首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present evidence for a two-step model for expression of the recessive phenotype at the diploid adenine phosphoribosyl transferase (aprt) locus in Chinese hamster ovary cells. This model proposes a high-frequency event leading to allelic inactivation and a low-frequency event leading to a structural alteration of the APRT protein. Either event can occur first, resulting in two types of heterozygous cells. The proposed model is based on analysis of Chinese hamster ovary presumptive aprt heterozygotes and APRT- mutants, derived by two different laboratories. The major class of heterozygotes (class 1) had approximately 50% parental APRT activity, 50% immunologically precipitable APRT protein, and only wild-type enzyme as based on two-dimensional gel electrophoresis and thermal inactivation studies. We propose that one allele at the aprt locus has been inactivated in these heterozygotes. APRT- mutants derived from any single class 1 heterozygote arose at a low frequency and contained either no immunologically detectable APRT protein or an APRT enzyme which was, in most cases, demonstrably altered. The second class of heterozygotes, consisting of two independent isolates, gave rise to APRT- cells at a high frequency (10(-3) to 10(-5). These heterozygous cell lines had 50% of parental APRT activity and only wild-type spot, or wild-type and an electrophoretic variant spot, on two-dimensional gels. These aprt heterozygotes appear to have arisen by mutation at one allele. APRT- mutants derived from either heterozygote of this class had all lost the wild-type activity, consistent with the proposed model.  相似文献   

2.
Autosomal dominant myotonia congenita and autosomal recessive generalized myotonia (GM) are genetic disorders characterized by the symptom of myotonia, which is based on an electrical instability of the muscle fiber membrane. Recently, these two phenotypes have been associated with mutations in the major muscle chloride channel gene CLCN1 on human chromosome 7q35. We have systematically screened the open reading frame of the CLCN1 gene for mutations by SSC analysis (SSCA) in a panel of 24 families and 17 single unrelated patients with human myotonia. By direct sequencing of aberrant SSCA conformers were revealed 15 different mutations in a total of 18 unrelated families and 13 single patients. Of these, 10 were novel (7 missense mutations, 2 mutations leading to frameshift, and 1 mutation predicted to affect normal splicing). In our overall sample of 94 GM chromosomes we were able to detect 48 (51%) mutant GM alleles. Three mutations (F413C), R894X, and a 14-bp deletion in exon 13) account for 32% of the GM chromosomes in the German population. Our finding that A437T is probably a polymorphism is in contrast to a recent report that the recessive phenotype GM is associated with this amino acid change. We also demonstrate that the R894X mutation may act as a recessive or a dominant mutation in the CLCN1 gene, probably depending on the genetic background. Functional expression of the R894X mutant in Xenopus oocytes revealed a large reduction, but not complete abolition, of chloride currents. Further, it had a weak dominant negative effect on wild-type currents in coexpression studies. Reduction of currents predicted for heterozygous carriers are close to the borderline value, which is sufficient to elicit myotonia.  相似文献   

3.
An alternative pseudolinkage procedure for isolating homozygotes of autosomal translocations has been developed with the mosquito Culex tarsalis (Coquillet). The first step was to induce a translocation heterozygote in a population that was marked with recessive mutants. Interbred translocation heterozygotes produced translocation homozygotes that were phenotypically different from their translocation heterozygote and normal siblings. Thus, a translocation homozygote line of this species was selected and established in shorter time and with less effort than by prior pseudolinkage procedure.  相似文献   

4.
Holstein-Friesian cattle heterozygous for the deficiency of uridine monophosphate (UMP) synthase have half-normal activity of UMP synthase. The homozygous recessive genotype would result in little or no activity, has not been observed among live animals and apparently leads to embryonic mortality at approximately Day 40 of gestation. Activity of UMP synthase averaged 2.74 +/- 0.61 units/mg protein for 19 obligatory normal embryos (from normal x normal matings). Activity for 18 embryos from heterozygote x heterozygote matings yielded three non-overlapping groups as follows: (i) five presumed normals with greater than two-thirds normal activity, (ii) ten apparent heterozygotes with one-third to two-thirds normal activity and (iii) three putative homozygous recessive embryos with less than one-third normal activity. The distribution among these groups was consistent with the 1:2:1 ratio expected for autosomal inheritance. Conception of embryos homozygous recessive for this disorder was demonstrated.  相似文献   

