首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Enhancement of NMDA-mediated responses by cyanide   总被引:2,自引:0,他引:2  
The effect of cyanide on NMDA-activated ion current and MK801 binding was studied in cultured rat hippocampal neurons. In microfluorometric analysis using fura-2, removal of extracellular Mg2+ resulted in a five-fold increase in NMDA-induced peak of [Ca2+]i. One mM NaCN enhanced the peak NMDA responses in the presence, but not in the absence of extracellular Mg2+. Cyanide enhanced the immediate rise in [Ca2+]i produced by NMDA, followed over a 1–5 min period by a gradual increase of [Ca2+]i. Similar results were obtained in whole-cell patch clamp recordings from hippocampal neurons. One mM KCN enhanced the NMDA-activated current in the presence, but not in the absence of extracellular Mg2+. This effect was independent of cyanide-mediated metabolic inhibition since the recording pipette contained ATP (2 mM). In binding assays NaCN (1 mM) increased the binding affinity of [3H]MK-801 to rat forebrain membranes in the presence of Mg2+, whereas in the absence of Mg2+, NaCN did not influence binding. These results indicate that cyanide enhances NMDA-mediated Ca2+ influx and inward current by interacting with the Mg2+ block of the NMDA receptor. The effect of cyanide can be explained by an initial interaction with the Mg2+ block of the NMDA receptor/ionophore which appears to be energy-independent, followed by a gradual increase in Ca2+ influx resulting from cellular energy reserve depletion.Abbreviations NMDA N-Methyl-D-Aspartate - EAA excitatory amino acid - MK-801 (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohept-5,10-imine maleate  相似文献   

2.
The excitotoxicity of glutamate is believed to be mediated by sustained increase in the cytosolic Ca2+ concentration. Mitochondria play a vital role in buffering the cytosolic calcium overload in stimulated neurons. Here we have studied the glutamate induced Ca2+ signals in cortical brain slices under physiological conditions and the conditions that modify the mitochondrial functions. Exposure of slices to glutamate caused a rapid increase in [Ca2+]i followed by a slow and persistently rising phase. The rapid increase in [Ca2+]i was mainly due to influx of Ca2+ through the N-methyl-D-aspartate (NMDA) receptor channels. Glutamate stimulation in the absence of Ca2+ in the extracellular medium elicited a small transient rise in [Ca2+]i which can be attributed to the mobilization of Ca2+ from IP3 sensitive endoplasmic reticulum pools consequent to activation of metabotropic glutamate receptors. The glutamate induced Ca2+ influx was accompanied by depolarization of the mitochondrial membrane, which was inhibited by ruthenium red, the blocker of mitochondrial Ca2+ uniporter. These results imply that mitochondria sequester the Ca2+ loaded into the cytosol by glutamate stimulation. Persistent depolarization of mitochondrial membrane observed in presence of extracellular Ca2+ caused permeability transition and released the sequestered Ca2+ which is manifested as slow rise in [Ca2+]i. Protonophore carbonyl cyanide m-chlorophenyl-hydrazone (CCCP) depolarized the mitochondrial membrane and enhanced the glutamate induced [Ca2+]i response. Contrary to this, treatment of slices with mitochondrial inhibitor oligomycin or ruthenium red markedly reduced the [Ca2+]i response. Combined treatment with oligomycin and rotenone further diminished the [Ca2+]i response and also abolished the CCCP mediated rise in [Ca2+]i. However, rotenone alone had no effect on glutamate induced [Ca2+]i response. These changes in glutamate-induced [Ca2+]i response could not be explained on the basis of deficient mitochondrial Ca2+ sequestration or ATP dependent Ca2+ buffering. The mitochondrial inhibitors reduced the cellular ATP/ADP ratio, however, this would have restrained the ATP dependent Ca2+ buffering processes leading to elevation of [Ca2+]i. In contrast our results showed repression of Ca2+ signal except in case of CCCP which drastically reduced the ATP/ADP ratio. It was inferred that, under the conditions that hamper the Ca2+ sequestering ability of mitochondria, the glutamate induced Ca2+ influx could be impeded. To validate this, influx of Mn2+ through ionotropic glutamate receptor channel was monitored by measuring the quenching of Fura-2 fluorescence. Treatment of slices with oligomycin and rotenone prior to glutamate exposure conspicuously reduced the rate of glutamate induced fluorescence quenching as compared to untreated slices. Thus our data establish that the functional status of mitochondria can modify the activity of ionotropic glutamate receptor and suggest that blockade of mitochondrial Ca2+ sequestration may desensitize the NMDA receptor operated channel.  相似文献   

