首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Problems relating to the identification of sex in Neanderthal specimens are discussed. Three morphological features—morphology of the mastoid process and surrounding area, form of the supraorbital torus at glabella and the superciliary region, and the rugosity of the nuchal plane—were selected as most indicative of sex in Neanderthal crania based on observations from the Krapina collection and on those European specimens with pelvicly determined sex. Thirteen Neanderthal crania (eight males, five females) are sexed on the basis of these criteria, and the pattern and degree of sexual dimorphism determined for this sample is compared to those exhibited by other samples of more recent European hominids. It is concluded that the degree of sexual dimorphism in Neanderthal crania, as defined by this study, is consistent with that observed in the other fossil samples and that Neanderthals exhibit slightly more cranial sexual dimorphism than more recent Europeans. Models for explaining this are discussed as is the difference in pattern of change and degree of sexual dimorphism between the cranium and postcranium during later prehistoric hominid evolution in Europe.  相似文献   

2.
Since their discovery, Neanderthals have been described as having a marked degree of anteroposterior curvature of the femoral shaft. Although initially believed to be pathological, subsequent discoveries of Neanderthal remains lead femoral curvature to be considered as a derived Neanderthal feature. A recent study on Neanderthals and middle and early Upper Palaeolithic modern humans found no differences in femoral curvature, but did not consider size-corrected curvature. Therefore, the objectives of this study were to use 3D morphometric landmark and semi-landmark analysis to quantify relative femoral curvature in Neanderthals, Upper Palaeolithic and recent modern humans, and to compare adult bone curvature as part of the overall femoral morphology among these populations.Comparisons among populations were made using geometric morphometrics (3D landmarks) and standard multivariate methods. Comparative material involved all available complete femora from Neanderthal and Upper Palaeolithic modern human, archaeological (Mesolithic, Neolithic, Medieval) and recent human populations representing a wide geographical and lifestyle range. There are significant differences in the anatomy of the femur between Neanderthals and modern humans. Neanderthals have more curved femora than modern humans. Early modern humans are most similar to recent modern humans in their anatomy. Femoral curvature is a good indicator of activity level and habitual loading of the lower limb, indicating higher activity levels in Neanderthals than modern humans. These differences contradict robusticity studies and the archaeological record, and would suggest that femoral morphology, and curvature in particular, in Neanderthals may not be explained by adult behavior alone and could be the result of genetic drift, natural selection or differences in behavior during ontogeny.  相似文献   

3.
Throughout much of prehistory, humans practiced a hunting and gathering subsistence strategy. Elevated postcranial robusticity and sexually dimorphic mobility patterns are presumed consequences of this strategy, in which males are attributed greater robusticity and mobility than females. Much of the basis for these trends originates from populations where skeletal correlates of activity patterns are known (e.g., cross-sectional geometric properties of long bones), but in which activity patterns are inferred using evidence such as archaeological records (e.g., Pleistocene Europe). Australian hunter-gatherers provide an opportunity to critically assess these ideas since ethnographic documentation of their activity patterns is available. We address the following questions: do skeletal indicators of Australian hunter-gatherers express elevated postcranial robusticity and sexually dimorphic mobility relative to populations from similar latitudes, and do ethnographic accounts support these findings. Using computed tomography, cross-sectional images were obtained from 149 skeletal elements including humeri, radii, ulnae, femora, and tibiae. Cross-sectional geometric properties were calculated from image data and standardized for body size. Australian hunter-gatherers often have reduced robusticity at femoral and humeral midshafts relative to forager (Khoi-San), agricultural/industrialized (Zulu), and industrialized (African American) groups. Australian hunter-gatherers display more sexual dimorphism in upper limb robusticity than lower limb robusticity. Attributing specific behavioral causes to upper limb sexual dimorphism is premature, although ethnographic accounts support sex-specific differences in tool use. Virtually absent sexual dimorphism in lower limb robusticity is consistent with ethnographic accounts of equivalently high mobility among females and males. Thus, elevated postcranial robusticity and sexually dimorphic mobility do not always characterize hunter-gatherers.  相似文献   