5.
An accurate diagnosis of heterozygotes for autosomal recessive disorders with unknown mutations can be difficult. Using a unique phenomenon occurring in vivo, we designed a method for the diagnosis of heterozygotes for adenine phosphoribosyltransferase (APRT) deficiency which makes way for a qualitative distinction between normal and heterozygous subjects. We cultured peripheral blood mononuclear cells with 2,6-diaminopurine, an APRT-dependent cytotoxin, to search for in vivo mutational cells. Fifteen putative heterozygotes examined were found to possess such mutant cells at rather high frequencies; thus, a false negative diagnosis is unlikely. The analysis of genomic DNA in 82 resistant clones from two of the heterozygotes clarified that 64 (78%) had lost the germinally intact alleles. Thirteen members of APRT-deficient families were examined; eight proved to be heterozygotes. Among 425 individuals from two separate residential areas of Japan, two heterozygotes were found. The authenticity of the heterozygosity was validated by two separate methods for the two heterozygotes; hence, a false positive diagnosis can be ruled out. Our data showed a calculated heterozygote frequency of 0.47% (95% confidence limits; 0.05%-1.7%), a value compatible with that (1.2%) calculated from data concerning the incidence of 2,8-dihydroxyadenine urolithiasis. This novel genetic approach for identifying heterozygotes is now being tested to search for other enzyme deficiencies in humans.  相似文献   

6.
The genetic variation of human butyrylcholinesterase is associated with the majority of prolonged cases of apnea in patients submitted to the muscle relaxant succinylcholine. The present study reports two new mutations of the BCHE gene in 346 Euro-Brazilians: IVS3-14T>C found in five heterozygotes (allele frequency: 0.72+/-0.32%) and L574fsX576 found in one heterozygote (allele frequency: 0.14+/-0.14%). These two variants were not found in 85 Guarani Amerindians. It is not expected that the IVS3-14T>C mutation may interfere in the splicing process and that the mutation found in exon 4 (L574fsX576) may disturb BChE tetramerization and activity.  相似文献   

7.
Another form of simple inheritance is possible which is neither dominant nor recessive and in which the heterozygote alone is affected. In this system, homozygosity for the normal allele AA, and the mutant allele A'A', give a normal phenotype. Only the heterozygous condition AA' (+ − heterozygote) produces an abnormal phenotype because the two alleles, when present together, interact to produce a harmful effect. This metabolic interference may occur because the two allelic genes code for different subunits of a multisubunit enzyme or structural protein. The two genes may interact in other ways and need not be allelic.

The various matings result in pedigrees, which in some cases resemble those of dominant or recessive inheritance, and in other cases are unique. Certain unusual pedigrees in the literature are compatible with the predictions of metabolic interference and are difficult to explain by other means. Metabolic interference is most likely to be recognized as: (1) a disorder limited to females, apparently dominant or recessive, especially a disorder passed to affected females through unaffected males; (2) a disorder occurring in all members of a large sibship with normal parents; (3) a disorder occurring in all members of a large sibship with one parent similarly affected; (4) an apparently dominant disorder with females more severely affected than males; (5) an apparently X-linked dominant disorder in which males are not more severely affected; or (6) any autosomal dominant disorder.

Examples of possible metabolic interference exist among disorders of animals, and the mechanism could be a factor in speciation. Tissue culture methods could be used to demonstrate metabolic interference.

  相似文献   

8.
Heterozygotes for the autosomal recessive disease cystinosis are currently detected by measuring the cystine content of mixed-leukocyte preparations. The present study was designed to reassess the accuracy of this method and to determine whether measuring the cystine content of purified polymorphonuclear leukocytes would improve heterozygote detection. Blood samples were obtained from 29 obligate heterozygotes for nephropathic cystinosis, one obligate heterozygote for benign cystinosis, and 18 individuals presumed to be normal. When the cystine content of mixed-leukocyte preparations was measured, three heterozygote values overlapped the normal range. When polymorphonuclear-leukocyte cystine content was measured, no heterozygote values were within the normal range. Measurement of the cystine content of purified preparations of polymorphonuclear leukocytes affords a simple method that improves the sensitivity of heterozygote detection for cystinosis.  相似文献   

