首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of 4-chloronitrosobenzene with pyruvate decarboxylase and transketolase were investigated by use of a new high-pressure liquid chromatography method to determine any differences between these two enzymes with respect to hydroxamic acid production. In addition to the previously established difference in the type of hydroxamic acid produced by the two enzymes, several new and interesting differences in their reaction with nitrosoaromatics were discovered. Most notable was the finding that pyruvate decarboxylase gave 4-chlorophenylhydroxylamine as the major product from 4-chloronitrosobenzene, while transketolase did not produce any detectable hydroxylamine. A redox mechanism was proposed to account for arylhydroxylamine production by pyruvate decarboxylase. This redox mechanism can also explain hydroxamic acid production by pyruvate decarboxylase; however, a previously proposed nucleophilic reaction mechanism occurring simultaneously could not be totally disproven. Either of the two mechanisms is equally likely for transktolase action in view of the present evidence. Another major difference between these enzymes is that the rate of 4-chloronitrosobenzene conversion was found to be much faster for pyruvate decarboxylase than for transketolase when each enzyme was subjected to its own optimal reaction conditions. Transketolase displayed typical enzyme saturation kinetics with 4-chloronitrosobenzene with a Km of 0.31 mM and Vmax of 0.033 μmol ml?1 min?1 unit?1 relative to 5 mMd-fructose 6-phosphate as sugar substrate. On the other hand, the reaction with pyruvate decarboxylase was first order in 4-chloronitrosobenzene with a combined rate constant of 2.0 min?1 unit?1 ml.  相似文献   

2.
Human erythrocyte apotransketolase (EC 2.2.1.1) has been isolated with greater than 400 fold purification, and free of glyceraldehyde-3-phosphate dehydrogenase. The preparation has an absolute requirement for thiamin pyrophosphate in order to exhibit enzyme activity. Neither thiamin nor thiamin monophosphate could substitute for this requirement, nor were they inhibitory separately or together at concentrations of 1 mM. The Km for thiamin pyrophosphate was 0.4 μM. The Km for ribose-5-phosphate was 3 × 10?4M and for xylulose-5-phosphate 1.8 × 10?4M.  相似文献   

3.
The incubation of 4-chloronitrosobenzene (4-CNB) with subcellular fractions of rat liver resulted in the formation of a previously unknown type of hydroxamic acid metabolite for mammals. This new metabolite, N-(4-chlorophenyl)glycolhydroxamic acid (Gl-CHA), is most likely formed through the action of liver transketolase on the substrate 4-CNB. Gl-CHA was produced only by the 10 000g and 105 000g supernatant fractions, and required glucose-6-phosphate as an energy source. No hydroxamic acid metabolites were produced in detectable quantities by the microsomal fraction of the rat liver homogenate. Gl-CHA was positively identified by isolation and comparison to an authentic sample of Gl-CHA. Authentic Gl-CHA was prepared by the condensation of 4-chlorophenylhydroxylamine with glycolic acid in the presence of dicylohexylcarbodiimide. The highest observed conversion of 4-CNB to Gl-CHA was 18%, which occurred at the lowest concentration of 4-CNB incubated with the 105 000g supernatant. Gl-CHA was not produced by C-hydroxylation of the corresponding acetyl-derived hydroxamic acid, since none of the subcellular fractions of rat liver would effect this conversion. The incubation of 4-chloroaniline under identical conditions failed to result in the production of Gl-CHA; however, such an observation is probably not important to the possibility that Gl-CHA might be a significant metabolite in vivo.  相似文献   

4.
Dihydroxyacetone synthase, present in methanol-grown Candida boidinii (Kloeckera sp.) No. 2201, catalyzes the transfer of the glycolaldehyde group from xylulose 5-phosphate to formaldehyde to form glyceraldehyde 3-phosphate and dihydroxyacetone. This enzyme was purified to electrophoretic homogeneity and found to be a new type of transketolase. The molecular weight of the enzyme was estimated to be 190 000 by gel filtration. The enzyme appeared to be composed of four identical subunits (Mr, 55 000). Thiamin pyrophosphate and Mg2+ were required for the activity. The optimum pH was found to be 7.0. With xylulose 5-phosphate as the ketol-donor, aliphatic aldehydes (C1?C7), glycolaldehyde and glyceraldehyde were better acceptors than ribose 5-phosphate. The kinetic data were consistent with a ping-pong bi-bi mechanism. The Km values obtained were as follows: xylulose 5-phosphate, 1.0 nM; formaldehyde, 0.43 mM; glyceraldehyde 3-phosphate, 0.42 mM; and dihydroxyacetone, 0.52 mM.  相似文献   

