首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
TLR2 activation plays a crucial role in Neisseria gonorrheae-mediated enhancement of HIV infection of resting CD4(+) T cells. We examined signaling pathways involved in the HIV enhancing effect of TLR2. TLR2 but not IL-2 signals promoted HIV nuclear import; however, both signals were required for the maximal enhancing effect. Although TLR2 signaling could not activate T cells, it increased IL-2-induced T cell activation. Cyclosporin A and IkBα inhibitor blocked TLR2-mediated enhancement of HIV infection/nuclear import. PI3K inhibitor blocked HIV infection/nuclear import and T cell activation and exerted a moderate inhibitory effect on cell cycle progression in CD4(+) T cells activated by TLR2/IL-2. Blockade of p38 signaling suppressed TLR2-mediated enhancement of HIV nuclear import/infection. However, the p38 inhibitor did not have a significant effect on T cell activation or TCR/CD3-mediated enhancement of HIV infection/nuclear import. The cell cycle arresting reagent aphidicolin blocked TLR2- and TCR/CD3-induced HIV infection/nuclear import. Finally, cyclosporin A and IκBα and PI3K inhibitors but not the p38 inhibitor blocked TLR2-mediated IκBα phosphorylation. Our results suggest that TLR2 activation enhances HIV infection/nuclear import in resting CD4(+) T cells through both T cell activation-dependent and -independent mechanisms.  相似文献   

2.
IL-12 is a pleiotropic cytokine that plays an important role in innate and adaptive immunity. IL-12 induces T cell proliferation and IFN-gamma secretion from activated T cells. It was also reported that IL-12 prevents apoptosis of CD4(+) T cells. However, the signaling mechanism that regulates these IL-12-induced responses is poorly understood yet. In this study, we demonstrated that IL-12 activates phosphatidylinositol 3-kinase (PI3K)/Akt pathway in murine CD4(+) T cells, and that this signaling pathway is required for IL-12-induced T cell proliferation and antiapoptotic function, but not for IFN-gamma induction. Through PI3K/Akt pathway, IL-12 up-regulates the expression of cell cycle-related molecule such as cyclin D3, and antiapoptotic molecules such as Bcl-2 and cellular inhibitors of apoptosis proteins-2, followed by down-regulation of active caspase-3. These results suggest that PI3K/Akt pathway is critical for mediating IL-12-induced CD4(+) T cell responses such as T cell proliferation and survival.  相似文献   

3.
Human immunodeficiency virus (HIV)-induced immunodeficiency is characterized by progressive loss of CD4(+) T cells associated with functional abnormalities of the surviving lymphocytes. Increased susceptibility to apoptosis and loss of proper cell cycle control can be observed in lymphocytes from HIV-infected individuals and may contribute to the lymphocyte dysfunction of AIDS patients. To better understand the relation between T-cell activation, apoptosis, and cell cycle perturbation, we studied the effect of exogenous interleukin-2 (IL-2) administration on the intracellular turnover of phase-dependent proteins. Circulating T cells from HIV-infected patients display a marked discrepancy between a metabolic profile typical of G(0) and a pattern of expression of phase-dependent proteins that indicates a more-advanced position within the cell cycle. This discrepancy is enhanced by in vitro activation with ConA and ultimately results in a marked increase of apoptotic events. Conversely, treatment of lymphocytes with IL-2 alone restores the phase-specific pattern of expression of cell cycle-dependent proteins and is associated with low levels of apoptosis. Interestingly, exogenous IL-2 administration normalizes the overall intracellular protein turnover, as measured by protein synthesis, half-life of newly synthesised proteins, and total protein ubiquitination, thus providing a possible explanation for the effect of IL-2 on the intracellular kinetics of cell cycle-dependent proteins. The beneficial effect of IL-2 administration is consistent with the possibility of defective IL-2 function in vivo, which is confirmed by the observation that lymphocytes from HIV-infected patients show abnormal endogenous IL-2 paracrine/autocrine function upon in vitro mitogen stimulation. Overall these results confirm that perturbation of cell cycle control contributes to HIV-related lymphocyte dysfunction and, by showing that IL-2 administration can revert this perturbation, suggest a new mechanism of action of IL-2 therapy in HIV-infected patients.  相似文献   