3.
Although a neurotoxic role has been postulated for the β-amyloid protein (βAP), which accumulates in brain tissues in Alzheimer's disease, a precise mechanism underlying this toxicity has not been identified. The peptide fragment consisting of amino acid residues 25 through 35 (βAP25-35), in particular, has been reported to be toxic in cultured neurons. We report that βAP25-35, applied to rat hippocampal neurons in culture, caused reversible and repeatable increases in the intracellular Ca2+ concentration ([Ca2+]i), as measured by fura 2 fluorimetry. Furthermore, βAP25-35 induced bursts of excitatory potentials and action potential firing in individual neurons studied with whole cell current clamp recordings. The βAP25-35–induced [Ca2+]i elevations and electrical activity were enhanced by removal of extracellular Mg2+, and they could be blocked by tetrodotoxin, by non-N-methyl-D -aspartate (NMDA) and NMDA glutamate receptor antagonists, and by the L-type Ca2+ channel antagonist nimodipine. Similar responses of bursts of action potentials and [Ca2+]i increases were evoked by βAP1-40. Responses to βAP25-35 were not prevented by pretreatment with pertussis toxin. Excitatory responses and [Ca2+]i elevations were not observed in cerebellar neuron cultures in which inhibitory synapses predominate. Although the effects of βAP25-35 depended on the activation of glutamatergic synapses, there was no enhancement of kainate- or NMDA-induced currents by βAP25-35 in voltage-clamp studies. We conclude that βAP25-35 enhances excitatory activity in glutamatergic synaptic networks, causing excitatory potentials and Ca2+ influx. This property may explain the toxicity of βAP25–35. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Abstract: A large body of evidence suggests that disturbances of Ca2+ homeostasis may be a causative factor in the neurotoxicity induced by excitatory amino acids (EAAs). The route or routes by which an increase in intracellular calcium concentration ([Ca2+]i) is mediated in vivo are presently not clarified. This may partly reflect the complexity of intact nervous tissue in combination with the relative unspecific action of the available “calcium antagonists,” e.g., blockers of voltage-sensitive calcium channels. By using primary cultures of cortical neurons as a model system, it has been found that all EAAs stimulate increases in [Ca2+]i but via different mechanisms. By using the drug dantrolene, it has been shown that 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate (AMPA) apparently exclusively stimulates Ca2+ influx through agonist-operated calcium channels and voltage-operated calcium channels. Increased [Ca2+]i due to exposure to kainate (KA) is for the major part caused by influx, as in the case of AMPA, but a small part of the increase in [Ca2+]i may be attributed to a release of Ca2+ from intracellular stores. Quisqualate (QA) stimulates Ca2+ release from an intracellular store that is independent of Ca2+ influx; presumably this store is activated by inositol phosphates. The increase in [Ca2+]i due to exposure to glutamate or N-methyl-d -aspartate (NMDA) may be compartmentalized into three components, one of which is related to influx and the other two to Ca2+ release from internal stores. Only one of the latter stores is dependent on Ca2+ influx with regard to release of Ca2+, whereas the other is activated by some other second messengers or, alternatively, directly coupled to the receptor. In muscles dantrolene is known to inhibit Ca2+ release from the sarcoplasmic reticulum, and also in neurons dantrolene inhibits an equivalent release from one or more hitherto unidentified internal Ca2+ pool(s). By using this drug it has been possible to show to what extent these Ca2+ stores are involved in the toxicity observed subsequent to exposure to the EAAs. It turned out that dantrolene, even under conditions allowing Ca2+ influx, inhibited toxicity induced by QA, NMDA, and glutamate, whereas that induced by AMPA or KA was unaffected. In combination with the findings that dantrolene inhibited release from the intracellular stores activated by QA, NMDA, and glutamate, it may be concluded that Ca2+ influx per se is not the primary event causing toxicity following exposure to these EAAs in these neurons. However, it may certainly be involved in the cases of toxicity induced by AMPA and KA. Finally, it should be pointed out that this model only serves as a much simplified working hypothesis and that the situation in vivo is much more complex.  相似文献   

