首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elucidating factors regulating Crohn's disease-associated nucleotide-binding oligomerization domain 2 (Nod2) responses is critical to understanding the mechanisms of intestinal immune homeostasis. Stimulation of primary monocyte-derived macrophages by muramyl dipeptide (MDP), a component of bacterial peptidoglycan and specific Nod2 ligand, produces cytokines, including IL-1β. We found that IL-1β blockade profoundly inhibits MDP-induced cytokine production in human monocyte-derived macrophages, demonstrating a key role for IL-1β autocrine secretion in Nod2-mediated responses. Importantly, although MAPK activation has previously been attributed directly to Nod2 signaling, we determined that the IL-1β autocrine loop is responsible for the majority of MDP-induced MAPK activation. Because the critical effects of IL-1β autocrine secretion on MAPK activation are observed as early as 10 min after Nod2 stimulation, we hypothesized that secretion of IL-1β from preexisting intracellular pro-IL-1β stores is necessary for optimal MDP-mediated cytokine induction. Consistently, we detected IL-1β secretion within 10 min of MDP treatment. Moreover, caspase-1 inhibition significantly attenuates MDP-mediated early MAPK activation. Importantly, selective JNK/p38 activation is sufficient to rescue the decreased cytokine secretion during Nod2 stimulation in the absence of autocrine IL-1β. Finally, we found that the IL-1β autocrine loop significantly enhances responses by a broad range of pattern recognition receptors. Taken together, MDP stimulation activates Nod2 to process and release preexisting pro-IL-1β stores in a caspase-1-dependent fashion; this secreted IL-1β, in turn, contributes to the majority of MDP-initiated MAPK activation and leads to subsequent cytokine secretion. Our findings clarify mechanisms of IL-1β contributions to Nod2 responses and elucidate the dominant role of IL-1β in MDP-initiated MAPK and cytokine secretion.  相似文献   

2.
The innate immune system is the most ancestral and ubiquitous system of defence against microbial infection. The microbial sensing proteins involved in innate immunity recognize conserved and often structural components of microorganisms. One class of these pattern-recognition molecules, the Toll-like receptors (TLRs), are involved in detection of microbes in the extracellular compartment whereas a newly discovered family of proteins, the NBS-LRR proteins (for nucleotide-binding site and leucine-rich repeat), are involved in intracellular recognition of microbes and their products. NBS-LRR proteins are characterized by three structural domains: a C-terminal leucine-rich repeat (LRR) domain able to sense a microbial motif, an intermediary nucleotide binding site (NBS) essential for the oligomerization of the molecule that is necessary for the signal transduction induced by different N-terminal effector motifs, such as a pyrin domain (PYD), a caspase-activating and recruitment domain (CARD) or a baculovirus inhibitor of apoptosis protein repeat (BIR) domain. Two of these family members, Nod1 and Nod2, play a role in the regulation of pro-inflammatory pathways through NF-kappaB induced by bacterial ligands. Recently, it was shown that Nod2 recognizes a specific peptidoglycan motif from bacteria, muramyl dipeptide (MDP). A surprising number of human genetic disorders have been linked to NBS-LRR proteins. For example, mutations in Nod2, which render the molecule insensitive to MDP and unable to induce NF-kappaB activation when stimulated, are associated with susceptibility to a chronic intestinal inflammatory disorder, Crohn's disease. Conversely, mutations in the NBS region of Nod2 induce a constitutive activation of NF-kappaB and are responsible for Blau syndrome, another auto-inflammatory disease. Nalp3, which is an NBS-LRR protein with an N-terminal Pyrin domain, is also implicated in rare auto-inflammatory disorders. In conclusion, NBS-LRR molecules appear as a new family of intracellular receptors of innate immunity able to detect specific bacterial compounds and induce inflammatory response; the dysregulation of these processes due to mutations in the genes encoding these proteins is involved in numerous auto-inflammatory disorders.  相似文献   

