首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A growing body of archeological evidence suggests that the dramatic climatic events of the Last Glacial Maximum in Europe triggered important changes in foraging behavior, involving a significant decrease in mobility. In general, changes in mobility alter patterns of bending of the midshaft femur and tibia, resulting in changes in diaphyseal robusticity and shape. This relationship between levels of mobility and lower limb diaphyseal structure was used to test the hypothesized decrease in mobility. Cross-sectional geometric data were obtained for 81 Upper Paleolithic and Mesolithic European femora and tibiae. The sample was divided into three time periods: Early Upper Paleolithic (EUP), Late Upper Paleolithic (LUP), and Mesolithic (Meso). In addition, because decreased mobility often results in changes in sex roles, males and females were analyzed separately. All indicators of bending strength decrease steadily through time, although few of the changes reach statistical significance. There is, however, a highly significant change in midshaft femur shape, with LUP and Meso groups more circular in cross-section than the EUP sample, supporting archeologically based predictions of decreased mobility. Sexual dimorphism levels in diaphyseal strength remain low throughout the three time periods, suggesting a departure in Upper Paleolithic and Mesolithic foragers away from the pattern of division of labor by sex observed in modern hunter-gatherers. Results confirm that the onset of the Last Glacial Maximum represents a crucial stage in Late Pleistocene human evolution, and signals the appearance of some of the behavioral adaptations that are usually associated with the Neolithic, such as sedentism.  相似文献   

2.
The skeletal sample from Grotta dell’Uzzo, Sicily (2 adult females and 5 adult males) was compared to a number of more representative population samples from Western Europe and the Mediterranean Basin. The majority of these were from Italian pre- and protohistoric sites. The research protocol analyzed skeletal indicators of labour activity and sexual division of labour (body size and proportions, sexual dimorphism, limb lateralization, bone robustness, the development of muscular attachments, accessory articular facets, signs of muscular hyperfunction). Sexual dimorphism and limb lateralization showed some regular patterns of possible general significance in all the samples examined here. A general pattern of gracilization and de-specialization of physical activity is observed in the Mesolithic as compared to the Upper Palaeolithic samples. The main features of the Mesolithic samples are: a reduction of body size and bone robustness, a lower degree of sexual dimorphism and limb bone asymmetry, a reduction of the mechanical stress on the lower limbs indicated by less pronounced muscular attachments and reduced talar flattening. This trend is reversed towards the Neolithic period. The main features of these variations are discussed in relation to economic and environmental changes. The Uzzo sample fits well into the general picture of the Western European Mesolithic, although showing some intermediate features between the Mesolithic and the Neolithic samples. This paper is dedicated to the memory of the late Roland Menk, who made significant contribution to our understanding of the Mesolithic transition.  相似文献   

3.
Long bone lengths of all available European Upper Paleolithic (41 males, 25 females) and Mesolithic (171 males, 118 females) remains have been transformed into stature estimates by means of new regression equations derived from Early Holocene skeletal samples using "Fully's anatomical stature" and the major axis regression technique (Formicola & Franceschi, 1996). Statistical analysis of the data, with reference both to time and space parameters, indicates that: (1) Early Upper Paleolithic samples (pre-Glacial Maximum) are very tall; (2) Late Upper Paleolithic groups (post-Glacial Maximum) from Western Europe, compared to their ancestors, show a marked decrease in height; (3) a further, although not significant, reduction of stature affects Western Mesolithics; (4) no regional differences have been observed during both phases of the Upper Paleolithic; (5) a high level of homogeneity has also been found in the Mesolithic, both in Western and Eastern Europe; (6) the internal homogeneity found during the Mesolithic in Western and Eastern Europe is associated with marked inter-regional variability, with populations of the latter region showing systematically significantly greater stature than their Western contemporaries. Evaluation of possible causes for the great stature of the Early Upper Paleolithic samples points to high nutritional standards as the most important factor. Results obtained on later groups clearly indicate that the Last Glacial Maximum, rather than the Mesolithic transition, is the critical phase in the negative trend affecting Western European populations. While changes in the quality of the diet, and in particular decreased protein intake, provide a likely explanation for that trend, variations in levels of gene flow probably also played a role. Reasons for the West-East Mesolithic dichotomy remain unclear and lack of information for the Late Upper Paleolithic of Eastern Europe prevents insight into the remote origins of this phenomenon. Analysis of regional differentiation of stature, particularly well supported by data from Mesolithic sites, points to the absence of today's latitudinal gradients and suggests a relative homogeneity in dietary, cultural and biodemographic patterns for the last hunter-gatherer populations of Western Europe.  相似文献   