4.
5.
6.
Interleukin-2 (IL-2) is the major growth factor of activated T lymphocytes. By inducing cell cycle progression and protection from apoptosis in these cells, IL-2 is involved in the successful execution of an immune response. Upon binding its receptor, IL-2 activates a variety of signal transduction pathways, including the Ras/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and Janus kinase (JAK)/STAT cascades. In addition, activation of phosphatidylinositol 3-kinase (PI3K) and several of its downstream targets has also been shown. However, the coupling of STAT3 serine phosphorylation to PI3K in response to IL-2 has yet to be shown in either T cell lines or primary human T cells. This report shows that the PI3K inhibitors LY294002 and wortmannin block activation of MEK and ERK by IL-2 in primary human T cells. Moreover, these inhibitors significantly reduce IL-2-triggered STAT3 serine phosphorylation without affecting STAT5 serine phosphorylation. Analysis of the effects of these inhibitors on cell cycle progression and apoptosis strongly suggests that PI3K-mediated events, which includes STAT3 activation, are involved in IL-2-mediated cell proliferation but not cell survival. Finally, results presented illustrate that in primary human T cells, activation of Akt is insufficient for IL-2-induced anti-apoptosis. Thus, these results demonstrate that IL-2 stimulates PI3K-dependent events that correlate with cell cycle progression, but not anti-apoptosis, in activated primary human T cells.  相似文献   

7.
Vesicular stomatitis virus (VSV) is a candidate oncolytic virus that replicates and induces cell death in cancer cells while sparing normal cells. Although defects in the interferon antiviral response facilitate VSV oncolysis, other host factors, including translational and growth regulatory mechanisms, also appear to influence oncolytic virus activity. We previously demonstrated that VSV infection induces apoptosis in proliferating CD4(+) T lymphocytes from adult T-cell leukemia samples but not in resting T lymphocytes or primary chronic lymphocytic leukemia cells that remain arrested in G(0). Activation of primary CD4(+) T lymphocytes with anti-CD3/CD28 is sufficient to induce VSV replication and cell death in a manner dependent on activation of the MEK1/2, c-Jun NH(2)-terminal kinase, or phosphatidylinositol 3-kinase pathway but not p38. VSV replication is specifically impaired by the cell cycle inhibitor olomoucine or rapamycin, which induces early G(1) arrest, but not by aphidicolin or Taxol, which blocks at the G(1)1S or G(2)1M phase, respectively; this result suggests a requirement for cell cycle entry for efficient VSV replication. The relationship between increased protein translation following G(0)/G(1) transition and VSV permissiveness is highlighted by the absence of mTOR and/or eIF4E phosphorylation whenever VSV replication is impaired. Furthermore, VSV protein production in activated T cells is diminished by small interfering RNA-mediated eIF4E knockdown. These results demonstrate that VSV replication in primary T lymphocytes relies on cell cycle transition from the G(0) phase to the G(1) phase, which is characterized by a sharp increase in ribogenesis and protein synthesis.  相似文献   

8.
Stimulation via IL-2R ligation causes T lymphocytes to transit through the cell cycle. Previous experiments by our group have demonstrated that, in human T cells, IL-2 binding induces phosphatidic acid production through activation of the alpha isoform of diacylglycerol kinase. In this study, using the IL-2-dependent mouse T cell line CTLL-2, we demonstrate that pharmacological inhibition of IL-2-induced diacylglycerol kinase activation is found to block IL-2-induced late G1 to S transition without affecting cell viability. Herein, we demonstrate that diacylglycerol kinase inhibition has a profound effect on the induction of the protooncogenes c-myc, c-fos, and c-raf by IL-2, whereas expression of bcl-2 and bcl-xL are not affected. When the IL-2-regulated cell cycle control checkpoints are examined in detail, we demonstrate that inhibition of diacylglycerol kinase activation prevents IL-2 induction of cyclin D3 without affecting p27 down-regulation. The strict control of cell proliferation exerted by phosphatidic acid through activation of diacylglycerol kinase is independent of other well-characterized IL-2R-derived signals, such as the phosphatidylinositol-3 kinase/Akt pathway, indicating the existence of a different and important mechanism to control cell division.  相似文献   