4.
5.
The skeletal sample from Grotta dell’Uzzo, Sicily (2 adult females and 5 adult males) was compared to a number of more representative population samples from Western Europe and the Mediterranean Basin. The majority of these were from Italian pre- and protohistoric sites. The research protocol analyzed skeletal indicators of labour activity and sexual division of labour (body size and proportions, sexual dimorphism, limb lateralization, bone robustness, the development of muscular attachments, accessory articular facets, signs of muscular hyperfunction). Sexual dimorphism and limb lateralization showed some regular patterns of possible general significance in all the samples examined here. A general pattern of gracilization and de-specialization of physical activity is observed in the Mesolithic as compared to the Upper Palaeolithic samples. The main features of the Mesolithic samples are: a reduction of body size and bone robustness, a lower degree of sexual dimorphism and limb bone asymmetry, a reduction of the mechanical stress on the lower limbs indicated by less pronounced muscular attachments and reduced talar flattening. This trend is reversed towards the Neolithic period. The main features of these variations are discussed in relation to economic and environmental changes. The Uzzo sample fits well into the general picture of the Western European Mesolithic, although showing some intermediate features between the Mesolithic and the Neolithic samples. This paper is dedicated to the memory of the late Roland Menk, who made significant contribution to our understanding of the Mesolithic transition.  相似文献   

6.
Postcranial skeletal data from two recent Eskimo populations are used to test David Frayer's model of sexual dimorphism reduction in Europe between the Upper Paleolithic and Mesolithic. Frayer argued that a change from big-game hunting and adoption of new technology in the Mesolithic reduced selection for large body size in males and led to a reduction in skeletal sexual dimorphism. Though aspects of Frayer's work have been criticized in the literature, the association of big-game hunting and high sexual dimorphism is untested. This study employs univariate and multivariate analysis to test that association by examining sexual dimorphism of cranial and postcranial bones of two recent Alaskan Eskimo populations, one being big-game (whale and other large marine mammal) hunting people, and the second being salmon fishing, riverine people. While big-game hunting influences skeletal robusticity, it cannot be said to lead to greater sexual dimorphism generally. The two populations had different relative sexual dimorphism levels for different parts of the body. Notably, the big-game hunting (whaling) Eskimos had the lower multivariate dimorphism in the humerus, which could be expected to be the structure under greatest exertion by such hunting in males. While the exertions of the whale hunting economic activities led to high skeletal robusticity, as predicted by Frayer's model, this was true of the females as well as the males, resulting in low sexual dimorphism in some features. Females are half the sexual dimorphism equation, and they cannot be seen as constants in any model of economic behavior. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Neanderthal pelvic morphology is not well understood, despite the recent find and analysis of the Kebara 2 pelvis. Many of the proposed hypotheses focus on the possible need for a larger birth canal. A previously unexplored aspect involves possible direct obstetric implications of bone robusticity and density. These characteristics ocan affect obstetrics in modern humans, especially the molding of the neonate's head during parturition: engineering studies have shown that denser neonate cranial bones undergo less deformation, and thicker (more robust) cranial bones would also be expected to deform less during the birth process. These bone characteristics may also result in a less flexible birth canal. Thus, more robust or denser bones could result in the need for a larger birth canal or a smaller neonate head, due to decreased flexibility. Examples from modern populations are discussed and the conclusions applied to Neanderthals, who are known to have had high bone robusticity and may have had high bone density, given their heavy musculature. (A positive association between muscle mass and bone density has been observed repeatedly in modern humans.) We conclude that bone robusticity and density may have obstetrical implications for Neanderthals, with particular importance for neonate head molding during birth.  相似文献   

8.
Cross-sectional geometric properties of the human femur and tibia are compared in males and females in a number of recent and archaeological population samples extending back to the Middle Paleolithic. There is a consistent decline in sexual dimorphism from hunting-gathering to agricultural to industrial subsistence strategy levels in properties which measure relative anteroposterior bending strength of the femur and tibia in the region about the knee. This trend parallels and is indicative of reductions in the sexual division of labor, in particular differences in the relative mobility of males and females. Sexual dimorphism in mediolateral bending strength near the hip shows no consistent temporal trend, probably reflecting relatively constant sex differences in pelvic structure related to the requirements of childbirth. Upper and Middle Paleolithic samples are indistinguishable in terms of sexual dimorphism from modern huntergatherers, suggesting a similar sexual division of labor. The results illustrate the utility of cross-sectional geometric parameters of long bone diaphyses in reconstructing behavioral differences within and between past populations. Some variations in the accuracy of sexing techniques based on diaphyseal measurements of the lower limb long bones may also be explained by these behavioral and structural factors.  相似文献   