4.
Postcranial skeletal data from two recent Eskimo populations are used to test David Frayer's model of sexual dimorphism reduction in Europe between the Upper Paleolithic and Mesolithic. Frayer argued that a change from big-game hunting and adoption of new technology in the Mesolithic reduced selection for large body size in males and led to a reduction in skeletal sexual dimorphism. Though aspects of Frayer's work have been criticized in the literature, the association of big-game hunting and high sexual dimorphism is untested. This study employs univariate and multivariate analysis to test that association by examining sexual dimorphism of cranial and postcranial bones of two recent Alaskan Eskimo populations, one being big-game (whale and other large marine mammal) hunting people, and the second being salmon fishing, riverine people. While big-game hunting influences skeletal robusticity, it cannot be said to lead to greater sexual dimorphism generally. The two populations had different relative sexual dimorphism levels for different parts of the body. Notably, the big-game hunting (whaling) Eskimos had the lower multivariate dimorphism in the humerus, which could be expected to be the structure under greatest exertion by such hunting in males. While the exertions of the whale hunting economic activities led to high skeletal robusticity, as predicted by Frayer's model, this was true of the females as well as the males, resulting in low sexual dimorphism in some features. Females are half the sexual dimorphism equation, and they cannot be seen as constants in any model of economic behavior. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Studies of cultural artifacts and faunal remains from European Upper Paleolithic and Mesolithic sites indicate a shift in hunter gatherer subsistence strategies, involving an intensification and diversification of resource exploitation relative to earlier foragers during the Tardiglacial and Postglacial periods. This trend has been recognized as well through the analysis of non-pathological skeletal adaptations of the upper limbs of European Upper Paleolithic human fossils. These paleoanthropological studies of adaptive bone modeling also raise the question of female use of throwing-based weapon technology in the Upper Paleolithic. Here, we studied another type of osteological marker of activity, enthesopathies, of the upper limb remains of 37 European Upper Paleolithic and Mesolithic human fossils, with the goal of testing two hypotheses: 1) that activity levels were heightened at the end of Upper Paleolithic and into the Mesolithic relative to earlier foragers of the Gravettian, and 2) that there was an absence of a marked sexual division of labor in European hunter-gatherers during this time span. Our results are consistent with the first hypothesis; upper limb enthesopathies are significantly less frequent in the Gravettian group, but raise doubts about the second hypothesis. Four males exhibit lesions that can be confidently associated with throwing activities, while no females exhibit such lesions.  相似文献   

6.
Metric dental change in the European upper paleolithic and mesolithic.   总被引:2,自引:0,他引:2  
Evolutionary trends for dental reduction are presented for European Upper Paleolithic and Mesolithic samples. The analysis demonstrates that the greatest decrease in tooth size occurs between the two divisions of the Upper Paleolithic, while little and insignificant change characterizes the Late Upper Paleolithic/Mesolithic transition. Trends for tooth size over this period indicate that (1) human evolution does not stop with the appearance of "anatomically modern Homo sapiens," (2) changes in tooth size fluctuate with increases in the efficiency and complexity of cultural systems, and (3) the Early Upper Paleolithic sample should be considered transitional between Wurm II European Neanderthals and later Upper Paleolithic and Mesolithic groups.  相似文献   