5.
The incubation of nitrosobenzene with yeast transketolase and D-xylulose 5-phosphate resulted in the production of N-phenylglycolhydroxamic acid. The addition of D-ribose 5-phosphate decreased the amount of hydroxamic acid that was produced. This conversion of nitrosobenzene into the glycollic acid-derived hydroxamic acid was shown to be an enzymic process, and a chemical mechanism for the conversion was proposed.  相似文献   

6.
A novel enzyme, myo-inositol-1-phosphate dehydrogenase, which catalyzes the conversion of myo-inositol 1-phosphate to ribulose 5-phosphate has been purified 84-fold from mung bean seedling employing several common techniques. The molecular weight of this purified enzyme has been recorded as 88,500 by Sephadex G-200 column chromatography, and in sodium dodecyl sulfate-polyacrylamide gel electrophoresis one protein band containing three subunits of Mr 32,000 each was discernible. Km values for NAD+ and myo-inositol 1-phosphate have been recorded as 2.8 × 10?4 and 5.0 × 10?4m, respectively. Production of NADH in myo-inositol-1-phosphate dehydrogenase reaction has also been evidenced by measurement of NADH fluorescence. Dehydrogenation and decarboxylation of myo-inositol 1-phosphate are mediated by the same enzyme. In fact, the rate of dehydrogenation corroborates with that of decarboxylation. Stoichiometry of this reaction suggests that for the production of 1 mol of ribulose 5-phosphate 2 mol of NAD+ are reduced.  相似文献   

7.
Glucose-6-phosphate dehydrogenase (E.C. 1.1.1.49) was partially purified by fractionation with ammonium sulfate and phosphocellulose chromatography. The Km value for glucose-6-phosphate is 1.6 × 10?4 and 6.3 × 10?4M at low (1.0–6.0 × 10?4M) and high (6.0–30.0 × 10?4M) concentrations of the substrate, respectively. The Km value for NADP+ is 1.4 × 10?5M. The enzyme is inhibited by NADPH, 5-phosphoribosyl-1-pyrophosphate, and ATP, and it is activated by Mg2+, and Mn2+. In the presence of NADPH, the plot of activity vs. NADP+ concentration gave a sigmoidal curve. Inhibition of 5-phosphoribosyl-1-pyrophosphate and ATP is reversed by Mg2+ or a high pH. It is suggested that black gram glucose-6-phosphate dehydrogenase is a regulatory enzyme of the pentose phosphate pathway.  相似文献   

8.
An extracellular acid phosphatase secreted into the medium during growth of Tetrahymena pryiformis strain W was purified about 900-fold by (NH4)2SO4 precipitation, gel filtration and ion exchange chromatography. The purified acid phosphatase was homogenous as judged by polycrylamide gel electrophoresis and was found to be a glycoprotein. Its carbohydrate content was about 10% of the total protein content. The native enzyme has a molecular weight of 120 000 as determined by gel filtration and 61 000 as determined by sodium dodecyl sulfate-polycrylamide gel electrophoresis. The acid phosphatase thus appears to consist of two subunits of equal size. The amino acid analysis revealed a relatively high content of asparic acid, glutamic acid and leucine. The purified acid phosphatase from Tetrahymena had a rather broad substrate specificity; it hydrolyzed organic phosphates, nucleotide phosphates and hexose phosphates, but had no diesterase activity. The Km values determined with p-nitrophenyl phosphate, adenosine 5′-phosphate and glucose 6-phosphate were 3.1·10?4 M, 3.9·10?4 M and 1.6·10?3 M, respectively. The optima pH for hydrolysis of three substrates were similar (pH 4.6). Hg2+ and Fe3+ at 5 mM were inhibitory for the purified acid phosphatase, and fluoride, L-(+)-tartaric acid and molybdate also inhibited its cavity at low concentrations. The enzyme was competitively inhibited by NaF (Ki=5.6·10?4 M) and by L-(+)-tartaric acid (Ki = 8.5·10?5 M), while it was inhibited noncompetitively by molybdate Ki = 5.0·10?6 M). The extracellular acid phosphatase purified from Tetrahymena was indistinguishable from the intracellular enzyme in optimum pH, Km, thermal stability and inhibition by NaF.  相似文献   

9.
Pea (Pisum sativum L.) chloroplastic phosphoriboisomerase (EC 5.3.1.6) can be purified to apparent homogeneity in less than 2 days time with a 53% yield. Important steps in the purification include heat treatment and pseudoaffinity chromatography on Red H-3BN Sepharose. The purified isomerase has a subunit molecular mass of 26.4 kD. The N-terminal sequence has been determined through 34 residues. pH optima are 7.8 (ribose-5-phosphate) and 7.7 (ribulose-5-phosphate); Km values are 0.9 millimolar (ribose-5-phosphate) and 0.6 millimolar (ribulose-5-phosphate). The enzyme is inhibited by erythrose-4-phosphate, sedoheptulosebisphosphate, glyceraldehyde-3-phosphate, and 3-phosphoglycerate at concentrations close to those found in photosynthesizing chloroplasts. Countercurrent phase partitioning experiments indicate that the pea chloroplastic phosphoriboisomerase interacts physically with phosphoribulokinase.  相似文献   