3.
Muramyl peptides derived from bacterial peptidoglycan are detected intracellularly by Nod1 and Nod2, 2 members of the newly characterized nod-like receptor (NLR) family of pattern recognition molecules. In the absence of bacterial invasion into the host cytosolic compartment, it remains unclear whether muramyl peptides can cross the plasma membrane and localize into the cytosol. We have recently demonstrated that the plasma membrane transporter, hPepT1, was able to efficiently translocate muramyl dipeptide (MDP), a specific Nod2-activating molecule, into host cells. We aimed to characterize the transport properties of hPepT1 towards a spectrum of muramyl peptides, including Nod1-activating molecules. To do so, we designed an original procedure based on the ectopic expression of hPepT1 in oocytes from Xenopus laevis. Our results demonstrated that hPepT1 transports MDP but no other Nod2-activating molecule. Moreover, we observed that Nod1-stimulating muramyl peptides were not transported by hPepT1. Since hPepT1 expression is strongly associated with intestinal epithelial cells, where Nod1 and Nod2 have been shown to play a key role, these observations suggest a distinct contribution of Nod1 and Nod2 in mucosal homeostasis following the cellular uptake of muramyl peptides by hPepT1.  相似文献   

4.
《Autophagy》2013,9(3):409-411
Autophagy is one of the main cellular degradation systems in eukaryotes, being responsible for the elimination of long-lived proteins and damaged organelles. Besides its well-documented role as a housekeeping mechanism, autophagy has recently caught the attention of groups working in the fields of microbiology and immunology, especially those working in innate immunity. In particular, the highly specific segregation and degradation of intracellular bacteria by the autophagic machinery was a matter of great interest. However, it was still unclear how the autophagy machinery could target intracellular bacteria with such specificity. We have recently analyzed the role of the intracellular peptidoglycan (PG) receptors Nod1 and Nod2 as a link between intracellular bacterial sensing and the induction of autophagy. Our results demonstrated that Nod2 recruits the critical autophagy protein ATG16L1 to the plasma membrane during bacterial invasion and that cells expressing mutations in these proteins, two of the most important associated with Crohn disease, autophagy is defective upon infection or stimulation with the bacterial peptidoglycan fragment MDP. Thus, our findings put together two genes previously reported as independent risk factors for the development of Crohn disease and open a venue in the study of new therapies to cure the disease.  相似文献   

5.
NOD2/CARD15 is the first characterized susceptibility gene in Crohn disease. The Nod2 1007fs (Nod2fs) frameshift mutation is the most prevalent in Crohn disease patients. Muramyl dipeptide from bacterial peptidoglycan is the minimal motif detected by Nod2 but not by Nod2fs. Here we investigated the response of human peripheral blood mononuclear cells (PBMCs) from Crohn disease patients not only to muramyl dipeptide but also to several other muramyl peptides. Most unexpectedly, we observed that patients homozygous for the Nod2fs mutation were totally unresponsive to MurNAc-L-Ala-D-Glu-meso-diaminopimelic acid (DAP) (M-Tri(DAP)), the specific agonist of Nod1, and to Gram-negative bacterial peptidoglycan. In contrast, PBMCs from a patient homozygous for the Nod2 R702W mutation, also associated with Crohn disease, displayed normal response to Gram-negative bacterial peptidoglycan. In addition, the blockage of the Nod1/M-Tri(DAP) pathway could be partially overcome by co-stimulation with the Toll-like receptors agonists lipoteichoic acid or lipopolysaccharide. Investigation into the mechanism of this finding revealed that Nod2fs did not act as a dominant-negative molecule for the Nod1/M-Tri(DAP) pathway, implying that the blockage is dependent upon the expression or activity of other factors. We demonstrated that PBMCs from Nod2fs patients express high levels of the peptidoglycan recognition protein S, a secreted protein known to interact with muramyl peptides. We proposed that through a scavenger function, peptidoglycan recognition protein S may dampen M-Tri(DAP)-dependent responses in Nod2fs patients. Together, our results identified a cross-talk between the Nod1 and Nod2 pathways and suggested that down-regulation of Nod1/M-Tri(DAP) pathway may be associated with Crohn disease.  相似文献   