9.
This paper investigates the changes in upper and lower limb robusticity and activity patterns that accompanied the transition to a Neolithic subsistence in western Liguria (Italy). Diaphyseal robusticity measures were obtained from cross-sectional geometric properties of the humerus and femur in a sample of 16 individuals (eight males and eight females) dated to about 6,000-5,500 BP. Comparisons with European Late Upper Paleolithics (LUP) indicate increased humeral robusticity in Neolithic Ligurian (NEOL) males, but not in females, with a significant reduction in right-left differences in both sexes. Sexual dimorphism in robusticity increases in upper and lower limb bones. Regarding the femur, while all female indicators of bending strength decrease steadily through time, values for NEOL males approach those of LUP. This suggests high, and unexpected, levels of mechanical stress for NEOL males, probably reflecting the effects of the mountainous terrain on lower limb remodeling. Comparisons between NEOL males and a small sample of LUP hunter-gatherers from the same area support this interpretation. In conclusion, cross-sectional geometry data indicate that the transition to Neolithic economies in western Liguria did not reduce functional requirements in males, and suggest a marked sexual division of labor involving a more symmetrical use of the upper limb, and different male-female levels of locomotory stress. When articulated with archaeological, faunal, paleopathological, and ethnographic evidence, these results support the hypothesis of repetitive, bimanual use of axes tied to pastoral activities in males, and of more sedentary tasks linked to agriculture in females.  相似文献   

10.
Researchers have hypothesized that nasal morphology, both in archaic Homo and in recent humans, is influenced by body mass and associated oxygen consumption demands required for tissue maintenance. Similarly, recent studies of the adult human nasal region have documented key differences in nasal form between males and females that are potentially linked to sexual dimorphism in body size, composition, and energetics. To better understand this potential developmental and functional dynamic, we first assessed sexual dimorphism in the nasal cavity in recent humans to determine when during ontogeny male‐female differences in nasal cavity size appear. Next, we assessed whether there are significant differences in nasal/body size scaling relationships in males and females during ontogeny. Using a mixed longitudinal sample we collected cephalometric and anthropometric measurements from n = 20 males and n = 18 females from 3.0 to 20.0+ years of age totaling n = 290 observations. We found that males and females exhibit similar nasal size values early in ontogeny and that sexual dimorphism in nasal size appears during adolescence. Moreover, when scaled to body size, males exhibit greater positive allometry in nasal size compared to females. This differs from patterns of sexual dimorphism in overall facial size, which are already present in our earliest age groups. Sexually dimorphic differences in nasal development and scaling mirror patterns of ontogenetic variation in variables associated with oxygen consumption and tissue maintenance. This underscores the importance of considering broader systemic factors in craniofacial development and may have important implications for the study of patters craniofacial evolution in the genus Homo. Am J Phys Anthropol 153:52–60, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The biological problems considered in this study are sexual dimorphism in angular osteometric traits, changes in these traits with aging and their bilateral asymmetry in the same individual. The sample comprises the right and left long bones of 200 skeletons (100 males and 100 females) of Sardinian adults (Frasetto collection) for whom the sex and age at death are known. As concerns the sexual dimorphism, some angular traits of upper limb (joint axis angle of the ulna in particular) and the lower limb (condylo-diaphyseal angle of the femur and retroversion angle of the tibia) are significantly different between males and females. Torsion angles of long bones (especially the femur) were found to change with age. In sides comparison revealed a clear right-left asymmetry in our sample. The asymmetry, sexual dimorphism and changes with age are discussed in relation to varying stresses of different living activities. Our data indicate that the angular traits of long bones could be very informative in biomechanical interpretations of human activities based on skeletal remains.  相似文献   

