptive range observed in fast rat muscles in regard to expression of the slow myosin is due to intrinsic properties of their myogenic stem cells was tested by examining myosin heavy chain (MHC) expression in regenerated rat extensor digitorum longus (EDL) and soleus (SOL) muscles. The muscles were injured by bupivacaine, transplanted to the SOL muscle bed and innervated by the SOL nerve. Three months later, muscle fibre types were determined. MHC expression in muscle fibres was demonstrated immunohistochemically and analysed by SDS-glycerol gel electrophoresis. Regenerated EDL transplants became very similar to the control SOL muscles and indistinguishable from the SOL transplants. Slow type 1 fibres predominated and the slow MHC-1 isoform was present in more than 90% of all muscle fibres. It contributed more than 80% of total MHC content in the EDL transplants. About 7% of fibres exhibited MHC-2a and about 7% of fibres coexpressed MHC-1 and MHC-2a. MHC-2x/d contributed about 5–10% of the whole MHCs in regenerated EDL and SOL transplants. The restricted adaptive range of adult rat EDL muscle in regard to the synthesis of MHC-1 is not rooted in muscle progenitor cells; it is probably due to an irreversible maturation-related change switching off the gene for the slow MHC isoform. Accepted: 11 June 1996  相似文献   

14.
Denervation potentiated the cooling-induced contractures and the halothane-cooling contractures of isolated extensor digitorum longus and soleus muscles of the mouse. These effects were more striking in extensor digitorum longus than in soleus muscles. Significant increases in the peak amplitudes of the halothane-cooling contractures of both muscles and of the cooling contractures of soleus muscle were observed within 2 and 7 days of denervation. The potentiation of the contractures persisted for 90 days, the period of this study. Denervation (greater than 2 days) endowed extensor digitorum longus with the ability to generate cooling contractures in the absence of halothane. The rate of tension development of cooling-induced contractures in the absence or presence of halothane was significantly greater in denervated (2-90 days) than in innervated muscles. Denervation also reduced the effectiveness of procaine in inhibiting the halothane-cooling contractures. It is proposed that the potentiation of cooling-induced contractures in denervated muscles results primarily from an increase in the rate of efflux and in the quantity of Ca2+ released from the sarcoplasmic reticulum, upon cooling and (or) when challenged with halothane.  相似文献   

15.
Postnatal myoblasts, the satellite cells, originating from slow and fast skeletal muscle fibres differentiate and fuse into myotubes expressing different phenotype of myosin heavy chain (MyHC) isoforms. Little is known, however, of factors which establish and maintain this phenotypic diversity. We used immunofluorescent labelling and Western blotting to examine the expression of slow and fast MyHC isoforms in myotubes formed in vitro from satellite cells isolated from mouse fast twitch extensor digitorum longus (EDL) and slow twitch soleus muscles. Satellite cells were cultured in serum-rich growth medium promoting myoblast proliferation until cross-striated and self-contracting myotubes were formed. We report that in both cultures myotubes expressed slow as well as fast MyHC isoforms, but the level of slow MyHC was higher in soleus culture than in EDL culture. Hence, the pattern of expression of slow and fast MyHC was characteristic of the muscle fibre type from which these cells derive. These results support the concept of phenotypic diversity among satellite cells in mature skeletal muscles and suggest that this diversity is generated in vitro irrespectively of serum mitogens.  相似文献   

16.
The rat perineal levator ani (LA) and bulbocavernosus (BC) muscles are homogeneously type 2B fibers as determined by Ca, Mg-ATPase activity. The LA and extensor digitorum longus (EDL) muscles contain similar quantities of creatine kinase and several glycolytic enzymes despite significant differences in fiber composition. The LA muscles synthesizes and accumulates only the fast isoforms of protein C, myosin heavy chain and myosin light chains.  相似文献   

17.
Plasticity of mature muscles exposed to different activation patterns is limited, probably due to restricted adaptive range of their muscle fibres. In this study, we tested whether satellite cells derived from slow muscles can give rise to a normal fast muscle, if transplanted to the fast muscle bed. Marcaine-treated rat soleus and extensor digitorum longus (EDL) muscles were transplanted to the EDL muscle bed and innervated by the EDL nerve. Six months later expression of myosin heavy chain isoforms was analysed by areal densities of fibres, binding specific monoclonal antibodies, and by SDS gel electrophoresis. Both regenerated muscles closely resembled each other. Their myosin heavy chain profiles were similar to those in fast muscles although they were not identical to that in the control EDL muscle. Since not even regenerated EDL was able to reach the myosin heavy chain isoform profile of mature EDL muscle, our experimental model did not permit studying the adaptive capacity of satellite cells in different muscles in its whole extent. However, the results favour the multipotential myoblast stem cell population in rat muscles and underline the importance of the extrinsic regulation of muscle phenotype.  相似文献   