6.
Dahiya Y  Pandey RK  Sodhi A 《PloS one》2011,6(11):e27828
Nod2 is a cytosolic pattern recognition receptor. It has been implicated in many inflammatory conditions. Its signaling has been suggested to modulate TLR responses in a variety of ways, yet little is known about the mechanistic details of the process. We show in this study that Nod2 knockdown mouse peritoneal macrophages secrete more IL1β than normal macrophages when stimulated with peptidoglycan (PGN). Muramyl dipeptide (MDP, a Nod2 ligand) + PGN co-stimulated macrophages have lower expression of IL1β than PGN (TLR2/1 ligand) stimulated macrophages. MDP co-stimulation have similar effects on Pam3CSK4 (synthetic TLR2/1 ligand) mediated IL1β expression suggesting that MDP mediated down regulating effects are receptor dependent and ligand independent. MDP mediated down regulation was specific for TLR2/1 signaling as MDP does not affect LPS (TLR4 ligand) or zymosan A (TLR2/6 ligand) mediated IL1β expression. Mechanistically, MDP exerts its down regulating effects by lowering PGN/Pam3CSK4 mediated nuclear cRel levels. Lower nuclear cRel level were observed to be because of enhanced transporting back rather than reduced nuclear translocation of cRel in MDP + PGN stimulated macrophages. These results demonstrate that Nod2 and TLR2/1 signaling pathways are independent and do not interact at the level of MAPK or NF-κB activation.  相似文献   

7.
Ogura Y  Saab L  Chen FF  Benito A  Inohara N  Nuñez G 《Genomics》2003,81(4):369-377
Genetic variation in human Nod2 has been associated with susceptibility to Crohn's disease. The mouse Nod2 locus is located at chromosome 8 and composed of 12 exons, 11 of which encode the Nod2 protein. Sequence analysis of Nod2 from 45 different strains of Mus musculus and Mus spretus revealed extensive polymorphism involving all exons of Nod2. Of the 140 polymorphic sites identified, 68 were located in the coding region, of which 28 created amino acid substitutions in Nod2. Expression of mouse Nod2 activated NF-kappaB and conferred responsiveness to bacterial components, an activity that was deficient in mutants corresponding to those associated with susceptibility to Crohn's disease. These studies demonstrate a conserved role for Nod2 in the response to bacterial components and suggest that selective evolutionary pressure exerted by pathogens may have contributed to the high level of variability of Nod2 sequences in both humans and mice.  相似文献   

8.
Nod2 is an intracellular innate immune receptor that plays a role in host defense and susceptibility to inflammatory disease. We show in this study that macrophages rendered refractory to TLR4 and Nod2 signaling by exposure to LPS and muramyl dipeptide (MDP) exhibit impaired TNF-alpha and IL-6 production in response to pathogenic Listeria monocytogenes and Yersinia pseudotuberculosis as well as commensal bacteria including Escherichia coli and Bacteroides fragilis. Surprisingly, Nod2 deficiency was associated with impaired tolerization in response to pathogenic and commensal bacteria. Mechanistically, reduced tolerization of Nod2-null macrophages was mediated by recognition of bacteria through Nod1 because it was abolished in macrophages deficient in Nod1 and Nod2. Consistently, Nod2-null macrophages tolerant to LPS and MDP showed enhanced production of TNF-alpha and IL-6 as well as increased NF-kappaB and MAPK activation in response to the dipeptide KF1B, the Nod1 agonist. Furthermore, reduced tolerization of Nod2-deficient macrophages in response to bacteria was abolished when mutant macrophages were also rendered tolerant to the Nod1 ligand. Finally, MDP stimulation induced refractoriness not only to MDP, but also to iE-DAP stimulation, providing a mechanism to explain the reduced tolerization of Nod2-deficient macrophages infected with bacteria. These results demonstrate that cross-tolerization between Nod1 and Nod2 leads to increase recognition of both pathogenic and commensal bacteria in Nod2-deficient macrophages pre-exposed to microbial ligands.  相似文献   

9.
Innate immunity relies on the detection of microbial invaders by two distinct systems. One system comprises a family of membrane-bound receptors, termed the Toll-like receptors, while the other family, termed the nucleotide-binding site/leucine-rich repeat (NBS/LRR) proteins, consists of molecules that are found in the cytoplasmic compartment. These two detection systems recognize conserved molecular components of microbes including such structural motifs as lipopolysaccharide from the Gram-negative bacterial cell wall and peptidoglycan (PGN) found in the cell wall of both Gram-negative and Gram-positive bacteria. This review focuses on two members of the NBS/LRR family of proteins, Nod1 and Nod2. Recently, the microbial motifs sensed by these two molecules have been characterized. Both Nod1 and Nod2 recognize PGN, however, each requires distinct molecular motifs to attain sensing. Nod1 recognizes a naturally occurring muropeptide of PGN that presents a unique amino acid at its terminus called diaminopilemic acid (DAP). This amino acid is found mainly in the PGN of Gram-negative bacteria designating Nodl as a sensor of Gram-negative bacteria. In contrast, Nod2 can detect the minimal bioactive fragment of PGN, called muramyl dipeptide. Thus Nod2 is a general sensor of bacterial PGN. Since mutations in the gene encoding Nod2 were recently shown to be associated with the chronic inflammatory disease, Crohn's disease, these results are discussed in the context of how disrupting the interplay between host detection and bacterial aggression may lead to inflammatory diseases.  相似文献   