7.
Body mass and structural properties of the femoral and tibial midshafts of the "Iceman," a late Neolithic (5,200 BP) mummy found in the Tyrolean Alps, are determined from computed tomographic scans of his body, and compared with those of a sample of 139 males spanning the European early Upper Paleolithic through the Bronze Age. Two methods, based on femoral head breadth and estimated stature/bi-iliac (pelvic) breath, yield identical body-mass estimates of 61 kg for the Iceman. In combination with his estimated stature of 158 cm, this indicates a short but relatively wide or stocky body compared to our total sample. His femur is about average in strength compared to our late Neolithic (Eneolithic) males, but his tibia is well above average. His femur also shows adaptations for his relatively broad body (mediolateral strengthening), while his tibia shows adaptations for high mobility over rough terrain (anteroposterior strengthening). In many respects, his tibia more closely resembles those of European Mesolithic rather than Neolithic males, which may reflect a more mobile lifestyle than was characteristic of most Neolithic males, perhaps related to a pastoral subsistence strategy. There are indications that mobility in general declined between the European Mesolithic and late Neolithic, and that body size and shape may have become more variable throughout the continent following the Upper Paleolithic.  相似文献   

8.
Some theoretical and methodological morphometrical approaches in evolutionary anthropology and paleoanthropology are reviewed in this study. It is shown which are the contemporary possibilities of sophisticated biometrical and biostatistical methods and the role of the morphometrical approach. A new approach, experimental morphometrics, is presented, reflecting recent trends in evolutionary morphology as well as sophisticated biostatistical methods. The approach emphasizes the complex inter-related approach to the data processing and a double nature of morphometric data, i.e. biological and biostatistical one. The practical use of experimental morphometry is given for the two examples of analyses of the evolution of the hominoid and hominid femur and tibia. The hypothesis on a two stage restructuring of morphology of the hominid femur and tibia is supported by experimental results. Two different steps during this restructuring could be recognized: 1) Structural remodelling typical for the origin of hominids and australopithecine evolution, and 2) proportional remodelling of lower limb long bones which is connected with the Australopithecus/Homo transition (i.e. mainly Homo habilis stage). The results confirm the increasing trend of bipedal adaptations on the early hominid lower limb skeleton. Analysis of microevolutionary trends on the Homo sapiens femur and tibia indicates at least three different morphological patterns, Paleolithic, Neolithic and Recent, with numerous specific features in morphology and proportions. Neanderthal morphology is very derived. Upper Paleolithic/Mesolithic/Neolithic transition has a key character for the understanding of post-Paleolithic morphology. A very high sexual dimorphism of the femur and tibia has been demonstrated for Upper Paleolithic and Neolithic populations. Presented at the Foundation of Different Approaches to the Study of Human Evolution edited by B. Sigmon & V.V. Leonovicova-Liblice, September 1–3, 1989  相似文献   

9.
Evidence for a relationship between hunting strategies and body size is examined for human skeletons dating to the European Upper Paleolithic and Mesolithic. Trends for reduced limb size and stature seem to be correlated with improvements in the types of weapons utilized and a shift from aggressive to more docile game. Although some of these observations fit the predictions of Brues concerning the spearman-archer model, it is suggested that selection for reduced metabolic demands is a more plausible explanation for decrease in body size from the Upper Paleolithic to the Mesolithic . [Upper Paleolithic, Mesolithic, hunting, body size]  相似文献   

10.
Humeral morphology has been shown to reflect, in part, habitual manipulative behaviors in humans. Among Central European agricultural populations, long-term social change, increasing task specialization, and technological innovation all had the potential to impact patterns of habitual activity and upper limb asymmetry. However, systematic temporal change in the skeletal morphology of agricultural populations in this region has not been well-characterized. This study investigates diachronic patterns in humeral biomechanical properties and lengths among 174 adult Central European agriculturalists through the first ∼5400 years of farming in the region. Greater asymmetry in biomechanical properties was expected to accompany the introduction of metallurgy, particularly in males, while upper limb loading patterns were expected to be more similar between the Bronze and Iron Ages. Results revealed a divergence in the lateralization of upper limb biomechanical properties by sex between the Early/Middle Neolithic and Early/Middle Bronze Age. Neolithic females had significantly more variable properties than males in both humeri, while Bronze Age female properties became homogeneous and very symmetrical relative to the right-biased lateralization of contemporaneous males. The Bronze Age to Iron Age transition was associated with morphological change among females, with a significant increase in right-biased asymmetry and a concomitant reduction in sexual dimorphism. Relative to biomechanical properties, humeral length variation and asymmetry were low though some significant sexual dimorphism and temporal change was found. It was among females that the lateralization of humeral biomechanical properties, and variation within them, changed most profoundly through time. This suggests that the introduction of the ard and plow, metallurgical innovation, task specialization, and socioeconomic change through ∼5400 years of agriculture impacted upper limb loading in Central European women to a greater extent than men.  相似文献   

