首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Gut flora analysis is hampered by the complexity of the intestinal microbiota and by inherent limitations of culture-based approaches. Therefore, culture-independent molecular methods based upon 16S rRNA gene analysis were applied successfully for the analysis of complex microbial communities. However, generally accepted and validated profiling methods such as denaturing and temperature gradient gel electrophoresis (DGGE/TGGE) are still laborious and time consuming. Thus, we adapted the separation of amplified bacterial 16S rRNA gene fragments by denaturing high performance liquid chromatography (DHPLC) using the WAVE Microbial Analysis System as a rapid and convenient means to display complex intestinal bacterial communities and to monitor changes in the gut flora. The separation of 16S rRNA gene fragments amplified from reference strains representing main gut bacterial populations and from human stool samples revealed that DHPLC analysis effectively detects bacterial groups predominant in the human gut flora. The investigation of faecal samples from hospitalized patients before, during and after antibiotic therapy showed that PCR-based DHPLC can be used to monitor gut flora changes. Results from DHPLC analysis were comparable with DGGE profiles generated from the same samples, demonstrating that the adapted DHPLC protocol is well suited for the analysis of complex microbial communities.  相似文献   

2.
Denaturing gradient gel electrophoresis (DGGE) was applied to separate PCR-amplified 16S rRNA genes originating from human microbiota associated (HMA) rat faeces as well as from the human faecal sample used for inoculation of the animals. Subsequently, a total of 15 dominant bands were excised from the DGGE gels, cloned and sequenced. Comparison of the obtained sequences with the Ribosomal Database revealed that species of Bacteroides/Prevotella and Faecalibacterium gave rise to the majority of the dominant bands in the human sample and in the HMA rats. In the HMA rats, two dominant bands, which were not present in the human DGGE profile, originated from species of Ruminococcus. With the exception of the Ruminococcus sequences, sequences originating from both rats and human samples were represented in all major branches of a maximum parsimony tree, indicating that the rat feed and gut environment allows colonization of the dominant taxonomic units from the human microbiota, but additionally selects for Ruminococci. Bands representing Prevotella and Faecalibacterium, which were found in identical positions of the DGGE gels originating from human and HMA rat faecal samples, originated from completely identical sequences, indicating that the same strains of these species were dominating in the human and rat samples.  相似文献   

3.
Liu J  Wu D  Ahmed A  Li X  Ma Y  Tang L  Mo D  Ma Y  Xin Y 《Current microbiology》2012,65(1):7-13
Human liver was closely associated with gut through various biological mechanisms, such as bacterium-gut interactions. Alterations of gut microbiota seemed to play an important role in induction and promotion of liver damage progression. The aim of this study was to characterize the gut microbiota in liver cirrhosis patients and assess whether there are alterations in the diversity and similarity of intestinal flora in cirrhotic patients when compared with healthy individuals. PCR-denaturing gradient gel electrophoresis (DGGE) with universal primers targeting V3 region of the 16S rRNA gene was employed to characterize the overall intestinal microbiota composition, and some excised gel bands were cloned for sequencing. Real-time PCR was further utilized to quantitatively analyze the subpopulation of microbiota using group-specific primers targeting the Enterobacteriaceae, Enterococcus and Bifidobacterium genus. The DGGE profiles of two groups demonstrated significant differences between cirrhotic and healthy groups (P?相似文献   

4.
The effect of oral amoxicillin treatment on fecal microbiota of seven healthy adult dogs was determined with a focus on the prevalence of bacterial antibiotic resistance and changes in predominant bacterial populations. After 4–7 days of exposure to amoxicillin, fecal Escherichia coli expressed resistance to multiple antibiotics when compared with the pre-exposure situation. Two weeks postexposure, the susceptibility pattern had returned to pre-exposure levels in most dogs. A shift in bacterial populations was confirmed by molecular fingerprinting of fecal bacterial populations using denaturing gradient gel electrophoresis (PCR-DGGE) of the 16S V3 rRNA gene region. Much of the variation in DGGE profiles could be attributed to dog-specific factors. However, permutation tests indicated that amoxicillin exposure significantly affected the DGGE profiles after controlling for the dog effect ( P =0.02), and pre-exposure samples were clearly separated from postexposure samples. Sequence analysis of DGGE bands and real-time PCR quantification indicated that amoxicillin exposure caused a shift in the intestinal ecological balance toward a Gram-negative microbiota including resistant species in the family Enterobacteriaceae .  相似文献   