9.
10.
Latent human immunodeficiency virus type 1 (HIV-1) persists even in patients treated with antiretroviral therapy. New treatment strategies are therefore needed to eradicate this latent viral reservoir without reducing immune cell function. We characterize the interleukin-7 (IL-7)-induced stimulation of primary human T cells and thymocytes and demonstrate, using the SCID-hu model, that IL-7 induces substantial expression of latent HIV while having minimal effects on the cell phenotype. Thus, IL-7 is a viable candidate to activate expression of latent HIV and may facilitate immune clearance of latently infected cells.  相似文献   

11.
The effects of IL-7 on the generation of cytolytic human peripheral blood lymphocytes (PBL) were investigated. Induction of T-cell pore-forming protein (PFP) mRNA and cytotoxic potential by IL-7 was both slow and minor compared with that observed in IL-2-cultured T cells. IL-7 and suboptimal doses of IL-2 (10 U/ml) were found to costimulate PFP mRNA expression and cytotoxic potential in T cells. Clearly, however, both IL-7 and IL-2/IL-7 induced the PFP gene expression and cytotoxic potential of CD8+ T cells and not CD4+ T cells. In addition, neither monoclonal antibodies (mAb) to the p55 or p75 IL-2-receptor subunits had any effect upon IL-7 induction of CD8+ T-cell cytotoxicity, indicating that IL-7 induction of cytotoxic CD8+ T cells was IL-2 independent. IL-7 induction of CD3- large granular lymphocyte (LGL) and PB gamma delta T-cell cytotoxicity was also delayed and reduced compared with that effected by IL-2. IL-7 (10 or 1000 U/ml, 72 hr) enhanced the NK and LAK cytotoxic of LGL and PB gamma delta T cells. By contrast IL-7 or IL-2 augmented the redirected cytotoxic potential of PB gamma delta T cells, but not that of LGL, and neither lymphokine had any effect on constitutive PFP mRNA expression in either lymphocyte subset. In addition, IL-7 induction of LGL IFN-gamma production was weak and delayed compared with that effected by IL-2 and neither IL-2 nor IL-7 stimulated IFN-gamma production in PB gamma delta T cells. Therefore, overall the effects of IL-2 and IL-7 on various cytotoxic human PBL were qualitatively similar, but quantitatively and kinetically different.  相似文献   

12.
IL-4 prevents the death of naive B lymphocytes through the up-regulation of antiapoptotic proteins such as Bcl-x(L). Despite studies implicating glucose utilization in growth factor-dependent survival of hemopoietic cells, the role of glucose energy metabolism in maintaining B cell viability by IL-4 is unknown. We show that IL-4 triggers glucose uptake, Glut1 expression, and glycolysis in splenic B cells; this is accompanied by increased cellular ATP. Glycolysis inhibition results in apoptosis, even in the presence of IL-4. IL-4-induced glycolysis occurs normally in B cells deficient in insulin receptor substrate-2 or the p85alpha subunit of PI3K and is not affected by pretreatment with PI3K or MAPK pathway inhibitors. Stat6-deficient B cells exhibit impaired IL-4-induced glycolysis. Cell-permeable, constitutively active Stat6 is effective in restoring IL-4-induced glycolysis in Stat6-deficient B cells. Therefore, besides controlling antiapoptotic proteins, IL-4 mediates B cell survival by regulating glucose energy metabolism via a Stat6-dependent pathway.  相似文献   

13.
Activation of the phosphatidylinositol-3 kinase (PI 3-K) pathway is associated with the proliferation of many cell types, including T lymphocytes. However, recent studies in cell lines stably expressing deletion mutants of IL-2R that fail to activate PI 3-K have questioned the requirement for this pathway in cell cycle regulation. In this study with IL-2 and IL-7, we show in primary T cells that, unlike IL-2, IL-7 fails to induce the early activation of PI 3-K seen within minutes and normally associated with cytokine signaling. However, kinetic experiments showed that both of these T cell growth factors induce a distinct and sustained phase of PI 3-K activity several hours after stimulation. This delayed activation correlates with cell cycle induction and from studies using inhibitors of PI 3-K signaling, we show that this later phase, unlike the early activation within minutes, is required for cell cycle induction. The data presented here will have major implications for our understanding of the mechanism of T cell proliferation as well as the regulation of PI 3-K activity.  相似文献   