5.
Calcium influx via the NMDA receptor has been proposed as a mechanism of hypoxia-induced neuronal injury. The present study tests the hypothesis that the increase of [Ca2+]i observed under hypoxic conditions is the result of an NMDA-mediated Ca2+ influx. Changes of [Ca2+]i, measured fluorometrically with Fura-2, were followed after activation of the NMDA receptor with NMDA and glutamate, in the presence of glycine, in cortical synaptosomes prepared from six normoxic and six hypoxic guinea pig fetuses. [Ca2+]i was significantly higher in hypoxic vs normoxic synaptosomes, at baseline and in the presence of glycine as well as following activation of the NMDA receptor. Increase in [Ca2+]i was not observed in a Ca2+ free medium and was significantly decreased by MK-801 and thapsigargin. These results demonstrate that hypoxia-induced modifications of the NMDA receptor ion-channel results in increased [Ca2+]i in hypoxic vs normoxic synaptosomes. This increased accumulation may be due to an initial influx of Ca2+ via the altered NMDA receptor with subsequent release of Ca2+ from intracellular stores. Increase in intracellular calcium may initiate several pathways of free radical generation including cyclooxygenase, lipoxygenase, xanthine oxidase and nitric oxide synthase, and lead to membrane lipid peroxidation resulting in neuronal cell damage.  相似文献   

6.
Abstract: The mechanisms involved in Ca2+ mobilization evoked by the muscarinic cholinoceptor (mAChR) agonist carbachol (CCh) and N-methyl-d -aspartate (NMDA) in cerebellar granule cells have been investigated. An initial challenge with caffeine greatly reduced the subsequent intracellular Ca2+ concentration ([Ca2+]i) response to CCh (to 45 ± 19% of the control), and, similarly, a much reduced caffeine response was detectable after prior stimulation with CCh (to 27 ± 6% of the control). CCh-evoked [Ca2+]i responses were inhibited by preincubation with thapsigargin (10 µM), 2,5-di(tert-butyl)-1,4-benzohydroquinone (BHQ; 25 µM), ryanodine (10 µM), or dantrolene (25 µM). BHQ pretreatment was found to have no effect on the sustained phase of the NMDA-evoked [Ca2+]i response. Both CCh (1 mM) and 1-aminocyclopentane-1S,3R-dicarboxylic acid (ACPD; 200 µM) evoked a much diminished increase in [Ca2+]i in granule cells pretreated with CCh for 24 h compared with vehicle-treated control cells (CCh, 23 ± 14%; ACPD, 27 ± 1% of respective control values). In contrast, a 24-h CCh pretreatment decreased the subsequent inositol 1,4,5-trisphosphate (InsP3) response to CCh to a much greater extent compared with responses evoked by metabotropic glutamate receptor (mGluR) agonists; this suggests that the former effect on Ca2+ mobilization represents a heterologous desensitization of the mGluR-mediated response distal to the pathway second messenger. Furthermore, [Ca2+]i responses to caffeine and NMDA were unaffected by a 24-h pretreatment with CCh. This study indicates that ryanodine receptors, as well as InsP3 receptors, appear to be crucial to the mAChR-mediated [Ca2+]i response in granule cells. As BHQ apparently differentiates between the CCh- and NMDA-evoked responses, it is possible that the directly InsP3-sensitive pool is physically different from the ryanodine receptor pool. Also, activation of InsP3 receptors may not contribute significantly to NMDA-evoked elevation of [Ca2+]i in cerebellar granule cells. A model for the topographic organization of cerebellar granule cell Ca2+ stores is proposed.  相似文献   