5.
A total of 21 plant-associated Serratia plymuthica strains were characterized phenotypically by their nutritional patterns, susceptibility to antibiotics, antifungal and haemolytic properties, and genotypically by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA, PCR fingerprints using BOX primers (BOX-PCR) and pulsed-field gel electrophoresis (PFGE) after digestion with SpeI. All of the investigated strains demonstrated antifungal activity in vitro against fungal pathogens while only six strains produced the antifungal antibiotic prodigiosin. Haemolytic activity and antibiotic resistance patterns were investigated to assess the risk associated with the use of isolates in plant protection. The strains were haemolytic at human-relevant temperatures. The level of resistance to antibiotics was low. This work shows that BOX-PCR and PFGE are useful fingerprinting methods to characterize Ser. plymuthica strains, although the discriminatory effect between the two methods differed. Computer-assisted analysis of phenotypic and genotypic features demonstrated relationships between the origin of isolation, the production of prodigiosin and the molecular fingerprint.  相似文献   

6.
Aims: Determining the effects of zinc bacitracin, bird age and access to range on bacterial microbiota in the ileum and caeca of broilers. Methods and Results: 16S rRNA gene-based polymerase chain reaction-based denaturing gradient gel electrophoresis (PCR–DGGE) profiling, DNA sequencing and real-time quantitative PCR techniques were used. The richness of both ileal and caecal microbiota increased with chicken age. The microbiota from those birds of the same age demonstrated relatively similar PCR–DGGE profiles and tended to form closely related clusters in the relatedness analyses. Dietary treatment with bacitracin (50 mg kg−1) and access to range did not change the richness but altered the composition of the microbiota. The impact of bacitracin was particularly obvious in 3-day-old chicks. Lactobacilli were abundant in the caecal microbiota of 3-day-old chicks regardless of the dietary treatment with bacitracin. The access to range enriched Bifidobacterium in both the ileum and caeca. Conclusions: Bacitracin, bird age and access to range all influenced bacterial microbiota in the ileum and caeca of broilers, with bird age having the greatest apparent effect. Significance and Impact of the Study: Providing useful information for the development of antibiotic replacement therapy for poultry production.  相似文献   

7.
Changes in bacterial diversity during the field experiment on biostimulation were monitored by denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rDNA fragments. The results revealed that the bacterial community was disturbed after the start of treatment, continued to change for 45 days or 60 days and then formed a relatively stable community different from the original community structure. DGGE analysis of soluble methane monooxygenase (sMMO) hydroxylase gene fragments, mmoX, was performed to monitor the shifts in the numerically dominant sMMO-containing methanotrophs during the field experiment. Sequence analysis on the mmoX gene fragments from the DGGE bands implied that the biostimulation treatment caused a shift of potential dominant sMMO-containing methanotrophs from type I methanotrophs to type II methanotrophs.  相似文献   

8.
Yuan J  Zeng B  Niu R  Tang H  Li W  Zhang Z  Wei H 《Current microbiology》2011,62(4):1107-1112
Human flora-associated (HFA) mice are frequently applied in studying the ecology and metabolism of human gut microbiota. However, the development and stability of the genus Bacteriodes, a prominent bacteria group of human gut microbiota, in HFA mice have not yet fully been examined. In this study, PCR-denaturing gradient gel electrophoresis (DGGE) analysis was employed to monitor the Bacteriodes community in the fecal microbiota of six HFA Kunming mice during a period of 3 weeks. Based on the DGGE banding patterns, the majority of prominent bands in the HFA mice DGGE profile were also typical bands in the human DGGE profile, despite the absence of three bands (corresponding to two different B. thetaiotaomicron strains and one B. intestinalis strain) from the human DGGE profile. The Dice coefficient of similarity for the fecal microbiota of HFA mice in comparison to the human donor sample ranged between 74 ± 6% and 81 ± 7%. The phylogeny of bands in the DGGE profile showed that the dominant Bacteriodes species in the fecal microbiota of HFA mice were B. thetaiotaomicron, representing 66.7% of all bands. Our results indicate that the genus Bacteriodes in the fecal microbiota of HFA mice was selected from the human donor and could remain relatively stable over time.  相似文献   

