首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In cyanobacteria and chloroplasts, exposure to HL damages the photosynthetic apparatus, especially the D1 subunit of Photosystem II. To avoid chronic photoinhibition, a PSII repair cycle operates to replace damaged PSII subunits with newly synthesised versions. To determine the sub‐cellular location of this process, we examined the localisation of FtsH metalloproteases, some of which are directly involved in degrading damaged D1. We generated transformants of the cyanobacterium Synechocystis sp. PCC6803 expressing GFP‐tagged versions of its four FtsH proteases. The ftsH2–gfp strain was functional for PSII repair under our conditions. Confocal microscopy shows that FtsH1 is mainly in the cytoplasmic membrane, while the remaining FtsH proteins are in patches either in the thylakoid or at the interface between the thylakoid and cytoplasmic membranes. HL exposure which increases the activity of the Photosystem II repair cycle led to no detectable changes in FtsH distribution, with the FtsH2 protease involved in D1 degradation retaining its patchy distribution in the thylakoid membrane. We discuss the possibility that the FtsH2–GFP patches represent Photosystem II ‘repair zones’ within the thylakoid membranes, and the possible advantages of such functionally specialised membrane zones. Anti‐GFP affinity pull‐downs provide the first indication of the composition of the putative repair zones.  相似文献   

2.
Efficient degradation of damaged D1 during the repair of PSII is carried out by a set of dedicated FtsH proteases in the thylakoid membrane. Here we investigated whether the evolution of FtsH could hold clues to the origin of oxygenic photosynthesis. A phylogenetic analysis of over 6000 FtsH protease sequences revealed that there are three major groups of FtsH proteases originating from gene duplication events in the last common ancestor of bacteria, and that the FtsH proteases involved in PSII repair form a distinct clade branching out before the divergence of FtsH proteases found in all groups of anoxygenic phototrophic bacteria. Furthermore, we showed that the phylogenetic tree of FtsH proteases in phototrophic bacteria is similar to that for Type I and Type II reaction centre proteins. We conclude that the phylogeny of FtsH proteases is consistent with an early origin of photosynthetic water oxidation chemistry.  相似文献   

3.

Background

Photosystem II (PSII) is the light-driven water:plastoquinone oxidoreductase of oxygenic photosynthesis and is found in the thylakoid membrane of chloroplasts and cyanobacteria. Considerable attention is focused on how PSII is assembled in vivo and how it is repaired following irreversible damage by visible light (so-called photoinhibition). Understanding these processes might lead to the development of plants with improved growth characteristics especially under conditions of abiotic stress.

Scope

Here we summarize recent results on the assembly and repair of PSII in cyanobacteria, which are excellent model organisms to study higher plant photosynthesis.

Conclusions

Assembly of PSII is highly co-ordinated and proceeds through a number of distinct assembly intermediates. Associated with these assembly complexes are proteins that are not found in the final functional PSII complex. Structural information and possible functions are beginning to emerge for several of these ‘assembly’ factors, notably Ycf48/Hcf136, Psb27 and Psb28. A number of other auxiliary proteins have been identified that appear to have evolved since the divergence of chloroplasts and cyanobacteria. The repair of PSII involves partial disassembly of the damaged complex, the selective replacement of the damaged sub-unit (predominantly the D1 sub-unit) by a newly synthesized copy, and reassembly. It is likely that chlorophyll released during the repair process is temporarily stored by small CAB-like proteins (SCPs). A model is proposed in which damaged D1 is removed in Synechocystis sp. PCC 6803 by a hetero-oligomeric complex composed of two different types of FtsH sub-unit (FtsH2 and FtsH3), with degradation proceeding from the N-terminus of D1 in a highly processive reaction. It is postulated that a similar mechanism of D1 degradation also operates in chloroplasts. Deg proteases are not required for D1 degradation in Synechocystis 6803 but members of this protease family might play a supplementary role in D1 degradation in chloroplasts under extreme conditions.  相似文献   