12.
Humans demonstrate species-wide bilateral asymmetry in long bone dimensions. Previous studies have documented greater right-biases in upper limb bone dimensions--especially in length and diaphyseal breadth--as well as more asymmetry in the upper limb when compared with the lower limb. Some studies have reported left-bias in lower limb bone dimensions, which, combined with the contralateral asymmetry in upper limbs, has been termed "crossed symmetry." The examination of sexual dimorphism and population variation in asymmetry has been limited. This study re-examines these topics in a large, geographically and temporally diverse sample of 780 Holocene adult humans. Fourteen bilateral measures were taken, including maximum lengths, articular and peri-articular breadths, and diaphyseal breadths of the femur, tibia, humerus, and radius. Dimensions were converted into percentage directional (%DA) and absolute (%AA) asymmetries. Results reveal that average diaphyseal breadths in both the upper and lower limbs have the greatest absolute and directional asymmetry among all populations, with lower asymmetry evident in maximum lengths or articular dimensions. Upper limb bones demonstrate a systematic right-bias in all dimensions, while lower limb elements have biases closer to zero %DA, but with slight left-bias in diaphyseal breadths and femoral length. Crossed symmetry exists within individuals between similar dimensions of the upper and lower limbs. Females have more asymmetric and right-biased upper limb maximum lengths, while males have greater humeral diaphyseal and head breadth %DAs. The lower limb demonstrates little sexual dimorphism in asymmetry. Industrial groups exhibit relatively less asymmetry than pre-industrial humans and less dimorphism in asymmetry. A mixture of influences from both genetic and behavioral factors is implicated as the source of these patterns.  相似文献   

13.
This study investigates differences in femur midshaft shape, robusticity, and sexual dimorphism derived from external measurements between a broad range of prehistoric and historic North American populations with different subsistence strategies and inferred levels of mobility. The sample was divided into six groups to test whether observed femur midshaft variables follow the patterns predicted based on archaeologically and historically determined subsistence and mobility data. The results suggest significant variation in femur midshaft shape and robusticity in all populations, and that inferred mobility levels do not correspond consistently with femur midshaft structure in either males or females. Results do, however, support the prediction that sexual dimorphism is generally greater in more mobile populations.  相似文献   

14.
Abstract. Charadrii (shorebirds, gulls, and alcids) have an unusual diversity in their sexual size dimorphism, ranging from monomorphism to either male-biased or female-biased dimorphism. We use comparative analyses to investigate whether this variation relates to sexual selection through competition for mates or natural selection through different use of resources by males and females. As predicted by sexual selection theory, we found that in taxa with socially polygynous mating systems, males were relatively larger than females compared with less polygynous species. Furthermore, evolution toward socially polyandrous mating systems was correlated with decreases in relative male size. These patterns depend on the kinds of courtship displays performed by males. In taxa with acrobatic flight displays, males are relatively smaller than in taxa in which courtship involves simple flights or displays from the ground. This result remains significant when the relationship with mating system is controlled statistically, thereby explaining the enigma of why males are often smaller than females in socially monogamous species. We did not find evidence that evolutionary changes in sexual dimorphism relate to niche division on the breeding grounds. In particular, biparental species did not have greater dimorphism in bill lengths than uniparental species, contrary to the hypothesis that selection for ecological divergence on the breeding grounds has been important as a general explanation for patterns of bill dimorphism. Taken together, these results strongly suggest that sexual selection has had a major influence on sexual size dimorphism in Charadrii, whereas divergence in the use of feeding resources while breeding was not supported by our analyses.  相似文献   

15.
Sexual dimorphism in the postcranial skeleton of New World primates   总被引:2,自引:0,他引:2  
This study examines sexual dimorphism in 24 dimensions of the postcranial skeleton of four platyrrhine species: Callithrix jacchus, Saguinus nigricollis, Saimiri sciureus, and Cebus albifrons. The two callitrichid species show a relatively small amount of variation in the degree of sexual dimorphism among the different dimensions. Variation is considerably higher in the two cebid species as reflected by a mosaic pattern of sexual dimorphisms with males being significantly larger than females in some dimensions, and females significantly larger than males in others. In dimensions of the pectoral girdle and limb bones, males and females in each of the two cebid species are essentially scaled versions of each other, with males being peramorphic compared to females. This pattern is primarily the result of time hypermorphosis, i.e. an extension of the growth period in time in males. Rate hypermorphosis, i.e. an increase in the rate of growth in time in males, appears to play an additional role, however, in S. sciureus. By contrast, in dimensions of the true pelvis, sex differences in shape are dissociated from those in size. They are interpreted as the result of acceleration, i.e. increase in rate of shape change in females, as an adaptation to obstetrical functions. Interspecific analyses indicate positive allometry of mean degree of postcranial dimorphism with respect to body size. This coincides with previous findings by Leutenegger and Cheverud [1982, 1985] on the scaling of sexual dimorphism in body weight and canine size, and thus supports their model which posits selection on body size as the prime mover for the evolution of sexual dimorphism.  相似文献   