9.
The microbial diversity of a deteriorated biological phosphorus removal reactor was investigated by methods not requiring direct cultivation. The reactor was fed with media containing acetate and high levels of phosphate (P/C weight ratio, 8:100) but failed to completely remove phosphate in the effluent and showed very limited biological phosphorus removal activity. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA was used to investigate the bacterial diversity. Up to 11 DGGE bands representing at least 11 different sequence types were observed; DNA from the 6 most dominant of these bands was further isolated and sequenced. Comparative phylogenetic analysis of the partial 16S rRNA sequences suggested that one sequence type was affiliated with the alpha subclass of the Proteobacteria, one was associated with the Legionella group of the gamma subclass of the Proteobacteria, and the remaining four formed a novel group of the gamma subclass of the Proteobacteria with no close relationship to any previously described species. The novel group represented approximately 75% of the PCR-amplified DNA, based on the DGGE band intensities. Two oligonucleotide rRNA probes for this novel group were designed and used in a whole-cell hybridization analysis to investigate the abundance of this novel group in situ. The bacteria were coccoid and 3 to 4 microm in diameter and represented approximately 35% of the total population, suggesting a relatively close agreement with the results obtained by the PCR-based DGGE method. Further, based on electron microscopy and standard staining microscopic analysis, this novel group was able to accumulate granule inclusions, possibly consisting of polyhydroxyalkanoate, inside the cells.  相似文献   

10.
The porcine gastrointestinal tract (GIT) microbiota has been studied to increase production efficiency, improve product quality, and help attempt to reduce disease. During the developmental period from birth through weaning, the intestinal microbiota undergoes a rapid ecological succession. There is interest in developing a monitoring technique that allows for analysis of bacterial population levels and shifts within the pig intestine. The objective of this study was to determine if denaturant gradient gel electrophoresis (DGGE) could be effectively applied to measure changes in bacterial populations of the pig GIT, as influenced by age, diet or compartment. Bacterial genetic diversity was determined using DGGE analysis of the V3 region of 16S rDNA PCR products (approximately 200 bp) obtained from primers specific for the domain Bacteria. Protocol development included optimization of: DNA extraction procedures, PCR amplification, removal of PCR artifacts, and optimization of gel preparation and image capture. DGGE analysis revealed diverse bacterial populations between pigs of different ages and among individual gut compartments. Comparison of fecal DNA from different aged pigs revealed several unique PCR product bands indicating the presence of unique bacterial populations. Comparison of different gut compartments demonstrated that bacterial populations were most similar (C, value > 50%) within a single compartment and between adjacent ones. Thus, DGGE can be used to examine bacterial diversity and population shifts in the pig GIT.  相似文献   

11.
N(2) fixation by diazotrophic bacteria associated with the roots of the smooth cordgrass, Spartina alterniflora, is an important source of new nitrogen in many salt marsh ecosystems. However, the diversity and phylogenetic affiliations of these rhizosphere diazotrophs are unknown. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified nifH sequence segments was used in previous studies to examine the stability and dynamics of the Spartina rhizosphere diazotroph assemblages in the North Inlet salt marsh, near Georgetown, S.C. In this study, plugs were taken from gel bands from representative DGGE gels, the nifH amplimers were recovered and cloned, and their sequences were determined. A total of 59 sequences were recovered, and the amino acid sequences predicted from them were aligned with sequences from known and unknown diazotrophs in order to determine the types of organisms present in the Spartina rhizosphere. We recovered numerous sequences from diazotrophs in the gamma subdivision of the division Proteobacteria (gamma-Proteobacteria) and from various anaerobic diazotrophs. Diazotrophs in the alpha-Proteobacteria were poorly represented. None of the Spartina rhizosphere DGGE band sequences were identical to any known or previously recovered environmental nifH sequences. The Spartina rhizosphere diazotroph assemblage is very diverse and apparently consists mainly of unknown organisms.  相似文献   

12.
Although only poorly documented, it can be assumed that intensive antibiotic treatments of chronic lung infections in patients with cystic fibrosis (CF) also affect the diversity and metabolic functioning of the gastrointestinal microbiota and potentially lead to a state of dysbiosis. A better knowledge of the differences in gut microbiota composition and stability between patients with CF and healthy subjects could lead to optimization of current antibiotic therapies and/or development of add-on therapies. Using conventional culturing and population fingerprinting by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA amplicons, we compared the predominant fecal microbiota of 21 patients with CF and 24 healthy siblings in a cross-sectional study. General medium counts, as well as counts on media specific for lactic acid bacteria, clostridia, Bifidobacterium spp., Veillonella spp., and Bacteroides-Prevotella spp., were consistently higher in sibling samples than in CF samples, whereas the reverse was found for enterobacterial counts. DGGE fingerprinting uncovered large intersubject variations in both study groups. On the other hand, the cross-sectional data indicated that the predominant fecal microbiota of patients and siblings had comparable species richness. In addition, a longitudinal study was performed on 7 or 8 consecutive samples collected over a 2-year period from two patients and their respective siblings. For these samples, DGGE profiling indicated an overall trend toward lower temporal stability and lower species richness in the predominant fecal CF microbiota. The observed compositional and dynamic perturbations provide the first evidence of a general dysbiosis in children with CF compared to their siblings.  相似文献   