9.
Hereditary hemochromatosis (HH) is the most common genetic disease among individuals of European descent. Two mutations (845G-->A, C282Y and 187C-->G, H63D) in the hemochromatosis gene (HFE gene) are associated with HH. About 85-90% of patients of northern European descent with HH are C282Y homozygous. The prevalence of HH in the Brazilian population, which has a very high level of racial admixture, is unknown. The aims of the present study were to identify individuals with diagnostic criteria for HH among patients with a body iron overload attended at the university hospital of the Faculty of Medicine of Ribeirao Preto from 1990 to 2000, and to evaluate the prevalence of HFE mutations. We screened first-degree relatives for HFE mutations. Four of 72 patients (three men and one woman, mean age 47 years) fulfilled the criteria for HH. HFE mutations were studied in three patients [two C282Y homozygotes (patients 1 and 2) and one H63D heterozygote]. Patient 1 had four children (all C282Y heterozygotes with no iron overload) and seven brothers and sisters: two sisters (66 and 76 years old) were C282Y homozygotes and both had an iron overload (a liver biopsy in one showed severe iron deposits), one sister (79 years old) was a compound heterozygote with no iron overload, one brother (78 years old) was a C282Y heterozygote with no iron overload, two individuals were H63D heterozygotes (one brother, 49 years old, obese, with a body iron overload and abnormal liver enzymes - a biopsy showed non-alcoholic steatohepatitis, and one 70-year-old sister with no iron overload). Patient 2 had two children (22 and 24 years old who were C282Y heterozygotes with no iron overload) but no brothers or sisters. These results showed that HH was uncommon among individuals attended at our hospital, although HFE mutations were found in all patients. Familial screening is valuable for the early diagnosis of individuals at risk since it allows treatment to be initiated before the onset of the clinical manifestations of organ damage associated with HH.  相似文献   

10.
Myotonia congenita is a muscular disease characterized by myotonia, hypertrophy, and stiffness. It is inherited as either autosomal dominant or recessive known as Thomsen and Becker diseases, respectively. Here we confirm the clinical diagnosis of a family diagnosed with a myotonic condition many years ago and report a new mutation in the CLCN1 gene. The clinical diagnosis was established using ocular, cardiac, neurological and electrophysiological tests and the molecular diagnosis was done by PCR, SSCP and sequencing of the CLCN1 gene. The proband and the other affected individuals exhibited proximal and distal muscle weakness but no hypertrophy or muscular pain was found. The myotatic reflexes were lessened and sensibility was normal. Electrical and clinical myotonia was found only in the sufferers. Slit lamp and electrocardiogram tests were normal. Two affected probands presented diminution of the sensitive conduction velocities and prolonged sensory distal latencies. The clinical spectrum for this family is in agreement with a clinical diagnosis of Becker myotonia. This was confirmed by molecular diagnosis where a new disease-causing mutation (Q412P) was found in the family and absent in 200 unaffected chromosomes. No latent myotonia was found in this family; therefore the ability to cause this subclinical sign might be intrinsic to each mutation. Implications of the structure-function-genotype relationship for this and other mutations are discussed. Adequate clinical diagnosis of a neuromuscular disorder would allow focusing the molecular studies toward the confirmation of the initial diagnosis, leading to a proper clinical management, genetic counseling and improving in the quality of life of the patients and relatives.  相似文献   

11.
The discriminatory power of a quantitative heterozygote test for Maple Syrup Urine Disease (MSUD) which we have been using is analyzed on the presumption that a single rare mutant allele is involved in MSUD. Bayes theorem then predicts that only a small portion of persons from the general population with activities in the heterozygous range really are heterozygotes. In addition, overlap of heterozygous and normal homozygous activity distributions requires rather high activities in first-cousin matings of a patient's sib in order to obviate the necessity for prenatal diagnosis. Thus, the principle emerges that quantitative heterozygote tests for rare autosomal recessive diseases cannot fulfill the task they were designed for.  相似文献   

12.
Additional protein fraction migrating slower than spectrin has been detected in erythrocyte membranes from an ataxia-telangiectasia (A-T) patient and from his mother (A-T heterozygote). In erythrocyte membranes labelled with maleimide spin label changes in signal of the weakly immobilized spin label as related to that of strongly immobilized one (w/s) were noted. In comparison to age-matched control groups the values of w/s were lower in A-T heterozygotes (ten persons) and higher in A-T homozygotes (four persons). In control persons the values of w/s increased with age, whereas in families with A-T no significant differences in this parameter were noted between children and parents. The presence of additional protein fraction in erythrocytes membranes of A-T patient and A-T heterozygote indicates that these phenotypes can be differentiated from the healthy control persons for the first time on the basis of changes detected in the erythrocytes. This change in erythrocyte membrane may explain the decrease in the w/s parameter of electron spin resonance in A-T heterozygotes. On the other hand increased values of w/s in A-T patients may be caused by disease process.  相似文献   