16.
本文对中国现代人群的两性身高差异分布状况及其影响因素进行了分析。选用152处中国现代人群(含69处汉族人群和83处少数民族人群)的男、女性身高数据,计算两性身高差异指数,并对比该指数在南、北方汉族和少数民族人群间的分布差异,同时分析纬度、气候、体格大小与城乡环境因素对两性身高差异程度的影响。结果表明,中国男性的平均身高比女性高出约7.16%(4.72%~9.26%);南、北方汉族和少数民族之间的两性身高差异程度相似,北方汉族和南方汉族两性身高差异程度相似,但北方少数民族的两性身高差异明显大于南方少数民族。此外,两性身高差异程度与纬度、气温年较差和年均风速呈低度线性正相关,与年均气温、年均降水量和年均相对湿度呈低度线性负相关,而与体格大小和城乡环境并无显著关联。这提示遗传和自然环境因素在中国现代人群两性身高差异的区域化演变中更趋主导性,而社会环境因素的影响程度相对较低。  相似文献   

17.
It has been proposed that the pollical phalangeal length proportions of the Neanderthals provided them with a greater mechanical advantage relative to recent humans for their pollical flexor muscles in power grips across the interphalangeal (IP) joint at the expense of the mechanical advantage of those pollical flexor muscles in precision grips at the finger tip. To test these related hypotheses, we compared the pollical load arm dimensions (phalanx lengths) to power arm dimensions (dorsopalmar articular heights) for the European and Near Eastern Neanderthals and for European and Amerindian samples of recent humans. It was found, initially, that the proximal articular height of the pollical distal phalanx is a poor predictor of the power arm at the IP articulation, even though the proximal articular height of the pollical proximal phalanx was an adequate indicator of the power arm size at the metacarpophalangeal (MCP) joint. In addition, differences in distal pollical ulnar deviation at the IP joint appeared to make little difference in the mechanical advantage comparisons. More importantly, the relative shortness of Neanderthal proximal pollical phalanges and the relative lengthening of their distal pollical phalanges was confirmed, and it was determined that, despite some minor differences in articular dimensions between Neanderthals and recent humans, these pollical phalangeal length contrasts translated into significant differences in mechanical advantages for the flexor muscles across the MCP and IP articulations.  相似文献   

18.
In many bird and mammal species, males are significantly larger than females. The prevailing explanation for larger-sized males is that sexual selection drives increased male size. In addition, researchers commonly assume that the extent of dimorphism indicates the strength of selection for increased size in males. Here, through reconstruction of ancestral morphology for males and females of one large avian clade we present data that contradict this assumption and illustrate that selection for decreased female size explains 'male-biased' dimorphism ca. 50% of the time. Our findings are also inconsistent with ecological niche partitioning between the sexes and increased breeding benefits from reduced female size as general explanations for the evolution of size dimorphism within the clade. We conclude that it is incorrect to assume sexual dimorphism results from a single selective factor, such as directional sexual selection on increased male size. Rather, we suggest that the selective forces leading to sexual dimorphism may vary between species and should be tested on a case-by-case basis using a phylogenetic approach.  相似文献   

19.
20.
Nearly two decades since the first retrieval of Neanderthal DNA, recent advances in next-generation sequencing technologies have allowed the generation of high-coverage genomes from two archaic hominins, a Neanderthal and a Denisovan, as well as a complete mitochondrial genome from remains which probably represent early members of the Neanderthal lineage. This genomic information, coupled with diversity exome data from several Neanderthal specimens is shedding new light on evolutionary processes such as the genetic basis of Neanderthal and modern human-specific adaptations—including morphological and behavioural traits—as well as the extent and nature of the admixture events between them. An emerging picture is that Neanderthals had a long-term small population size, lived in small and isolated groups and probably practised inbreeding at times. Deleterious genetic effects associated with these demographic factors could have played a role in their extinction. The analysis of DNA from further remains making use of new large-scale hybridization-capture-based methods as well as of new approaches to discriminate contaminant DNA sequences will provide genetic information in spatial and temporal scales that could help clarify the Neanderthal''s—and our very own—evolutionary history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号