13.
Dense microbial mats and streamers of various colors developed in an alkaline-hot spring water at 48-76 degrees C and ~0.077 mm sulfide in Nakabusa, Japan. The microbial community structures with a thermal gradient were compared by denaturing gradient gel electrophoresis (DGGE) analysis of the PCR-amplified 16S ribosomal RNA gene fragments. The sequence analysis revealed that a predominant cyanobacterial DGGE band phylogenetically related to Synechococcus elongatus was detected only from green mats at 48 degrees C. Four DGGE bands were detected commonly from green mats at 48 degrees C, orange mats at 58 degrees C and brown mats at 60 degrees C. The sequence analysis revealed that these were phylogenetically related to Chloroflexaceae group, Rhodothermus group, a candidate division OP10, and an unclassified bacterium. On the other hand, Aquificae-, Thermodesulfobacteria-, Thermus group-, and Crenarchaeota-like sequences were detected as a predominant component of DGGE profiling from the streamers only at temperatures over 66 degrees C, but no phototrophic bacterial bands were detected. Thus, the microbial community structure above 60 degrees C was drastically different from that at the lower temperatures. After the addition of hydrogen into in vitro gray streamers with in situ spring water, sulfide production markedly occurred in the presence of ambient sulfate at 66 degrees C. This result suggests that in situ sulfide is partly produced by Thermodesulfobacteria-like sulfate-reducing bacteria in the streamers.  相似文献   

14.
BBn (BioBreeding) rats were fed casein-based diets supplemented with barley flour, oatmeal flour, cellulose, or barley beta-glucans of high [HV] or low viscosity [LV] in order to measure the prebiotic effects of these different sources of dietary fiber. The dietary impact on the composition of the cecal microbiota was determined by the generation of denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA gene sequences. The DGGE profiles produced from the cecal microbiota of rats within each dietary group were similar, but consensus profiles generated from pooled bacterial DNAs showed differences between rat groups. Animals fed HV glucans (HV-fed rats) had DGGE consensus profiles that were 30% dissimilar from those of the other rat groups. A 16S rRNA gene fragment that was more conspicuous in the profiles of HV-fed animals than in those of cellulose-fed rats had sequence identity with Lactobacillus acidophilus. Measurements of L. acidophilus rRNA abundance (DNA-RNA hybridization), the preparation of cloned 16S rRNA gene libraries, and the enumeration of Lactobacillus cells (fluorescent in situ hybridization) showed that lactobacilli formed a greater proportion of the cecal microbiota in HV-fed rats. In vitro experiments confirmed that some lactobacilli utilize oligosaccharides (degree of polymerization, 3 or 4) present in beta-glucan hydrolysates. The results of this study have relevance to the use of purified beta-glucan products as dietary supplements for human consumption.  相似文献   

15.
16.
目的对比细菌性阴道病及其合并盆腔炎患者与健康个体的阴道菌群,分析阴道菌群的结构,为确定该疾病的特征细菌及研究致病机制奠定基础。方法采用临床Amsel标准筛选的17例细菌性阴道病患者、13例细菌性阴道病合并盆腔炎患者和52例健康者,使用无菌拭子采集阴道后穹窿分泌物以提取细菌基因组DNA。采用PCR技术扩增上一步得到的16S rRNA片段,而后将扩增产物通过变形梯度凝胶电泳(DGGE)分离以得到阴道细菌种属结构图谱,应用Quantity One软件进行聚类分析,应用凝胶测序法进行特异条带分析。检测16S rRNA基因,具体研究样品中的物种分类。结果细菌性阴道病及其合并盆腔炎患者的阴道菌群的构成与健康者相比较具有显著性差异。其中,Firmicutes等菌门细菌减少,Actinobacteria等菌门细菌增多;G.vaginallis、P.vaginallis等厌氧菌数量均增加,L.crispatus、L.iners等益生菌数量均有减少。结论细菌性阴道病及其合并盆腔炎患者的生殖道内的合并感染改变了阴道内的原有微生态平衡。两组疾病组患者的阴道菌群构成相比于健康对照组变化明显。  相似文献   