7.
In order to determine the sequence of cellular processes in glutamate toxicity, we simultaneously recorded O2 consumption, cytosolic Ca2+ concentration ([Ca2+]i), and mitochondrial membrane potential (mΔψ) in single cortical neurons. Oxygen consumption was measured using an amperometric self‐referencing platinum electrode adjacent to neurons in which [Ca2+]i and mΔψ were monitored with Fluo‐4 and TMRE+, respectively, using a spinning disk laser confocal microscope. Excitotoxic doses of glutamate caused an elevation of [Ca2+]i followed seconds afterwards by an increase in O2 consumption which reached a maximum level within 1–5 min. A modest increase in mΔψ occurred during this time period, and then, shortly before maximal O2 consumption was reached, the mΔψ, as indicated by TMRE+ fluorescence, dissipated. Maximal O2 consumption lasted up to 5 min and then declined together with mΔψ and ATP levels, while [Ca2+]i further increased. mΔψ and [Ca2+]i returned to baseline levels when neurons were treated with an NMDA receptor antagonist shortly after the [Ca2+]i increased. Our unprecedented spatial and time resolution revealed that this sequence of events is identical in all neurons, albeit with considerable variability in magnitude and kinetics of changes in O2 consumption, [Ca2+]i, and mΔψ. The data obtained using this new method are consistent with a model where Ca2+ influx causes ATP depletion, despite maximal mitochondrial respiration, minutes after glutamate receptor activation.  相似文献   

8.
Depression is associated with vascular disease, such as myocardial infarction and stroke. Pharmacological treatments may contribute to this association. On the other hand, Mg2+ deficiency is also known to be a risk factor for the same category of diseases. In the present study, we examined the effect of imipramine on Mg2+ homeostasis in vascular smooth muscle, especially via melastatin‐type transient receptor potential (TRPM)‐like Mg2+‐permeable channels. The intracellular free Mg2+ concentration ([Mg2+]i) was measured using 31P‐nuclear magnetic resonance (NMR) in porcine carotid arteries that express both TRPM6 and TRPM7, the latter being predominant. pHi and intracellular phosphorus compounds were simultaneously monitored. To rule out Na+‐dependent Mg2+ transport, and to facilitate the activity of Mg2+‐permeable channels, experiments were carried out in the absence of Na+ and Ca2+. Changing the extracellular Mg2+ concentration to 0 and 6 mM significantly decreased and increased [Mg2+]i, respectively, in a time‐dependent manner. Imipramine statistically significantly attenuated both of the bi‐directional [Mg2+]i changes under the Na+‐ and Ca2+‐free conditions. This inhibitory effect was comparable in influx, and much more potent in efflux to that of 2‐aminoethoxydiphenyl borate, a well‐known blocker of TRPM7, a channel that plays a major role in cellular Mg2+ homeostasis. Neither [ATP]i nor pHi correlated with changes in [Mg2+]i. The results indicate that imipramine suppresses Mg2+‐permeable channels presumably through a direct effect on the channel domain. This inhibitory effect appears to contribute, at least partially, to the link between antidepressants and the risk of vascular diseases.  相似文献   