10.
《Experimental mycology》1991,15(3):255-262
Transaldolase was purified 42-fold fromDictyostelium discoideum and the resulting preparation exhibited stoichiometry. Kinetic analyses consisted of initial velocity and product inhibition studies in both the forward and the reverse directions. The enzyme exhibited ping-pong kinetics with sedoheptulose 7-phosphate adding first and erythrose 4-phosphate releasing first. TheKm values for sedoheptulose 7-phosphate, glyceraldehyde 3-phosphate, erythrose 4-phosphate, and fructose 6-phosphate were 0.46, 0.072, 0.10, and 1.6 mM, respectively. TheKi values for sedoheptulose 7-phosphate and erythrose 4-phosphate were 3.6 and 0.062 mM, respectively. Inorganic phosphate inhibited enzymatic activity and showed mixed-type inhibition when fructose 6-phosphate was varied. AKi value of 35.2 mM was determined for inorganic phosphate.  相似文献   

11.
The gene coding for ribose-5-phosphate isomerase (Rpi) from Thermotoga lettingae TMO was cloned and expressed in E. coli. The recombinant enzyme was purified by Ni-affinity chromatography. It converted d-psicose to d-allose maximally at 75 °C and pH 8.0 with a 32 % conversion yield. The k m, turnover number (k cat), and catalytic efficiency (k cat k m ?1 ) for substrate d-psicose were 64 mM, 6.98 min?1 and 0.11 mM?1 min?1 respectively.  相似文献   

12.
Leukotriene A4 hydrolase (LTA4H––EC 3.3.2.6) is a bifunctional zinc metalloenzyme, which processes LTA4 through an epoxide hydrolase activity and is also able to trim one amino acid at a time from N-terminal peptidic substrates via its aminopeptidase activity. In this report, we have utilized a library of 130 individual proteinogenic and unnatural amino acid fluorogenic substrates to determine the aminopeptidase specificity of this enzyme. We have found that the best proteinogenic amino acid recognized by LTA4H is arginine. However, we have also observed several unnatural amino acids, which were significantly better in terms of cleavage rate (k cat/K m values). Among them, the benzyl ester of aspartic acid exhibited a k cat/K m value that was more than two orders of magnitude higher (1.75 × 105 M?1 s?1) as compared to l-Arg (1.5 × 103 M?1 s?1). This information can be used for design of potent inhibitors of this enzyme, but may also suggest yet undiscovered functions or specificities of LTA4H.  相似文献   

13.
Quantitative studies on yeast 5′-nucIeotidase are presented.

Km values for purine 5′-nucleotides were generally smaller than those for pyrimidine 5′-nucleotides and, among purine series, Km value for 5′-AMP was the smallest, while their V values were almost same.

The enzyme activity was inhibited in the competitive type by bases, nucleosides, 3′- or 2′-nucleotides, and NMN and in the mixed type by NAD and NADP.

Base-, ribose-, 3′- or 5′-phosphate moiety of nucleoside and nucleotide had some effects on binding with enzyme; especially the structure of base moiety characterizes the Km or Ki value.

The enzyme activity was accelerated by Ni++ or Co++, which increases V value but never affects Km value.

The relationship between the structure of substrate and its affinity towards enzyme is discussed.  相似文献   

14.
Catalytic activity of two active sites of transketolase and their affinity towards the substrates (xylulose-5-phosphate and ribose-5-phosphate) has been studied in the presence of Ca2+ and Mg2+. In the presence of Ca2+, the active sites exhibit negative cooperativity in binding both xylulose-5-phosphate (donor substrate) and ribose-5-phosphate (acceptor substrate) and positive cooperativity in the catalytic transformation of the substrates. In the presence of Mg2+, nonequivalence of the active sites is not observed.  相似文献   

15.
Isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate with NAD(P) as a cofactor in the tricarboxylic acid cycle. As a housekeeping protein in Helicobacter pylori, IDH was considered as a possible candidate for serological diagnostics and detection. Here, we identified a new icd gene encoding IDH from H. pylori strain SS1. The recombinant H. pylori isocitrate dehydrogenase (HpIDH) was cloned, expressed, and purified in E. coli system. The enzymatic characterization of HpIDH demonstrates its activity with k cat of 87 s?1, K m of 124 μM and k cat/K m of 7 × 105 M?1s?1 toward isocitrate, k cat of 80 s?1, K m of 176 μM and k cat/K m of 4.5 × 105 M?1s?1 toward NADP. The optimum pH of the enzyme activity is around 9.0, and the optimum temperature is around 50 °C. This current work is expected to help better understand the features of HpIDH and provide useful information for H. pylori serological diagnostics and detection.  相似文献   