13.
The Spirit (or Kermode) bear is a white-phased black bear found on the northwest coast of British Columbia, and is one of the most striking color polymorphisms found in mammals. A single nucleotide polymorphism at the melanocortin 1 receptor gene (mc1r) locus is the cause of this recessive w variant. Recently, evidence suggests that the white color provides a selective advantage during salmon hunting. Here we examine the effects of favorable selection, gene flow, genetic drift, and positive-assortative mating in an effort to understand the establishment and maintenance of this polymorphism and the observed heterozygote deficiency for mc1r but not for microsatellite loci. It appears that genetic drift was important in the establishment of the w allele and that the selective advantage was important to counteract immigration from populations without the w allele. Positive-assortative mating can result in a deficiency of heterozygotes but needs to be quite high to result in the large deficiency of heterozygotes observed, suggesting that other factors must also be contributing. Examination of population genetic factors, singly and jointly, provides insight into the establishment and maintenance of this unusual polymorphism.  相似文献   

14.
Myotonia congenita belongs to the group of non-dystrophic myotonia caused by mutations of CLCN1gene, which encodes human skeletal muscle chloride channel 1. It can be inherited either in autosomal dominant (Thomsen disease) or recessive (Becker disease) forms. Here we have sequenced all 23 exons and exon-intron boundaries of the CLCN1 gene, in a panel of 5 unrelated Chinese patients with myotonia congenita (2 with dominant and 3 with recessive form). In addition, detailed clinical analysis was performed in these patients to summarize their clinical characteristics in relation to their genotypes. Mutational analyses revealed 7 different point mutations. Of these, we have found 3 novel mutations including 2 missense (R47W, V229M), one splicing (IVS19+2T>C), and 4 known mutations (Y261C,G523D, M560T, G859D). Our data expand the spectrum of CLCN1 mutations and provide insights for genotype–phenotype correlations of myotonia congenita in the Chinese population.  相似文献   

15.
Pathogen resistance and genetic variation at MHC loci   总被引:14,自引:0,他引:14  
Abstract.— Balancing selection in the form of heterozygote advantage, frequency-dependent selection, or selection that varies in time and/or space, has been proposed to explain the high variation at major histocompatibility complex (MHC) genes. Here the effect of variation of the presence and absence of pathogens over time on genetic variation at multiallelic loci is examined. In the basic model, resistance to each pathogen is conferred by a given allele, and this allele is assumed to be dominant. Given that s is the selective disadvantage for homozygotes (and heterozygotes) without the resistance allele and the proportion of generations, which a pathogen is present, is e , fitnesses for homozygotes become (1 — s )(n-1)e and the fitnesses for heterozygotes become (1 — s )(n-2)e, where n is the number of alleles. In this situation, the conditions for a stable, multiallelic polymorphism are met even though there is no intrinsic heterozygote advantage. The distribution of allele frequencies and consequently heterozygosity are a function of the autocorrelation of the presence of the pathogen in subsequent generations. When there is a positive autocorrelation over generations, the observed heterozygosity is reduced. In addition, the effects of lower levels of selection and dominance and the influence of genetic drift were examined. These effects were compared to the observed heterozygosity for two MHC genes in several South American Indian samples. Overall, resistance conferred by specific alleles to temporally variable pathogens may contribute to the observed polymorphism at MHC genes and other similar host defense loci.  相似文献   