4.
When plants, algae, and cyanobacteria are exposed to excessive light, especially in combination with other environmental stress conditions such as extreme temperatures, their photosynthetic performance declines. A major cause of this photoinhibition is the light-induced irreversible photodamage to the photosystem II (PSII) complex responsible for photosynthetic oxygen evolution. A repair cycle operates to selectively replace a damaged D1 subunit within PSII with a newly synthesized copy followed by the light-driven reactivation of the complex. Net loss of PSII activity occurs (photoinhibition) when the rate of damage exceeds the rate of repair. The identities of the chaperones and proteases involved in the replacement of D1 in vivo remain uncertain. Here, we show that one of the four members of the FtsH family of proteases (cyanobase designation slr0228) found in the cyanobacterium Synechocystis sp PCC 6803 is important for the repair of PSII and is vital for preventing chronic photoinhibition. Therefore, the ftsH gene family is not functionally redundant with respect to the repair of PSII in this organism. Our data also indicate that FtsH binds directly to PSII, is involved in the early steps of D1 degradation, and is not restricted to the removal of D1 fragments. These results, together with the recent analysis of ftsH mutants of Arabidopsis, highlight the critical role played by FtsH proteases in the removal of damaged D1 from the membrane and the maintenance of PSII activity in vivo.  相似文献   

5.
The reaction center protein D1 of photosystem II (PSII), known as a primary target of photodamage, is repaired efficiently by the PSII repair cycle, to cope with constant photooxidative damage. Recent studies of Arabidopsis show that the endo-type Deg protease and the exo-type FtsH proteases cooperatively degrade D1 in the PSII repair in vivo. It is particularly interesting that we observed upregulation of Clp and SppA proteases when FtsH was limited in the mutant lacking FtsH2. To examine how the complementary functions of chloroplastic proteases are commonly regulated, we undertook a high-light stress on wild-type Arabidopsis leaves. The result that wild type leaves also showed increased levels of these proteases upon exposure to excessively strong illumination not only revealed the importance of FtsH and Deg in the PSII repair, but also implied cooperation among chloroplastic proteases under chronic stress conditions.  相似文献   

6.
The photosystem two (PSII) complex found in oxygenic photosynthetic organisms is susceptible to damage by UV-B irradiation and undergoes repair in vivo to maintain activity. Until now there has been little information on the identity of the enzymes involved in repair. In the present study we have investigated the involvement of the FtsH and Deg protease families in the degradation of UV-B-damaged PSII reaction center subunits, D1 and D2, in the cyanobacterium Synechocystis 6803. PSII activity in a ΔFtsH (slr0228) strain, with an inactivated slr0228 gene, showed increased sensitivity to UV-B radiation and impaired recovery of activity in visible light after UV-B exposure. In contrast, in ΔDeg-G cells, in which all the three deg genes were inactivated, the damage and recovery kinetics were the same as in the WT. Immunoblotting showed that the loss of both the D1 and D2 proteins was retarded in ΔFtsH (slr0228) during UV-B exposure, and the extent of their restoration during the recovery period was decreased relative to the WT. However, in the ΔDeg-G cells the damage and recovery kinetics of D1 and D2 were the same as in the WT. These data demonstrate a key role of FtsH (slr0228), but not the Deg proteases, for the repair of PS II during and following UV-B radiation at the step of degrading both of the UV-B damaged D1 and D2 reaction center subunits.  相似文献   