10.
Muramyl dipeptide (MDP) is the minimal essential structural unit responsible for the immunoadjuvant activity of peptidoglycan. As well as bone-resorbing factors such as 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) and PGE2, LPS and IL-1alpha stimulate osteoclast formation in mouse cocultures of primary osteoblasts and hemopoietic cells. MDP alone could not induce osteoclast formation in the coculture, but enhanced osteoclast formation induced by LPS, IL-1alpha, or TNF-alpha but not 1alpha,25(OH)2D3 or PGE2. MDP failed to enhance osteoclast formation from osteoclast progenitors induced by receptor activator of NF-kappaB ligand (RANKL) or TNF-alpha. MDP up-regulated RANKL expression in osteoblasts treated with LPS or TNF-alpha but not 1alpha,25(OH)2D3. Osteoblasts expressed mRNA of nucleotide-binding oligomerization domain 2 (Nod2), an intracellular sensor of MDP, in response to LPS, IL-1alpha, or TNF-alpha but not 1alpha,25(OH)2D3. Induction of Nod2 mRNA expression by LPS but not by TNF-alpha in osteoblasts was dependent on TLR4 and MyD88. MDP also enhanced TNF-alpha-induced osteoclast formation in cocultures prepared from Toll/IL-1R domain-containing adapter protein (TIRAP)-deficient mice through the up-regulation of RANKL mRNA expression in osteoblasts, suggesting that TLR2 is not involved in the MDP-induced osteoclast formation. The depletion of intracellular Nod2 by small interfering RNA blocked MDP-induced up-regulation of RANKL mRNA in osteoblasts. LPS and RANKL stimulated the survival of osteoclasts, and this effect was not enhanced by MDP. These results suggest that MDP synergistically enhances osteoclast formation induced by LPS, IL-1alpha, and TNF-alpha through RANKL expression in osteoblasts, and that Nod2-mediated signals are involved in the MDP-induced RANKL expression in osteoblasts.  相似文献   

11.
Genetic variation in Nod2 is associated with susceptibility to Crohn's disease. Nod2 and its homologue, Nod1, are members of a growing family of cytosolic factors related to the apoptosis regulator Apaf-1 and a class of plant disease resistance proteins. Nod1 and Nod2 confer responsiveness to lipopolysaccharides and interact with RICK, a mediator of NF-kappaB activation. Nod1 and Nod2 and related Nods appear to regulate the host response to pathogens, a process that may be faulty in certain inflammatory diseases. Recent studies that suggest that Nods may be involved in the recognition of pathogen components in the cytosol of mammalian cells are reviewed.  相似文献   

12.
The innate immune system serves as the first line of defense by detecting microbes and initiating inflammatory responses. Although both Toll-like receptor (TLR) and nucleotide binding domain and leucine-rich repeat (NLR) proteins are important for this process, their excessive activation is hazardous to hosts; thus, tight regulation is required. Endotoxin tolerance is refractory to repeated lipopolysaccharide (LPS) stimulation and serves as a host defense mechanism against septic shock caused by an excessive TLR4 response during Gram-negative bacterial infection. Gram-positive bacteria as well as their cell wall components also induce shock. However, the mechanism underlying tolerance is not understood. Here, we show that activation of Nod2 by its ligand, muramyl dipeptide (MDP) in the bacterial cell wall, induces rapid degradation of Nod2, which confers MDP tolerance in vitro and in vivo. Nod2 is constitutively associated with a chaperone protein, Hsp90, which is required for Nod2 stability and protects Nod2 from degradation. Upon MDP stimulation, Hsp90 rapidly dissociates from Nod2, which subsequently undergoes ubiquitination and proteasomal degradation. The SOCS-3 protein induced by Nod2 activation further facilitates this degradation process. Therefore, Nod2 protein stability is a key factor in determining responsiveness to MDP stimulation. This indicates that TLRs and NLRs induce a tolerant state through distinct molecular mechanisms that protect the host from septic shock.  相似文献   