9.
The neurotransmitter glutamate increases cerebral blood flow by activating postsynaptic neurons and presynaptic glial cells within the neurovascular unit. Glutamate does so by causing an increase in intracellular Ca2+ concentration ([Ca2+]i) in the target cells, which activates the Ca2+/Calmodulin-dependent nitric oxide (NO) synthase to release NO. It is unclear whether brain endothelial cells also sense glutamate through an elevation in [Ca2+]i and NO production. The current study assessed whether and how glutamate drives Ca2+-dependent NO release in bEND5 cells, an established model of brain endothelial cells. We found that glutamate induced a dose-dependent oscillatory increase in [Ca2+]i, which was maximally activated at 200 μM and inhibited by α-methyl-4-carboxyphenylglycine, a selective blocker of Group 1 metabotropic glutamate receptors. Glutamate-induced intracellular Ca2+ oscillations were triggered by rhythmic endogenous Ca2+ mobilization and maintained over time by extracellular Ca2+ entry. Pharmacological manipulation revealed that glutamate-induced endogenous Ca2+ release was mediated by InsP3-sensitive receptors and nicotinic acid adenine dinucleotide phosphate (NAADP) gated two-pore channel 1. Constitutive store-operated Ca2+ entry mediated Ca2+ entry during ongoing Ca2+ oscillations. Finally, glutamate evoked a robust, although delayed increase in NO levels, which was blocked by pharmacologically inhibition of the accompanying intracellular Ca2+ signals. Of note, glutamate induced Ca2+-dependent NO release also in hCMEC/D3 cells, an established model of human brain microvascular endothelial cells. This investigation demonstrates for the first time that metabotropic glutamate-induced intracellular Ca2+ oscillations and NO release have the potential to impact on neurovascular coupling in the brain.  相似文献   

10.
Abstract: Many forms of neurodegeneration are ascribed to excessive cellular Ca2+ loading (Ca2+ hypothesis). We examined quantitatively whether factors other than Ca2+ loading were determinants of excitotoxic neurodegeneration. Cell survival, morphology, free intracellular Ca2+ concentration ([Ca2+]i), and 45Ca2+ accumulation were measured in cultured cortical neurons loaded with known quantities of Ca2+ through distinct transmembrane pathways triggered by excitatory amino acids, cell membrane depolarization, or Ca2+ ionophores. Contrary to the Ca2+ hypothesis, the relationships between Ca2+ load and cell survival, free [Ca2+]i, and Ca2+-induced morphological alterations depended primarily on the route of Ca2+ influx, not the Ca2+ load. Notably, Ca2+ loading via NMDA receptor channels was toxic, whereas identical Ca2+ loads incurred through voltage-sensitive Ca2+ channels were completely innocuous. Furthermore, accounting quantitatively for Ca2+ loading via NMDA receptors uncovered a previously unreported component of l -glutamate neurotoxicity apparently not mediated by ionotropic or metabotropic glutamate receptors. It was synergistic with toxicity attributable to glutamate-evoked Ca2+ loading, and correlated with enhanced cellular ATP depletion. This previously unrecognized toxic action of glutamate constituted a chief excitotoxic mechanism under conditions producing submaximal Ca2+ loading. We conclude that (a) Ca2+ neurotoxicity is a function of the Ca2+ influx pathway, not Ca2+ load, and (b) glutamate toxicity may not be restricted to its actions on glutamate receptors.  相似文献   