7.
The FtsH2 protease, encoded by the slr0228 gene, plays a key role in the selective degradation of photodamaged D1 protein during the repair of Photosystem II (PSII) in the cyanobacterium Synechocystis sp. PCC 6803. To test whether additional proteases might be involved in D1 degradation during high rates of photodamage, we have studied the synthesis and degradation of the D1 protein in ΔPsbO and ΔPsbV mutants, in which the CaMn4 cluster catalyzing oxygen evolution is less stable, and in the D1 processing mutants, D1-S345P and ΔCtpA, which are unable to assemble a functional cluster. All four mutants exhibited a dramatically increased rate of D1 degradation in high light compared to the wild-type. Additional inactivation of the ftsH2 gene slowed the rate of D1 degradation dramatically and increased the level of PSII complexes. We conclude that FtsH2 plays a major role in the degradation of both precursor and mature forms of D1 following donor-side photoinhibition. However, this conclusion concerned only D1 assembled into larger complexes containing at least D2 and CP47. In the ΔpsbEFLJ deletion mutant blocked at an early stage in PSII assembly, unassembled D1 protein was efficiently degraded in the absence of FtsH2 pointing to the involvement of other protease(s). Significantly, the ΔPsbO mutant displayed unusually low levels of cellular chlorophyll at extremely low-light intensities. The possibilities that PSII repair may limit the availability of chlorophyll for the biogenesis of other chlorophyll-binding proteins and that PsbO might have a regulatory role in PSII repair are discussed.  相似文献   

8.
The photosystem two (PSII) complex found in oxygenic photosynthetic organisms is susceptible to damage by UV-B irradiation and undergoes repair in vivo to maintain activity. Until now there has been little information on the identity of the enzymes involved in repair. In the present study we have investigated the involvement of the FtsH and Deg protease families in the degradation of UV-B-damaged PSII reaction center subunits, D1 and D2, in the cyanobacterium Synechocystis 6803. PSII activity in a DeltaFtsH (slr0228) strain, with an inactivated slr0228 gene, showed increased sensitivity to UV-B radiation and impaired recovery of activity in visible light after UV-B exposure. In contrast, in DeltaDeg-G cells, in which all the three deg genes were inactivated, the damage and recovery kinetics were the same as in the WT. Immunoblotting showed that the loss of both the D1 and D2 proteins was retarded in DeltaFtsH (slr0228) during UV-B exposure, and the extent of their restoration during the recovery period was decreased relative to the WT. However, in the DeltaDeg-G cells the damage and recovery kinetics of D1 and D2 were the same as in the WT. These data demonstrate a key role of FtsH (slr0228), but not the Deg proteases, for the repair of PS II during and following UV-B radiation at the step of degrading both of the UV-B damaged D1 and D2 reaction center subunits.  相似文献   

9.
The selective replacement of photodamaged D1 protein within the multisubunit photosystem II (PSII) complex is an important photoprotective mechanism in chloroplasts and cyanobacteria. FtsH proteases are involved at an early stage of D1 degradation, but it remains unclear how the damaged D1 subunit is recognized, degraded, and replaced. To test the role of the N-terminal region of D1 in PSII biogenesis and repair, we have constructed mutants of the cyanobacterium Synechocystis sp PCC 6803 that are truncated at the exposed N terminus. Removal of 5 or 10 residues blocked D1 synthesis, as assessed in radiolabeling experiments, whereas removal of 20 residues restored the ability to assemble oxygen-evolving dimeric PSII complexes but inhibited PSII repair at the level of D1 degradation. Overall, our results identify an important physiological role for the exposed N-terminal tail of D1 at an early step in selective D1 degradation. This finding has important implications for the recognition of damaged D1 and its synchronized replacement by a newly synthesized subunit.  相似文献   