13.
Multiple genetic variants of CARD15/NOD2 have been associated with susceptibility to Crohn's disease and Blau syndrome. NOD2 recognizes muramyl dipeptide (MDP) derived from bacterial peptidoglycan (PGN), but the molecular basis of recognition remains elusive. We performed systematic mutational analysis to gain insights into the function of NOD2 and molecular mechanisms of disease susceptibility. Using an archive of 519 mutations covering approximately 50% of the amino-acid residues of NOD2, the essential regulatory domains and specific residues of NOD2 involved in recognition of MDP were identified. The analysis revealed distinct roles for N-terminal and C-terminal leucine-rich repeats (LRRs) in the modulation of NOD2 activation and bacterial recognition. Within the C-terminal LRRs, variable residues predicted to form the beta-strand/betaturn structure were found to be essential for the response to MDP. In addition, we analyzed NOD1, a NOD2-related protein, revealing conserved and nonconserved amino-acid residues involved in PGN recognition. These results provide new insights into the molecular function and regulation of NOD2 and related NOD family proteins.  相似文献   

14.
Muramyl dipeptide (MDP), the microbial activator of nucleotide-binding oligomerization domain 2 (Nod2), induces NF-kappaB and MAPK activation, leading to the production of multiple anti-bacterial and proinflammatory molecules. In addition, MDP has been implicated in IL-1beta secretion through the regulation of caspase-1. However, the mechanisms that mediate caspase-1 activation and IL-1beta secretion in response to MDP stimulation remain poorly understood. We show here that fluorescent MDP molecules are internalized in primary macrophages and accumulate in granular structures that colocalize with markers of acidified endosomal compartments. The uptake of MDP was Nod2-independent. Upon ATP stimulation, labeled MDP was rapidly released from acidified vesicles into the cytosol, a process that required functional pannexin-1. Caspase-1 activation induced by MDP and ATP required pannexin-1 and Cryopyrin but was independent of Nod2. Conversely, induction of pro-IL-1beta mRNA by MDP stimulation was abolished in Nod2-deficient macrophages but unimpaired in macrophages lacking Cryopyrin. These studies demonstrate a Nod2-independent mechanism mediated through pore-forming pannexin-1 that is required for intracellular delivery of MDP to the cytosol and caspase-1 activation. Furthermore, the work provides evidence for distinct roles of Nod2 and Cryopyrin in the regulation of MDP-induced caspase-1 activation and IL-1beta secretion.  相似文献   

15.
Muramyl dipeptide (MDP) is believed to interact with an innate immune receptor, Nod2. To identify the cellular receptor for MDP, we have synthesized biotinylated MDP isomers and tested the ability of these compounds to activate Nod2 in a cell-based assay. We found that the modification of MDP does not perturb its ability to activate Nod2. These tagged versions of MDP will be useful to identify the cellular receptor of the immunostimulatory molecules.  相似文献   

16.
The internalization of Borrelia burgdorferi, the causative agent of Lyme disease, by phagocytes is essential for an effective activation of the immune response to this pathogen. The intracellular, cytosolic receptor Nod2 has been shown to play varying roles in either enhancing or attenuating inflammation in response to different infectious agents. We examined the role of Nod2 in responses to B. burgdorferi. In vitro stimulation of Nod2 deficient bone marrow derived macrophages (BMDM) resulted in decreased induction of multiple cytokines, interferons and interferon regulated genes compared with wild-type cells. However, B. burgdorferi infection of Nod2 deficient mice resulted in increased rather than decreased arthritis and carditis compared to control mice. We explored multiple potential mechanisms for the paradoxical response in in vivo versus in vitro systems and found that prolonged stimulation with a Nod2 ligand, muramyl dipeptide (MDP), resulted in tolerance to stimulation by B. burgdorferi. This tolerance was lost with stimulation of Nod2 deficient cells that cannot respond to MDP. Cytokine patterns in the tolerance model closely paralleled cytokine profiles in infected Nod2 deficient mice. We propose a model where Nod2 has an enhancing role in activating inflammation in early infection, but moderates inflammation after prolonged exposure to the organism through induction of tolerance.  相似文献   