11.
Cross-sectional geometric properties of the human femur and tibia are compared in males and females in a number of recent and archaeological population samples extending back to the Middle Paleolithic. There is a consistent decline in sexual dimorphism from hunting-gathering to agricultural to industrial subsistence strategy levels in properties which measure relative anteroposterior bending strength of the femur and tibia in the region about the knee. This trend parallels and is indicative of reductions in the sexual division of labor, in particular differences in the relative mobility of males and females. Sexual dimorphism in mediolateral bending strength near the hip shows no consistent temporal trend, probably reflecting relatively constant sex differences in pelvic structure related to the requirements of childbirth. Upper and Middle Paleolithic samples are indistinguishable in terms of sexual dimorphism from modern huntergatherers, suggesting a similar sexual division of labor. The results illustrate the utility of cross-sectional geometric parameters of long bone diaphyses in reconstructing behavioral differences within and between past populations. Some variations in the accuracy of sexing techniques based on diaphyseal measurements of the lower limb long bones may also be explained by these behavioral and structural factors.  相似文献   

12.
This paper investigates the changes in upper and lower limb robusticity and activity patterns that accompanied the transition to a Neolithic subsistence in western Liguria (Italy). Diaphyseal robusticity measures were obtained from cross-sectional geometric properties of the humerus and femur in a sample of 16 individuals (eight males and eight females) dated to about 6,000-5,500 BP. Comparisons with European Late Upper Paleolithics (LUP) indicate increased humeral robusticity in Neolithic Ligurian (NEOL) males, but not in females, with a significant reduction in right-left differences in both sexes. Sexual dimorphism in robusticity increases in upper and lower limb bones. Regarding the femur, while all female indicators of bending strength decrease steadily through time, values for NEOL males approach those of LUP. This suggests high, and unexpected, levels of mechanical stress for NEOL males, probably reflecting the effects of the mountainous terrain on lower limb remodeling. Comparisons between NEOL males and a small sample of LUP hunter-gatherers from the same area support this interpretation. In conclusion, cross-sectional geometry data indicate that the transition to Neolithic economies in western Liguria did not reduce functional requirements in males, and suggest a marked sexual division of labor involving a more symmetrical use of the upper limb, and different male-female levels of locomotory stress. When articulated with archaeological, faunal, paleopathological, and ethnographic evidence, these results support the hypothesis of repetitive, bimanual use of axes tied to pastoral activities in males, and of more sedentary tasks linked to agriculture in females.  相似文献   

13.
A nonmetric trait, known as the supra-acetabular fossa and groove, is described for European Upper Paleolithic and mesolithic populations. This morphological feature consists of a pit posterior or superior to the anterior-inferior iliac spine and an associated groove which arcs over the roof of the acetabulum. Presence of the trait seems to be primarily related to the origin of the reflected head of rectus femoris. The trait is variable in its expression, shows an increase in definition with age, and occurs equally in males and females. Although the trait is commonly found in pre-Upper Paleolithic hominids, it is extremely rare in the Upper Paleolithic, limited to a single occurrence in the Oberkassel 2 female. In the Mesolithic, except for two innominates from Vlasac (Yugoslavia), the trait is found only in NW European populations, especially Skateholm (Sweden) and Henriksholm-Bøgebakken (Denmark) where it occurs in more than 50% of the known pelves. Given the trait’s restricted geographic distribution and high occurrence in Skateholm and Henriksholm-Bøgebakken, it is suggested the supra-acetabular fossa and groove represents a skeletal marker for NW European Mesolithic populations. As such, it provides evidence for the development of social territories in the early Holocene.  相似文献   