10.
The cyanobacterium Synechocystis sp. PCC 6803 contains four members of the FtsH protease family. One of these, FtsH (slr0228), has been implicated recently in the repair of photodamaged photosystem II (PSII) complexes. We have demonstrated here, using a combination of blue native PAGE, radiolabeling, and immunoblotting, that FtsH (slr0228) is required for selective replacement of the D1 reaction center subunit in both wild type PSII complexes and in PSII subcomplexes lacking the PSII chlorophyll a-binding subunit CP43. To test whether FtsH (slr0228) has a more general role in protein quality control in vivo, we have studied the synthesis and degradation of PSII subunits in wild type and in defined insertion and missense mutants incapable of proper assembly of the PSII holoenzyme. We discovered that, when the gene encoding FtsH (slr0228) was disrupted in these strains, the overall level of assembly intermediates and unassembled PSII proteins markedly increased. Pulse-chase experiments showed that this was due to reduced rates of degradation in vivo. Importantly, analysis of epitope-tagged and green fluorescent protein-tagged strains revealed that slr0228 was present in the thylakoid and not the cytoplasmic membrane. Overall, our results show that FtsH (slr0228) plays an important role in controlling the removal of PSII subunits from the thylakoid membrane and is not restricted to selective D1 turnover.  相似文献   

11.
Photosystem II (PSII) is prone to irreversible light-induced damage, with the D1 polypeptide a major target. Repair processes operate in the cell to replace a damaged D1 subunit within the complex with a newly synthesized copy. As yet, the molecular details of PSII repair are relatively obscure despite the critical importance of this process for maintaining PSII activity and cell viability. We are using the cyanobacterium Synechocystis sp. PCC 6803 to identify the various proteases and chaperones involved in D1 turnover in vivo. Two families of proteases are being studied: the FtsH family (four members) of Zn(2+)-activated nucleotide-dependent proteases; and the HtrA (or DegP) family (three members) of serine-type proteases. In this paper, we report the results of our studies on a triple mutant in which all three copies of the htrA gene family have been inactivated. Growth of the mutant on agar plates was inhibited at high light intensities, especially in the presence of glucose. Oxygen evolution measurements indicated that, under conditions of high light, the rate of synthesis of functional PSII was less in the mutant than in the wild-type. Immunoblotting experiments conducted on cells blocked in protein synthesis further indicated that degradation of D1 was slowed in the mutant. Overall, our observations indicate that the HtrA family of proteases are involved in the resistance of Synechocystis 6803 to light stress and play a part, either directly or indirectly, in the repair of PSII in vivo.  相似文献   

12.
The D1 protein of Photosystem II (PSII) is recognized as the main target of photoinhibitory damage and exhibits a high turnover rate due to its degradation and replacement during the PSII repair cycle. Damaged D1 is replaced by newly synthesized D1 and, although reasonable, there is no direct evidence for selective replacement of damaged D1. Instead, it remains possible that increased turnover of D1 subunits occurs in a non-selective manner due for example, to a general up-regulation of proteolytic activity triggered during damaging environmental conditions, such as high light. To determine if D1 degradation is targeted to damaged D1 or generalized to all D1, we developed a genetic system involving simultaneous dual expression of wild type and mutant versions of D1 protein. Dual D1 strains (nS345P:eWT and nD170A:eWT) expressed a wild type (WT) D1 from ectopic and a damage prone mutant (D1-S345P, D1-D170A) from native locus on the chromosome. Characterization of strains showed that all dual D1 strains restore WT like phenotype with high PSII activity. Higher PSII activity indicates increased population of PSII reaction centers with WT D1. Analysis of steady state levels of D1 in nS345P:eWT by immunoblot showed an accumulation of WT D1 only. But, in vivo pulse labeling confirmed the synthesis of both S345P (exists as iD1) and WT D1 in the dual strain. Expression of nS345P:eWT in FtsH2 knockout background showed accumulation of both iD1 and D1 proteins. This demonstrates that dual D1 strains express both forms of D1, yet only damage prone PSII complexes are selected for repair providing evidence that the D1 degradation process is targeted towards damaged PSII complexes. Since the N-terminus has been previously shown to be important for the degradation of damaged D1, the possibility that the highly conserved cysteine 18 residue situated in the N-terminal domain of D1 is involved in the targeted repair process was tested by examining site directed mutants of this and the other cysteines of the D1 protein. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