17.
Shifts in bacterioplankton community composition along the salinity gradient of the Parker River estuary and Plum Island Sound, in northeastern Massachusetts, were related to residence time and bacterial community doubling time in spring, summer, and fall seasons. Bacterial community composition was characterized with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA. Average community doubling time was calculated from bacterial production ([(14)C]leucine incorporation) and bacterial abundance (direct counts). Freshwater and marine populations advected into the estuary represented a large fraction of the bacterioplankton community in all seasons. However, a unique estuarine community formed at intermediate salinities in summer and fall, when average doubling time was much shorter than water residence time, but not in spring, when doubling time was similar to residence time. Sequencing of DNA in DGGE bands demonstrated that most bands represented single phylotypes and that matching bands from different samples represented identical phylotypes. Most river and coastal ocean bacterioplankton were members of common freshwater and marine phylogenetic clusters within the phyla Proteobacteria, Bacteroidetes, and ACTINOBACTERIA: Estuarine bacterioplankton also belonged to these phyla but were related to clones and isolates from several different environments, including marine water columns, freshwater sediments, and soil.  相似文献   

18.
The genetic diversity of Desulfovibrio species in environmental samples was determined by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified [NiFe] hydrogenase gene fragments. Five different PCR primers were designed after comparative analysis of [NiFe] hydrogenase gene sequences from three Desulfovibrio species. These primers were tested in different combinations on the genomic DNAs of a variety of hydrogenase-containing and hydrogenase-lacking bacteria. One primer pair was found to be specific for Desulfovibrio species only, while the others gave positive results with other bacteria also. By using this specific primer pair, we were able to amplify the [NiFe] hydrogenase genes of DNAs isolated from environmental samples and to detect the presence of Desulfovibrio species in these samples. However, only after DGGE analysis of these PCR products could the number of different Desulfovibrio species within the samples be determined. DGGE analysis of PCR products from different bioreactors demonstrated up to two bands, while at least five distinguishable bands were detected in a microbial mat sample. Because these bands most likely represent as many Desulfovibrio species present in these samples, we conclude that the genetic diversity of Desulfovibrio species in the natural microbial mat is far greater than that in the experimental bioreactors.  相似文献   

19.
Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene segments was used to profile microbial populations inhabiting different temperature regions in the microbial mat community of Octopus Spring, Yellowstone National Park. DGGE allowed a rapid evaluation of the distributions of amplifiable sequence types. Profiles were essentially identical within regions of the mat defined by one temperature range but varied between sites with different temperature ranges. Individual DGGE bands were sequenced, and the sequences were compared with those previously obtained from the mat by cloning and from cultivated Octopus Spring isolates. Two known cyanobacterial populations and one known green nonsulfur bacterium-like population were detected by DGGE, as were many new cyanobacterial and green nonsulfur and green sulfur bacterium-like populations and a novel bacterial population of uncertain phylogenetic affiliation. The distributions of several cyanobacterial populations compared favorably with results obtained previously by oligonucleotide probe analyses and suggest that adaptation to temperature has occurred among cyanobacteria which are phylogenetically very similar.  相似文献   

20.
Monitoring of prevalence and antibiotic susceptibility of strictly anaerobic bacteria, causing infections in hospitalized patients, constitutes a part of a program for prudent use of antibiotics. The aim of the study was to assess prevalence of strictly anaerobic bacteria in patients hospitalized in a tertiary care hospital in 2001-2002 with reference to empiric antibiotic therapy. The most common gram-positive bacteria were Clostridium difficile--27.7%, Peptostreptococcus spp. and Peptoniphilus asaccharolyticus--21.9% and Actinomyces spp.--11.1%. There was an increase in the number of stool samples positive for C. difficile toxins A and B from 39.4% in 2001 to 59.0% in 2002. The results of susceptibility testing of gram-positive isolates showed the highest percentages of strains susceptible to piperacilin/tazobactam--99.6%, ticarcillin/clavulanate--98.5%, imipenem--98.5%, amoxicillin/clavulanate--97.4% and piperacillin--97.4%. The most prevalent gram-negative anaerobes were strains of Bacteroides spp.--43.1%, Prevotella spp.--35.8% and Fusobacterium spp.--11.0%. All tested strains of gram-negative bacteria were susceptible to metronidazole, piperacilin/tazobactam, ticarcillin/clavulanate and imipenem. In the analyzed population beta-lactam antibiotics with beta-lactamase inhibitors, carbapenems and metronidazole may be used in empiric therapy of infections caused by strictly anaerobic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号