14.
Geographic patterns of mtDNA diversity in Europe   总被引:1,自引:0,他引:1       下载免费PDF全文
Genetic diversity in Europe has been interpreted as a reflection of phenomena occurring during the Paleolithic ( approximately 45,000 years before the present [BP]), Mesolithic ( approximately 18,000 years BP), and Neolithic ( approximately 10,000 years BP) periods. A crucial role of the Neolithic demographic transition is supported by the analysis of most nuclear loci, but the interpretation of mtDNA evidence is controversial. More than 2,600 sequences of the first hypervariable mitochondrial control region were analyzed for geographic patterns in samples from Europe, the Near East, and the Caucasus. Two autocorrelation statistics were used, one based on allele-frequency differences between samples and the other based on both sequence and frequency differences between alleles. In the global analysis, limited geographic patterning was observed, which could largely be attributed to a marked difference between the Saami and all other populations. The distribution of the zones of highest mitochondrial variation (genetic boundaries) confirmed that the Saami are sharply differentiated from an otherwise rather homogeneous set of European samples. However, an area of significant clinal variation was identified around the Mediterranean Sea (and not in the north), even though the differences between northern and southern populations were insignificant. Both a Paleolithic expansion and the Neolithic demic diffusion of farmers could have determined a longitudinal cline of mtDNA diversity. However, additional phenomena must be considered in both models, to account both for the north-south differences and for the greater geographic scope of clinical patterns at nuclear loci. Conversely, two predicted consequences of models of Mesolithic reexpansion from glacial refugia were not observed in the present study.  相似文献   

15.
Several faunal assemblages excavated in deposits of different antiquity (from Lower Paleolithic to Bronze Age), located in Northern, Central and Southern Italy, were studied from the archeozoological and taphonomic point of view. Data obtained by different Authors allow reconstruction of subsistence strategies adopted by prehistoric humans in these areas and through time, in particular as far as the exploitation of animal resources is concerned. The following assemblages were considered: Isernia La Pineta (Molise; Lower Paleolithic), Grotta Breuil (Latium; Middle Paleolithic), Grotta della Ghiacciaia (Verona; Middle Paleolithic), Riparo di Fumane and Riparo Tagliente (Verona; Middle and Upper Paleolithic), Riparo Mochi (Liguria; Upper Paleolithic), Grotta della Continenza (L'Aquila; Upper Paleolithic and Mesolithic), Grotta dell'Edera (Trieste; Mesolithic and Neolithic), Grotta della Cala at Marina di Camerota (Salerno; Eneolithic), Contraguda (Sassari; Neolithic), Castellaro Lagusello (Mantova; Bronze Age). Exploitation of the vegetal resources has been analyzed in the Neolithic sites of Colle Santo Stefano (Fucino), Settefonti (L'Aquila) and Catignano (Pescara).  相似文献   

16.
Regression equations for estimating living stature from long bone lengths have been calibrated on a sample of European Neolithic skeletons (33 males and 27 females) by using both least-squares (model I) and major-axis (model II) regression techniques. Stature estimates of the skeletal sample have been made by means of Fully's anatomical method, a procedure based on the sum of all osseous components of height, providing the best approximations to the actual stature. The calculated equations have been tested, along with those generally used to predict stature of earlier European remains, on a small, well-preserved sample including Late Upper Paleolithic, Mesolithic, and Neolithic skeletons. The results indicate that the model II equations are particularly useful when very short or very tall individuals are involved and, at the same time, are among the best predictors of stature in less extreme conditions. © 1996 Wiley-Liss, Inc.  相似文献   