13.
Kato Y  Sun X  Zhang L  Sakamoto W 《Plant physiology》2012,159(4):1428-1439
Light energy constantly damages photosynthetic apparatuses, ultimately causing impaired growth. Particularly, the sessile nature of higher plants has allowed chloroplasts to develop unique mechanisms to alleviate the irreversible inactivation of photosynthesis. Photosystem II (PSII) is known as a primary target of photodamage. Photosynthetic organisms have evolved the so-called PSII repair cycle, in which a reaction center protein, D1, is degraded rapidly in a specific manner. Two proteases that perform processive or endopeptidic degradation, FtsH and Deg, respectively, participate in this cycle. To examine the cooperative D1 degradation by these proteases, we engaged Arabidopsis (Arabidopsis thaliana) mutants lacking FtsH2 (yellow variegated2 [var2]) and Deg5/Deg8 (deg5 deg8) in detecting D1 cleaved fragments. We detected several D1 fragments only under the var2 background, using amino-terminal or carboxyl-terminal specific antibodies of D1. The appearance of these D1 fragments was inhibited by a serine protease inhibitor and by deg5 deg8 mutations. Given the localization of Deg5/Deg8 on the luminal side of thylakoid membranes, we inferred that Deg5/Deg8 cleaves D1 at its luminal loop connecting the transmembrane helices C and D and that the cleaved products of D1 are the substrate for FtsH. These D1 fragments detected in var2 were associated with the PSII monomer, dimer, and partial disassembly complex but not with PSII supercomplexes. It is particularly interesting that another processive protease, Clp, was up-regulated and appeared to be recruited from stroma to the thylakoid membrane in var2, suggesting compensation for FtsH deficiency. Together, our data demonstrate in vivo cooperative degradation of D1, in which Deg cleavage assists FtsH processive degradation under photoinhibitory conditions.  相似文献   

14.
15.
Photosystem II (PSII) photochemical efficiency (chlorophyll fluorescence ratio Fv/Fm) was recorded in vivo in Synechocystis 6803 during high light illumination and during a subsequent shift of the cells to darkness. A continuing decrease in the Fv/Fm ratio was observed even after the cells were transferred to darkness, provided the temperature was high enough. The decrease in the PSII efficiency after the shifting of the cells to darkness correlated directly with the loss of the D1 protein under different temperatures, suggesting that temperature-dependent proteolysis of the D1 protein in darkness induces the loss of PSII photochemical efficiency under these conditions. Furthermore, the amount of FtsH protease was found to increase during the high light treatment. This observation suggests that the synthesis of the FtsH protein is a light-regulated process and that this protease most probably has a key role in an efficient degradation of the D1 protein even under post-illuminative conditions, provided the temperature is high enough to prevent the initial reversible steps of photoinhibition.  相似文献   

16.
The cells of Synechocystis sp. PCC 6803 were subjected under photoinhibitory irradiation (600 micromolm(-2)s(-1)) at various temperatures (20-40 degrees C) to study in vivo quality control of photosystem II (PSII). The protease biogenesis and its consequences on photosynthetic efficiency (chlorophyll fluorescence ratio Fv/Fm) of the PSII, D1 degradation and repair were monitored during illumination and darkness. The loss in Fv/Fm value and degradation of D1 protein occurred not only under high light exposure, but also continued when the cells were subjected under dark restoration process after high light exposure. No loss in Fv/Fm value or D1 degradation occurred during recovery under growth/low light (30 micromol m(-2) s(-1)). Further, it helped the resynthesis of new D1 protein, essential to sustain quality control of PSII. In vivo triggering of D1 protein required high light exposure to switch-on the protease biosynthesis to maintain protease pool which induced temperature-dependent enzymatic proteolysis of photodamaged D1 protein during photoinhition and dark incubation. Our findings suggested the involvement and overexpression of a membrane-bound FtsH protease during high light exposure which caused degradation of D1 protein, strictly regulated by high temperature (30-40 degrees C). However, lower temperature (20 degrees C) prevented further loss of photoinhibited PSII efficiency in vivo and also retarded temperature-dependent proteolytic process of D1 degradation.  相似文献   