14.
IL-7 plays a major role in T lymphocyte homeostasis and has been proposed as an immune adjuvant for lymphopenic patients. This prospect is based, at least in part, on the short-term expansion of peripheral T cells in rIL7-treated mice and primates. Nevertheless, in vivo, following initial increases in T cell proliferation and numbers, lymphocytes return to a quiescent state. As the bases for this cell cycle exit have not yet been elucidated, it is important to assess the long-term biological effects of IL-7 on quiescent human T lymphocyte subsets. In this study, we find that IL-7-stimulated CD4+ naive lymphocytes enter into cell cycle with significantly delayed kinetics as compared with the memory population. Importantly though, these lymphocytes exit from the cell cycle despite the continuous replenishment of rIL-7. This response is distinct in memory and naive CD4+ lymphocytes with memory cells starting to exit from cycle by day 10 vs day 18 for naive cells. Return to quiescence is associated with a cessation in IL-7R signaling as demonstrated by an abrogation of STAT-5 phosphorylation, despite an up-regulation of surface IL-7Ralpha. Indeed, an initial 10-fold decrease in IL-7Ralpha mRNA levels is followed by increased IL-7Ralpha expression in naive as well as memory T cells, with kinetics paralleling cell cycle exit. Altogether, our data demonstrate that IL-7 promotes the extended survival of both naive and memory CD4+ T cells, whereas cycling of these two subsets is distinct and transient. Thus, IL-7 therapy should be designed to allow optimal responsiveness of naive and memory T cell subsets.  相似文献   

15.
B Chesebro  K Wehrly    W Maury 《Journal of virology》1990,64(9):4553-4557
Expression of cell surface CD4 influences susceptibility of cells to human immunodeficiency virus (HIV) infection; however, some CD4-positive human and mouse cells are still resistant to HIV infection. To search for mechanisms of resistance to HIV independent of CD4 expression, HIV expression was studied in human and mouse cells normally resistant to HIV infection by introducing infectious virus by transfection of HIV DNA or infection with HIV pseudotyped with amphotropic or polytropic murine leukemia viruses. The results indicated that even when barriers to viral entry were bypassed, mouse NIH 3T3 cells and Dunni cells still showed a marked reduction in number of cells expressing HIV compared with the human cells studied, although the intensity of immunostaining of individual positive mouse cells was indistinguishable from that seen on permissive human cell lines. CD4 expression in mouse cells or human brain or skin cells did not influence the number of HIV foci observed after transfection with HIV DNA or infection with pseudotyped HIV. These results suggested that in addition to a block in the usual HIV fusion and entry process, CD4-positive mouse cells differed from human cells in exhibiting partial resistance to HIV infection which acted at a postpenetration step in the infection cycle. This resistance was partially overcome when mouse cells were infected by direct exposure to human lymphocytes producing HIV pseudotyped by amphotropic murine leukemia virus.  相似文献   

16.
17.
Phosphatidylinositol 3-kinase (PI3-K) has been implicated as a signal-transducing component in interleukin-2 (IL-2)-induced mitogenesis. However, the function of this lipid kinase in regulating IL-2-triggered downstream events has remained obscure. Using the potent and specific PI3-K inhibitor, wortmannin, we assessed the role of PI3-K in IL-2-mediated signaling and proliferation in the murine T-cell line CTLL-2. Addition of the drug to exponentially growing cells resulted in an accumulation of cells in the G0/G1 phase of the cell cycle. Furthermore, wortmannin also partially suppressed IL-2-induced S-phase entry in G1-synchronized cells. Analysis of IL-2-triggered signaling pathways revealed that wortmannin pretreatment resulted in complete inhibition of IL-2-provoked p70 S6 kinase activation and also attenuated IL-2-induced MAP kinase activation at drug concentrations identical to those required for inhibition of PI3-K catalytic activity. Wortmannin also diminished the IL-2-triggered activation of the MAP kinase activator, MEK, but did not inhibit activation of Raf, the canonical upstream activator of MEK. These results suggest that a novel wortmannin-sensitive activation pathway regulates MEK and MAP kinase in IL-2-stimulated T lymphocytes.  相似文献   