17.
This study investigates the relationships between lower limb robusticity and mobility in a Neolithic sample (LIG) from Italy (6th millennium BP). This study tests the hypothesis that the high femoral robusticity previously observed in the LIG sample is a consequence of the subsistence strategy (i.e., high mobility on uneven terrain) practiced by LIG. Cross-sectional geometric properties of the femur and tibia at midshaft of LIG (eight males and eight females) were collected and results compared to Late Upper Paleolithic (12 males, five females), Mesolithic (24 males, 8 females), and Eneolithic (28 males, 17 females) samples from other sites throughout Europe. The results show that the LIG sample does not show the reduction of lower limb robusticity that is characteristic of the Eneolithic sample, but rather that the LIG sample is most similar to the earlier, highly mobile, populations. This high level of robusticity in the LIG sample could reflect both their pastoral subsistence strategy combined with a rugged environment, as well as their earlier temporal position within the Neolithic. The results of this study further point to significant variation in male-female mobility patterns in the region, also possibly related to pastoral behavioral patterns.  相似文献   

18.
Yugoslav Mesolithic dentition exhibits maximum mesiodistal reduction compared with contemporary European and North African groups. This reduction is not explained entirely by attrition, and may be seen as a continuation of the European Upper Paleolithic trend. Buccolingual dimension does not reduce as much. In fact, this dimension in premolars and molars is larger than in other groups. This observation also occurs in Natufians, who were grain collectors, hunters, and gatherers. The Yugoslav Mesolithic group was collecting and domesticating Cerelia as well as fishing and hunting. Linear enamel hypoplasias (LEH) indicate childhood stress through the fifth year, which corroborates previously reported incidence of rickets in this group. The central maxillary incisors and canines manifest higher degrees of LEH, but the appearance on the second molars suggest a more severe physiological disruption. Sex differences in distributions of alveolar resorption and calculus suggest differences in diet or nutritional stress. Previous reports indicate that females had higher incidence of osteomalacia. If so, female nutritional stress may explain the extreme mesiodistal reduction and minimal sexual dimorphism in this group.  相似文献   

19.
In this study, we investigate outer and inner variations of upper second molars (UM2) for Late Pleistocene and Early Holocene modern humans, at a key-period in our evolutionary history associated with major sociocultural, economic and environmental changes. Non-metric traits have been recorded on 89 UM2 of 66 Upper Paleolithic, Mesolithic and Neolithic individuals, and 40 UM2 have been microscanned to assess variations in enamel thickness (ET) distribution and enamel–dentine junction (EDJ) shape. Major changes are found between Mesolithic and Neolithic periods: a decrease of the metacone expression combined with an increase of the hypocone development; an increase of the heterogeneity of ET distribution between lingual and buccal cusps; and an increase of the development of the dentine horn tips corresponding to the hypocone and, to a lesser extent, to the metacone. These morphological modifications could be linked to the masticatory functional changes associated with the transition to agriculture.  相似文献   

20.
Differences among taxa in sexual size dimorphism of adults can be produced by changes in distinct developmental processes and thus may reflect different evolutionary histories. Here we examine whether divergence in sexual dimorphism of adults between recently established Montana and Alabama populations of the house finch (Carpodacus mexicanus) can be attributed to population differences in growth of males and females. In both populations, males and females were similar at hatching, but as a result of sex-specific growth attained sexual size dimorphism by the time of independence. Timing and extent of growth varied between the sexes: Females maintained maximum rates of growth for a longer time than males, whereas males had higher initial growth rates and achieved maximum growth earlier and at smaller sizes than females. Ontogeny of sexual dimorphism differed between populations, but in each population, sexual dimorphism in growth parameters and sexual dimorphism at the time of nest leaving were similar to sexual dimorphism of adults. Variation in growth of females contributed more to population divergence than did growth of males. In each population, we found close correspondence between patterns of sexual dimorphism in growth and population divergence in morphology of adults: Traits that were the most sexually dimorphic in growth in each population contributed the most to population divergence in both sexes. We suggest that sex-specific expression of phenotypic and genetic variation throughout the ontogeny of house finches can result in different responses to selection between males and females of the same age, and thus produce fast population divergence in the sexual size dimorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号