17.
Photosystem II (PSII) is a primary target for light‐induced damage in photosynthetic protein complexes. To avoid photoinhibition, chloroplasts have evolved a repair cycle with efficient degradation of the PSII reaction center protein, D1, by the proteases FtsH and Deg. Earlier reports have described that phosphorylated D1 is a poor substrate for proteolysis, suggesting a mechanistic role for protein phosphorylation in PSII quality control, but its precise role remains elusive. STN8, a protein kinase, plays a central role in this phosphorylation process. To elucidate the relationship between phosphorylation of D1 and the protease function we assessed in this study the involvement of STN8, using Arabidopsis thaliana mutants lacking FtsH2 [yellow variegated2 (var2)] and Deg5/Deg8 (deg5 deg8). In support of our presumption we found that phosphorylation of D1 increased more in var2. Furthermore, the coexistence of var2 and stn8 was shown to recover the delay in degradation of D1, resulting in mitigation of the high vulnerability to photoinhibition of var2. Partial D1 cleavage fragments that depended on Deg proteases tended to increase, with concomitant accumulation of reactive oxygen species in the mutants lacking STN8. We inferred that the accelerated degradation of D1 in var2 stn8 presents a tradeoff in that it improved the repair of PSII but simultaneously enhanced oxidative stress. Together, these results suggest that PSII core phosphorylation prevents undesirable cleavage of D1 by Deg proteases, which causes cytotoxicity, thereby balancing efficient linear electron flow and photo‐oxidative damage. We propose that PSII core phosphorylation contributes to fine‐tuned degradation of D1.  相似文献   

18.
The photosystem II reaction center D1 protein is known to turn over frequently. This protein is prone to irreversible damage caused by reactive oxygen species that are formed in the light; the damaged, nonfunctional D1 protein is degraded and replaced by a new copy. However, the proteases responsible for D1 protein degradation remain unknown. In this study, we investigate the possible role of the FtsH protease, an ATP-dependent zinc metalloprotease, during this process. The primary light-induced cleavage product of the D1 protein, a 23-kD fragment, was found to be degraded in isolated thylakoids in the dark during a process dependent on ATP hydrolysis and divalent metal ions, suggesting the involvement of FtsH. Purified FtsH degraded the 23-kD D1 fragment present in isolated photosystem II core complexes, as well as that in thylakoid membranes depleted of endogenous FtsH. In this study, we definitively identify the chloroplast protease acting on the D1 protein during its light-induced turnover. Unlike previously identified membrane-bound substrates for FtsH in bacteria and mitochondria, the 23-kD D1 fragment represents a novel class of FtsH substrate-functionally assembled proteins that have undergone irreversible photooxidative damage and cleavage.  相似文献   

19.
Plants, as sessile organisms, employ multiple mechanisms to adapt to the seasonal and daily temperature fluctuations associated with their habitats. Here, we provide genetic and physiological evidence that the FtsH11 protease of Arabidopsis contributes to the overall tolerance of the plant to elevated temperatures. To identify the various mechanisms of thermotolerance in plants, we isolated a series of Arabidopsis thaliana thermo-sensitive mutants (atts) that fail to acquire thermotolerance after pre-conditioning at 38 degrees C. Two allelic mutants, atts244 and atts405, were found to be both highly susceptible to moderately elevated temperatures and defective in acquired thermotolerance. The growth and development of the mutant plants at all stages examined were arrested after exposure to temperatures above 30 degrees C, which are permissive conditions for wild-type plants. The affected gene in atts244 was identified through map-based cloning and encodes a chloroplast targeted FtsH protease, FtsH11. The Arabidopsis genome contains 12 predicted FtsH protease genes, with all previously characterized FtsH genes playing roles in the alleviation of light stress through the degradation of unassembled thylakoid membrane proteins and photodamaged photosystem II D1 protein. Photosynthetic capability, as measured by chlorophyll content (chl a/b ratios) and PSII quantum yield, is greatly reduced in the leaves of FtsH11 mutants when exposed to the moderately high temperature of 30 degrees C. Under high light conditions, however, FtsH11 mutants and wild-type plants showed no significant difference in photosynthesis capacity. Our results support a direct role for the A. thaliana FtsH11-encoded protease in thermotolerance, a function previously reported for bacterial and yeast FtsH proteases but not for those from plants.  相似文献   