11.
Abstract: The effect of replacement of extracellular Na+ with N-methyl-d -glucamine (NMG) on P2 receptor signaling pathways was investigated in dibutyryl cyclic AMP-differentiated NG108-15 cells. Benzoylbenzoic ATP (BzATP) dose-dependently increased the cytosolic Ca2+ concentration ([Ca2+]i) with an EC50 value of 230 µM. Replacement of Na+ with NMG as well as removal of Mg2+ from the bathing buffer potentiated ethidium bromide uptake, [Ca2+]i increase, and 45Ca2+ uptake in response to ATP or BzATP. In contrast, in the presence of 5 mM Mg2+ to limit the amount of ATP4?, replacement of Na+ with NMG had no effect on the ATP-induced [Ca2+]i increase but caused a markedly larger [Ca2+]i increase when the calculated concentration of ATP4? was >10 µM. The calculated EC50 value for ATP4? stimulation of the [Ca2+]i increase was 23 µM in NG108-15 cells. In vascular smooth muscle cells, intracellular Ca2+ release was the major pathway for the ATP-induced [Ca2+]i increase; both removal of Mg2+ and replacement of Na+ with NMG did not affect the action of ATP. These data suggest that ATP4?-promoted pores are antagonized by Na+ and Mg2+ in dibutyryl cyclic AMP-differentiated NG108-15 cells.  相似文献   

12.
Intracellular Free Calcium Dynamics in Stretch-Injured Astrocytes   总被引:6,自引:1,他引:5  
Abstract: We have previously developed an in vitro model for traumatic brain injury that simulates a major component of in vivo trauma, that being tissue strain or stretch. We have validated our model by demonstrating that it produces many of the posttraumatic responses observed in vivo. Sustained elevation of the intracellular free calcium concentration ([Ca2+]i) has been hypothesized to be a primary biochemical mechanism inducing cell dysfunction after trauma. In the present report, we have examined this hypothesis in astrocytes using our in vitro injury model and fura-2 microphotometry. Our results indicate that astrocyte [Ca2+]i is rapidly elevated after stretch injury, the magnitude of which is proportional to the degree of injury. However, the injury-induced [Ca2+]i elevation is not sustained and returns to near-basal levels by 15 min postinjury and to basal levels between 3 and 24 h after injury. Although basal [Ca2+]i returns to normal after injury, we have identified persistent injury-induced alterations in calcium-mediated signal transduction pathways. We report here, for the first time, that traumatic stretch injury causes release of calcium from inositol trisphosphate-sensitive intracellular calcium stores and may uncouple the stores from participation in metabotropic glutamate receptor-mediated signal transduction events. We found that for a prolonged period after trauma astrocytes no longer respond to thapsigargin, glutamate, or the inositol trisphosphate-linked metabotropic glutamate receptor agonist trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid with an elevation in [Ca2+]i. We hypothesize that changes in calcium-mediated signaling pathways, rather than an absolute elevation in [Ca2+]i, is responsible for some of the pathological consequences of traumatic brain injury.  相似文献   

13.
Neurons of the avian cochlear nucleus, nucleus magnocellularis (NM), are stimulated by glutamate, released from the auditory nerve, and GABA, released from both interneurons surrounding NM and from cells located in the superior olivary nucleus. In this study, the Ca2+ indicator dye Fura-2 was used to measure Ca2+ responses in NM stimulated by glutamate- and GABA-receptor agonists using a chicken brainstem slice preparation. Glutamatergically stimulated Ca2+ responses were evoked by kainic acid (KA), α-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA), and N-methyl-D -aspartate (NMDA). KA- and AMPA-stimulated changes in [Ca2+]i were also produced in NM neurons stimulated in the presence of nifedipine, an L-type Ca2+ channel blocker, suggesting that KA- and AMPA-stimulated changes in [Ca2+]i were carried by Ca2+-permeable receptor channels. Significantly smaller changes in [Ca2+]i were produced by NMDA. When neurons were stimulated in an alkaline (pH 7.8) superfusate, NMDA responses were potentiated. KA- and AMPA-stimulated responses were not affected by pH. Several agents known to stimulate metabotropic receptors in other systems were tested on NM neurons bathed in a Ca2+ free-EGTA–buffered media, including l -cysteine sulfinic acid (L-CSA), trans-azetidine dicarboxylic acid (t-ADA), trans-aminocyclopentanedicarboxylic acid (t-ACPD), and homobromoibotenic acid (HBI). The only agent to reliably and dose-dependently increase [Ca2+]i was HBI, an analog of ibotenate. GABA also stimulated increases in [Ca2+]i in NM neurons. GABA-stimulated responses were reduced by agents that block voltage-operated channels and by agents that inhibit Ca2+ release from intracellular stores. Whereas GABA-A receptor agonist produced increases in [Ca2+]i GABA-B and GABA-C receptor agonists had no effect. There appear to be several ways for [Ca2+]i to increase in NM neurons. Presumably, each route represents a means by which Ca2+ can alter cellular processes. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 321–337, 1998  相似文献   