17.
Crohn's Disease (CD) is caused by a loss of the regulatory capacity of the immune apparatus. Nod2 is an intracellular bacterial sensor and its mutations are associated with the development of CD. Here we summarize recent and controversial findings about the role of the Nod2 mutants in the disease process.  相似文献   

18.
Although the etiology of Crohn''s disease (CD) remains elusive this disease is characterized by T cell activation that leads to chronic inflammation and mucosal damage. A potential role for maladaptation between the intestinal microbiota and the mucosal immune response is suggested by the fact that mutations in the pattern recognition receptor Nod2 are associated with higher risks for developing CD. Although Nod2 deletion in CD4+ T cells has been shown to impair the induction of colitis in the murine T cell transfer model, the analysis of T cell intrinsic Nod2 function in T cell differentiation and T cell-mediated immunity is inconsistent between several studies. In addition, the role of T cell intrinsic Nod2 in regulatory T cell (Treg) development and function during colitis remain to be analyzed. In this study, we show that Nod2 expression is higher in activated/memory CD4+ T cells and its expression was inducible after T cell receptor (TCR) ligation. Nod2 stimulation with muramyl dipeptide (MDP) led to a nuclear accumulation of c-Rel NF-kB subunit. Although functionally active in CD4+ T cells, the deletion of Nod2 did not impair the induction and the prevention of colitis in the T cell transfer model. Moreover, Nod2 deletion did not affect the development of Foxp3+ Treg cells in the spleen of recipient mice and Nod2 deficient CD4 T cells expressing the OVA specific transgenic TCR were able to differentiate in Foxp3+ Treg cells after OVA feeding. In vitro, CD25+ Nod2 deficient T cells suppressed T cell proliferation as well as wild type counter parts and T cell stimulation with MDP did not affect the proliferation and the cytokine secretion of T cells. In conclusion, our data indicate that Nod2 is functional in murine CD4+ T cells but its expression is dispensable for the T cell regulation of colitis.  相似文献   

19.
NOD2, a protein associated with susceptibility to Crohn's disease, confers responsiveness to bacterial preparations of lipopolysaccharide and peptidoglycan, but the precise moiety recognized remains elusive. Biochemical and functional analyses identified muramyl dipeptide (MurNAc-L-Ala-D-isoGln) derived from peptidoglycan as the essential structure in bacteria recognized by NOD2. Replacement of L-Ala for D-Ala or D-isoGln for L-isoGln eliminated the ability of muramyl dipeptide to stimulate NOD2, indicating stereoselective recognition. Muramyl dipeptide was recognized by NOD2 but not by TLR2 or co-expression of TLR2 with TLR1 or TLR6. NOD2 mutants associated with susceptibility to Crohn's disease were deficient in their recognition of muramyl dipeptide. Notably, peripheral blood mononuclear cells from individuals homozygous for the major disease-associated L1007fsinsC NOD2 mutation responded to lipopolysaccharide but not to synthetic muramyl dipeptide. Thus, NOD2 mediates the host response to bacterial muropeptides derived from peptidoglycan, an activity that is important for protection against Crohn's disease. Because muramyl dipeptide is the essential structure of peptidoglycan required for adjuvant activity, these results also have implications for understanding adjuvant function and effective vaccine development.  相似文献   

20.
Nucleotide-binding oligomerization domain 2 (Nod2) mutations including L1007fsinsC are associated with the development of Crohn's disease (CD). These CD-associated Nod2 mutations are common in healthy white populations, suggesting that they may confer some protective function, but experimental evidence is lacking. Using a mouse strain that expresses Nod2(2939iCstop), the equivalent of the L1007fsinsC mutation, we found that macrophages homozygous for Nod2(2939iCstop) are impaired in the recognition of muramyl dipeptide and Enterococcus faecalis, a commensal bacterium that is a common cause of sepsis-associated lethality in humans. Notably, Nod2 deficiency and homozygocity for Nod2(2939iCstop) were associated with reduced production of TNF-α and IL-6 and lethality after systemic infection with E. faecalis despite normal bacteria loads. Consistently, inhibition of TNF-α signaling protected wild-type mice from E. faecalis-induced lethality. These results suggest that the same Nod2 mutation can increase the susceptibility to CD, but also protect the host from systemic infection by a common enteric bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号