20.
In the photosynthetic apparatus, a major target of photodamage is the D1 reaction center protein of photosystem II (PSII). Photosynthetic organisms have developed a PSII repair cycle in which photodamaged D1 is selectively degraded. A thylakoid membrane-bound metalloprotease, FtsH, was shown to play a critical role in this process. Here, the effect of FtsHs in D1 degradation was investigated in Arabidopsis (Arabidopsis thaliana) mutants lacking FtsH2 (yellow variegated2 [var2]) or FtsH5 (var1). Because these mutants are characterized by variegated leaves that sometimes complicate biochemical studies, we employed another mutation, fu-gaeri1 (fug1), that suppresses leaf variegation in var1 and var2 to examine D1 degradation. Two-dimensional blue native PAGE showed that var2 has less PSII supercomplex and more PSII intermediate lacking CP43, termed RC47, than the wild type under normal growth light. Moreover, our histochemical and quantitative analyses revealed that chloroplasts in var2 accumulate significant levels of reactive oxygen species, such as superoxide radical and hydrogen peroxide. These results indicate that the lack of FtsH2 leads to impaired D1 degradation at the step of RC47 formation in PSII repair and to photooxidative stress even under nonphotoinhibitory conditions. Our in vivo D1 degradation assays, carried out by nonvariegated var2 fug1 and var1 fug1 leaves, demonstrated that D1 degradation was impaired in different light conditions. Taken together, our results suggest the important role of chloroplastic FtsHs, which was not precisely examined in vivo. Attenuated D1 degradation in the nonvariegated mutants also suggests that leaf variegation seems to be independent of the PSII repair.Excessive light often limits the growth of photosynthetic organisms by irreversibly inactivating the photosynthetic apparatus, a process called photoinhibition (for review, see Barber and Andersson, 1992; Aro et al., 1993). A major target of photodamage is PSII (for review, see Barber and Andersson, 1992; Aro et al., 1993; Murata et al., 2007), a large pigment-protein complex in the thylakoid membrane. In particular, the reaction center D1 protein, which binds cooperatively to D2 and carries cofactors required for electron flow from the manganese cluster of the water-oxidizing complex to the plastoquinone pool (Zouni et al., 2001; Loll et al., 2005), is the primary target of light-induced irreversible oxidative damage (Mattoo et al., 1981; Ohad et al., 1990). Because D1 can be damaged by even low light intensities, photosynthetic organisms cannot avoid photodamage (Tyystjärvi and Aro, 1996; for review, see Barber and Andersson, 1992). To overcome this, photosynthetic organisms have evolved an efficient PSII repair cycle, which involves disassembling PSII, degrading photodamaged D1, and replacing newly synthesized D1 (for review, see Baena-Gonzalez and Aro, 2002). The rate of photodamage is proportional to light energy. When the light intensity exceeds the repair capacity, damaged D1 accumulates, resulting in photoinhibition.In the PSII repair, recent studies in Synechocystis species PCC 6803 and Arabidopsis (Arabidopsis thaliana) suggest important roles of prokaryotic proteases (Lindahl et al., 1996, 2000; Bailey et al., 2002; Sakamoto et al., 2003; Silva et al., 2003; Komenda et al., 2006; Sun et al., 2007; Kapri-Pardes et al., 2007). Among them, FtsH appears to be a major protease. It is a membrane-anchored ATP-dependent zinc metalloprotease that belongs to the ATPases associated with a variety of cellular activities (AAA)+ protein family (for review, see Patel and Latterich, 1998; Ogura and Wilkinson, 2001). The ATPase and protease domain of FtsH was shown to form a hexameric-ring structure (Suno et al., 2006). In