18.
Wild-type p53 triggers two distinct biological responses, cell cycle arrest and apoptosis. Several small DNA tumor viruses encode proteins that bind p53 and thus block the function of p53. This probably reflects the need of these viruses to prevent p53-induced cell cycle arrest and apoptosis to allow viral DNA replication. Unlike SV40 large T, polyoma virus large T does not bind p53, and it is still unclear how polyoma virus blocks p53 function. To address this question, we transfected polyoma virus middle T or small t alone or middle T and small t together into J3D mouse T-lymphoma cells carrying temperature-sensitive p53 (ts p53). Induction of wild-type p53 by temperature shift to 32 degrees C triggered both G1 cell cycle arrest and apoptosis in parental J3D-ts p53 cells. In contrast, J3D-ts p53 cells coexpressing middle T and small t showed only a weak G1 cell cycle arrest response after induction of wild-type p53 at 32 degrees C. Fluorescence-activated cell sorter analysis revealed that nearly half of the middle T-expressing cells, 30% of the small t-expressing cells, and a majority of the cells coexpressing middle T and small t were resistant to p53-induced apoptosis. The phosphatidylinositol 3-kinase inhibitor wortmannin partially abrogated the protective effect of middle T but not small t on p53-induced apoptosis, indicating that middle T prevents p53-induced apoptosis through the phosphatidylinositol 3-kinase signal transduction pathway. Our results thus establish a mechanism for polyoma virus-mediated inhibition of p53 function.  相似文献   

19.
The massive T cell death that occurs in HIV type 1 (HIV-1) infection contributes profoundly to the pathophysiology associated with AIDS. The mechanisms controlling cell death of both infected and uninfected T cells ("bystander" death) are not completely understood. We have shown that HIV-1 infection of T cells results in altered glycosylation of cell surface glycoproteins; specifically, it decreased sialylation and increased expression of core 2 O-glycans. Galectin-1 is an endogenous human lectin that recognizes these types of glycosylation changes and induces cell death of activated lymphocytes. Therefore we studied the possible contribution of galectin-1 in the pathophysiology of AIDS. O-glycan modifications were investigated on peripheral lymphocytes from AIDS patients. Oligosaccharides from CD43 and CD45 of CEM cells latently infected with HIV-1 were chemically analyzed. Consistent with our previous results, we show that HIV-1 infection results in accumulation of exposed lactosamine residues, oligosaccharides recognized by galectin-1 on cell surface glycoproteins. Both latently HIV-1-infected T cell lines and peripheral CD4 and CD8 T cells from AIDS patients exhibited exposed lactosamine residues and demonstrated marked susceptibility to galectin-1-induced cell death, in contrast to control cultures or cells from uninfected donors. The fraction of cells that died in response to galectin-1 exceeded the fraction of infected cells, indicating that death of uninfected cells occurred. Altered cell surface glycosylation of T cells during HIV-1 infection increases the susceptibility to galectin-1-induced cell death, and this death pathway can contribute to loss of both infected and uninfected T cells in AIDS.  相似文献   

20.
Recent evidence demonstrates that HIV-1 infection leads to the attenuation of cellular immune responses, which has been correlated with the increased expression of programmed death (PD)-1 on virus-specific CD8(+) T cells. PD-1 is induced upon T cell activation, and its prolonged expression facilitates CD8(+) T cell inhibitory signals when bound to its B7 family ligands, PD-ligand (L)1/2, which are expressed on APCs. Importantly, early reports demonstrated that blockade of the PD-1/PD-L interaction by Abs may help to counter the development of immune exhaustion driven by HIV viral persistence. To better understand the regulation of the PD-1 pathway during HIV infection, we examined the ability of the virus to induce PD-L expression on macrophages and dendritic cells. We found a direct relationship between the infection of APCs and the expression of PD-L1 in which virus-mediated upregulation induced a state of nonresponsiveness in uninfected HIV-specific T cells. Furthermore, this exhaustion phenotype was revitalized by the blockade of PD-L1, after which T cells regained their capacity for proliferation and the secretion of proinflammatory cytokines IFN-γ, IL-2, and IL-12 upon restimulation. In addition, we identify a critical role for the PI3K/serine-threonine kinase signaling pathway in PD-L1 upregulation of APCs by HIV, because inhibition of these intracellular signal transducer enzymes significantly reduced PD-L1 induction by infection. These data identify a novel mechanism by which HIV exploits the immunosuppressive PD-1 pathway and suggest a new role for virus-infected cells in the local corruption of immune responses required for viral suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号