16.
It has been assumed that in piebald lethal mice that develop megacolon, impaired colonic motor activity is restricted to the aganglionic distal colon. Peristaltic mechanical recordings, immunohistochemistry, and quantitative PCR were used to investigate whether regions of the colon, other than the aganglionic segment, may also show anatomical modifications and dysfunctional colonic motor activity. Contrary to expectations, colonic migrating motor complexes (MMCs) were absent along the whole colon of piebald lethal homozygote mice and severely impaired in heterozygote siblings. Aganglionosis was detected not only in the distal colon of piebald homozygote lethal mice (mean length: 20.4 +/- 2.1 mm) but also surprisingly in their heterozygote siblings (mean length: 12.4 +/- 1.1 mm). Unlike homozygote lethal mice, piebald heterozygotes showed no signs of megacolon. Interestingly, mRNA expression for PGP 9.5 was also dramatically reduced (by 71-99%) throughout the entire small and large bowel in both homozygote lethal and heterozygous littermates (by 67-87%). Histochemical staining confirmed a significant reduction in myenteric ganglia along the whole colon. In summary, the piebald mutation in homozygote lethal and heterozygote siblings is associated with dramatic reductions in myenteric ganglia throughout the entire colon and not limited to the distal colon as originally thought. Functionally, this results in an absence or severe impairment of colonic MMC activity in both piebald homozygote lethal and heterozygote siblings, respectively. The observation that piebald heterozygotes have an aganglionic distal colon (mean length: 12 mm) but live a normal murine life span without megacolon suggests that aganglionosis >12 mm and the complete absence of colonic MMCs may be required before any symptoms of megacolon arise.  相似文献   

17.
Myotonia congenita belongs to the group of non-dystrophic myotonia caused by mutations of CLCN1gene, which encodes human skeletal muscle chloride channel 1. It can be inherited either in autosomal dominant (Thomsen disease) or recessive (Becker disease) forms. Here we have sequenced all 23 exons and exon-intron boundaries of the CLCN1 gene, in a panel of 5 unrelated Chinese patients with myotonia congenita (2 with dominant and 3 with recessive form). In addition, detailed clinical analysis was performed in these patients to summarize their clinical characteristics in relation to their genotypes. Mutational analyses revealed 7 different point mutations. Of these, we have found 3 novel mutations including 2 missense (R47W, V229M), one splicing (IVS19+2T>C), and 4 known mutations (Y261C,G523D, M560T, G859D). Our data expand the spectrum of CLCN1 mutations and provide insights for genotype–phenotype correlations of myotonia congenita in the Chinese population.  相似文献   

18.
Using a generalized method of Ljapunov functions, the dynamics of the classical genetic model for the evolution of dominance is studied. The model is treated as a two locus two allele system of a primary and a modifying locus with selection, mutation, and recombination. Its behavior may be described either by a system of four differential equations or by a system of four difference equations. In particular, it is proved that under very general conditiones on the five parameters involved, in both cases the well-known fixed point for the mutation-selection balance at the primary locus when the modifier is completely selected is globally asymptotically stable. If, however, the unmodified heterozygote is completely recessive or underdominant, the modifier is only selected if at the beginning of the evolution its frequency and that of the favorable primary allele is not extremely low. Otherwise, it may happen that the favorable primary allele becomes extinct.  相似文献   

19.
Schwartz-Jampel syndrome (SJS), or chondrodystrophic myotonia, is a rare autosomal recessive disorder characterized by generalized myotonia resulting in a particular, recognizable facies and osteoarticular abnormalities. Some of us have recently shown genetic linkage of SJS to a locus on 1p34–p36.1 in five families. Here, we show by homozygosity mapping and segregation analysis that eight new families are most likely linked to the SJS locus on chromosome 1, confirming the localization of SJS to chromosome 1p and suggesting genetic homogeneity. Recombination events reduced the SJS locus from a genetic interval of 8 to 3 cM, which should facilitate the identification of the SJS gene. Low clinical variability was observed between the studied families, except for osteoarticular abnormalities. Since the severity and the location of osteoarticular abnormalities varied from one individual to another, even in the same families, other factors than the SJS gene itself, genetic or epigenetic, might contribute to the phenotype. Received: 11 February 1996 / Revised: 6 April 1996  相似文献   

20.
In this investigation peripheral blood lymphocytes from 3 Fanconi's anemia (FA) patients, 2 FA heterozygotes and 4 normal subjects were treated with caffeine and/or adenosine, and/or niacinamide during G2 prophase. Caffeine dramatically increased breakage levels in homozygote and heterozygote cells. Niacinamide and adenosine decreased the amount of chromosomal aberrations detected in FA homozygote and heterozygote lymphocytes treated and untreated with caffeine during G2 prophase. Caffeine sensitivity of heterozygote lymphocytes is proposed as a new clinical test to explore heterozygosis in individuals of FA families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号