Synechocystis species PCC 6803, deletion of one of the thylakoidal FtsHs, slr0228, results in light-sensitive growth, impairment of the PSII repair cycle, and slower D1 degradation under high-light conditions (Silva et al., 2003). In Arabidopsis, 12 FtsH homologues were identified, nine of which are targeted to chloroplasts (Sakamoto et al., 2003). FtsH2 and FtsH5 are the most abundant among all chloroplastic FtsHs and are located in thylakoid membranes (Sakamoto et al., 2003; Yu et al., 2004, 2005). Chloroplastic FtsHs predominantly exist as a heterocomplex consisting of at least two types of isomers, A and B, represented by FtsH1/5 and FtsH2/8, respectively. These two types are functionally distinguishable from each other (Sakamoto et al., 2003; Yu et al., 2004, 2005; Zaltsman et al., 2005b).We have extensively studied Arabidopsis mutants lacking chloroplast FtsHs. A mutant lacking FtsH5 (called yellow variegated1 [var1]) or lacking FtsH2 (var2) is highly vulnerable to PSII photodamage under high light (Chen et al., 2000; Lindahl et al., 2000; Takechi et al., 2000; Sakamoto et al., 2002, 2004). One notable feature in these mutants, in addition to the defective PSII repair, is the leaf-variegated phenotype that displays two sectors in the same leaf (green sectors containing normal chloroplasts and white sectors containing abnormal plastids lacking thylakoid membranes; Supplemental Fig. S1). White sectors are made by living cells and appear to be comparable with green sectors, except for lacking photosynthetic proteins (Kato et al., 2007). These results demonstrated that white sectors in var2 are arrested in chloroplast development. It is thus proposed that FtsH is not only involved in PSII repair but also in the formation of thylakoid membranes. Moreover, a series of genetic studies enabled us to identify trans-acting mutations that suppressed leaf variegation in var2 (Park and Rodermel, 2004; Miura et al., 2007; Yu et al., 2008). Many suppressors appeared to be associated with chloroplast translation, suggesting that the formation of variegated sectors is not simply governed by a specific factor but rather by factors related to chloroplast development (Miura et al., 2007; Yu et al., 2008). Since the variegated phenotype complicates our biochemical study in Arabidopsis, unlike cyanobacteria, a combined usage of var and its suppressors is necessary to further investigate the role of FtsH in the PSII repair cycle.In this study, we show that chloroplasts in green sectors accumulate less PSII supercomplex and more PSII partial complexes than wild-type chloroplasts, likely due to the compromised PSII repair. Interestingly, we found that chloroplasts in green sectors accumulated significantly high levels of reactive oxygen species (ROS), suggesting that var2 indeed suffers from photooxidative stress. Given the essential role of FtsH, we evaluated impaired D1 degradation by the lack of FtsH2 and FtsH5 under different light conditions. Although a defect in degrading PSII reaction center proteins in var2 has been reported to occur under a photoinhibitory light condition (Bailey et al., 2002), D1 degradation examined in this study was very limited. This is because in vivo degradation of D1 is very difficult to measure in variegated leaf tissues (e.g. the presence of green and white leaf sectors interferes with protein normalization). To overcome the difficulty of handling variegated sectors, nonvariegated suppressor lines were subjected to these experiments. Our D1 degradation assays demonstrated that the lack of FtsH2 or FtsH5 significantly impairs D1 degradation. Collectively, our data corroborate important roles of FtsH2 and FtsH5 in avoiding photooxidative stress in chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号