16.
2-Deoxy-2,3-dehydro-N-acetylneuraminic acid and its methyl ester are competitive inhibitors of Arthrobacter sialophilus neuraminidase with Ki = 1.4 × 10?6M and 4.8 × 10?5M, respectively. The Km for the substrate, N-acetylneuraminlactose, is 1.0 × 10?3M. These data, taken together with the conformation of these compounds, indicate that these compounds are transition-state analogs of the enzyme. These results also suggest that the substrate upon binding to neuraminidase is distorted to a conformation approaching that of a half-chair.  相似文献   

17.
Addition of 10 mM Ba to suspensions of single-cell embryos of the echnioderm Lytechinus results in a depolarization of membrane potential, an increase in membrane resistance, and a reduction of the unidirectional efflux rate coefficient for potassium. All these effects are consistent with a decrease in membrane permeability to potassium ion (PK). Determination of PK in the presence of Ba indicates a 3- to 5-fold decrease in its magnitude as compared to Ba free cells. Ba at concentrations of 0.5 mM or less has no significant effect on PK. Its effect is maximal at approximately 10 mM, and it is completely reversible upon Ba removal. Eggs fertilized and maintained in 10 mM Ba do not undergo the 3- to 4-fold increase in PK which follows fertilization but rather, they maintain values for PK equivalent to or less than those found in the unfertilized egg. This allows one to evaluate the relationship of the normal increase in PK to the increase in the exchangeability of intracellular K and the onset of protein synthesis, both of which occur shortly after fertilization. The results indicate that the onset of protein synthesis and the increased exchange of intracellular K are events which are independent of the increase in PK. Neither is significantly altered by Ba suppression of the PK increase. The results also indicate that active K transport and amino acid transport are unaffected by maintenance of a low PK. Furthermore, inhibition of protein synthesis (greater than 95% with 10?4M emetine) does not prevent the increased exchange of intracellular K or the increase in PK. Active K transport and amino acid transport are also unaffected.  相似文献   

18.
Amir J  Cherry JH 《Plant physiology》1972,49(6):893-897
A 40-fold purification of adenosine diphosphoglucose pyrophosphorylase from sweet corn (Zea mays var. Golden Beauty) revealed the enzyme to be specific for adenosine triphosphate. The enzyme has an absolute requirement for Mg2+ and is activated by 3-phosphoglycerate and to a lesser extent by ribose-5-phosphate and fructose-6-phosphate. The apparent Km values of the enzyme for glucose-1-phosphate, adenosine triphosphate, pyrophosphate, and adenosine diphosphoglucose are 1.9 × 10−4, 3.2 × 10−5, 3.3 × 10−5, and 6.2 × 10−4m, respectively. Pyrophosphate inhibits adenosine diphosphoglucose synthesis competitively (Ki = 3.8 × 10−7m), while orthophosphate and sulfate appear to inhibit the reacion noncompetitively. These results show that the production of this sugar nucleotide can be controlled by the concentration of pyrophosphate.  相似文献   

19.
Evidence is presented to show that all enzymes and all intermediary metabolites of a UDPglucose biosynthesis pathway are present in the microsomal membranes of rat liver. Glucose 6-phosphate, glucose 1-phosphate and UDPglucose are characterized by chromatography.The properties of phosphoglucomutase and UTP: D-Glucose-1-phosphate uridyltransferase are studied. The Km values of phosphoglucomutase at pH 7.2 and 42°C were 0.26 · 10?3 mM for glucose 1,6-diphosphate and 80 · 10?3 mM for glucose 1-phosphate. The Km values of UTP: D-glucose-1-phosphate uridyltransferase at pH 8.5 and 37°C were 220 · 10?3 mM for UTP and 166 · 10?3 mM for glucose 1-phosphate. These values are compared to the given values for enzymes from different species, and to those found for soluble enzymes. The significance of this membranous pathway is discussed.  相似文献   

20.
Tryptophan synthase in Phycomyces blakesleeanus. Part I: Characterization of the enzyme. Tryptophan synthase was tested in light grown 5 days old cultures of Phycomyces blakesleeanus. The test was carried out only by reaction 3 (indole + serine → tryptophan + water) of the tryptophan synthase. The Km values for the substrates indole and serine were found to be 1.3 × 10-4M and 1.0 × 10-2M. Two Km values (1.5 × 10-8M and 1.0 × 10-6M) for pyridoxal 5′-phosphate could be calculated from a Lineweaver-Burk plot. The transformation of the Lineweaver-Burk plot into the Hill plot resulted in a straight line with a rise of 0.35 for pyridoxal 5′-phosphate. At higher concentrations the end product tryptophan and indole-3-acetic acid inhibit the tryptophan synthase in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号