18.
J F Hoh 《Biochemistry》1975,14(4):742-747
Mammalian nerves to fast and slow muscles have the remarkable property of changing the speed of contraction of muscles following cross-reinnervation. The biochemical basis of speed transformation is the change in myosin in ATPase activity. This paper provides electrophoretic evidence for structural changes in myosin from cross-reinnervated muscles. A method is described for the separation of intact fast and slow muscle myosins by polyacrylamide gel electrophoresis. This method utilizes the fact that ATP and its analogs prevent the formation of myosin polymers in low ionic strength buffers. In this system, normal fast muscle myosin has a higher electrophoretic mobility than slow muscle myosin. Normal rat soleus myosin has a major slow and a minor fast component due to two populations of muscle fibers. The same muscle cross-reinnervated by a fast muscle nerve shows only the fast component, The normal, homogeneous fast extensor digitorum longus muscle has only the electrophoretically fast myosin, but following cross-reinnervation it shows both fast and slow components. These results suggest that mammalian motor nerves can induce or suppress the expression of genes that code for fast and slow skeletal muscle myosins.  相似文献   

19.
Loss of fast-twitch isomyosins in skeletal muscles of the diabetic rat.   总被引:1,自引:1,他引:0  
By means of pyrophosphate electrophoresis the myosin isoenzyme pattern of two fast-twitch skeletal muscles (extensor digitorum longus, gastrocnemius) and one slow-twitch muscle (soleus) was investigated in control rats and was compared with that of rats 4 weeks after induction of diabetes mellitus by streptozotocin injection. In the fast-twitch muscles the isomyosin pattern consisting of FM1 (fast isomyosin 1), FM2 and FM3 was strongly affected by diabetes, resulting in an extensive loss of FM1 and a substantial decrease of FM2. These changes were also apparent when the light chains of the fast isomyosins were analysed by two-dimensional electrophoresis: LC3f (myosin light chain 3f) largely disappeared and LC2f was significantly diminished. In contrast, the isomyosin pattern in soleus muscle, consisting of SM1 (slow isomyosin 1) and SM2, was not affected by the diabetic state, and two-dimensional electrophoresis revealed a normal light-chain pattern of LC1sa, LC1sb and LC2s. These results indicate that the isomyosins of slow-twitch oxidative myofibres are more resistant to the hormonal and metabolic disorders during diabetes mellitus than are the isomyosins of fast-twitch fibres.  相似文献   

20.
Immunocytochemical characteristics of myosin have been demonstrated directly in normal and cross-reinnervated skeletal muscle fibers whose physiological properties have been defined. Fibers belonging to individual motor units were identified by the glycogen-depletion method, which permits correlation of cytochemical and physiological data on the same fibers. The normal flexor digitorum longus (FDL) of the cat is composed primarily of fast-twitch motor units having muscle fibers with high myosin ATPase activity. These fibers reacted with antibodies specific for the two light chains characteristic of fast myosin, but not with antibodies against slow myosin. Two categories of fast fibers, corresponding to two physiological motor unit types (FF and FR), differed in their immunochemical response, from which it can be concluded that their myosins are distinctive. The soleus (SOL) consists almost entirely of slow-twitch motor units having muscle fibers with low myosin ATPase activity. These fibers reacted with antibodies against slow myosin, but not with antibodies specific for fast myosin. When the FDL muscle was cross-reinnervated by the SOL nerve, twitch contraction times were slowed about twofold, and motor units resembled SOL units in a number of physiological properties. The corresponding muscle fibers had low ATPase activity, and they reacted with antibodies against slow myosin only. The myosin of individual cross-reinnervated FDL muscle units was therefore transformed, apparently completely, to a slow type. In contrast, cross-reinnervation of the SOL muscle by FDL motoneurons did not effect a complete converse transformation. Although cross-reinnervated SOL motor units had faster than normal twitch contraction times (about twofold), other physiological properties characteristic of type S motor units were unchanged. Despite the change in contraction times, cross-reinnervated SOL muscle fibers exhibited no change in ATPase activity. They also continued to react with antibodies against slow myosin, but in contrast to the normal SOL, they now showed a positive response to an antibody specific for one of the light chains of fast myosin. The myosins of both fast and slow muscles were thus converted by cross-reinnervation, but in the SOL, the newly synthesized myosin was not equivalent to that normally present in either the FDL or SOL. This suggests that, in the SOL, alteration of the nerve supply and the associated dynamic activity pattern are not sufficient to completely respecify the type of myosin expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号