14.
Abstract: The serotonin 5-HT3 receptor, a ligand-gated ion channel, has previously been shown to be present on a subpopulation of brain nerve terminals, where, on activation, the 5-HT3 receptors induce Ca2+ influx. Whereas postsynaptic 5-HT3 receptors induce depolarization, being permeant to Na+ and K+, the basis of presynaptic 5-HT3 receptor-induced calcium influx is unknown. Because the small size of isolated brain nerve terminals (synaptosomes) precludes electrophysiological measurements, confocal microscopic imaging has been used to detect calcium influx into them. Application of 100 nM 1-(m-chlorophenyl)biguanide (mCPBG), a highly specific 5-HT3 receptor agonist, induced increases in internal free Ca2+ concentration ([Ca2+]i) and exocytosis in a subset of corpus striatal synaptosomes. mCPBG-induced increases in [Ca2+]i ranged from 1.3 to 1.6 times over basal values and were inhibited by 10 nM tropisetron, a potent and highly specific 5-HT3 receptor antagonist, but were insensitive to the removal of external free Na+ (substituted with N-methyl-d -glucamine), to prior depolarization induced on addition of 20 mM K+, or to voltage-gated Ca2+ channel blockade by 10 µM Co2+/Cd2+ or by 1 µMω-conotoxin MVIIC/1 µMω-conotoxin GVIA/200 nM agatoxin TK. In contrast, the Ca2+ influx induced by 5-HT3 receptor activation in NG108-15 cells by 1 µM mCPBG was substantially reduced by 10 µM Co2+/Cd2+ and was completely blocked by 1 µM nitrendipine, an L-type Ca2+ channel blocker. We conclude that in contrast to the perikaryal 5-HT3 receptors, presynaptic 5-HT3 receptors appear to be uniquely calcium-permeant.  相似文献   

15.
Changes in intracellular Ca2+ concentration ([Ca2+]i) produced by ryanodine receptor (RyR) agonist, caffeine (caf), and ionotropic agonists: N-methyl-d-aspartate (NMDA) receptor (NMDAR) agonist, NMDA and P2X7 receptor (P2X7R) agonist, 3′-O-(4-benzoyl)benzoyl adenosine 5′-triphosphate (BzATP) were measured in cultured mouse cortical astrocytes loaded with the fluorescent calcium indicator Fluo3-AM in a confocal laser scanning microscope. In mouse astrocytes cultured in standard medium (SM), treatment with caf increased [Ca2+]i, with a peak response occurring about 10 min after stimulus application. Peak responses to NMDA or BzATP were observed about <1 min and 4.5 min post stimulus, respectively. Co-treatment with NMDA or BzATP did not alter the peak response to caf in astrocytes cultured in SM, the absence of the effects being most likely due to asynchrony between the response to caf, NMDA and BzATP. Incubation of astrocytes with neuron-condition medium (NCM) for 24 h totally abolished the caf-evoked [Ca2+]i increase. In NCM-treated astrocytes, peak of [Ca2+]i rise evoked by NMDA was delayed to about 3.5 min, and that induced by BzATP occurred about three minutes earlier than in SM. The results show that neurons secrete factors that negatively modulate RyR-mediated Ca2+-induced Ca2+ release (CICR) in astrocytes and alter the time course of Ca2+ responses to ionotropic stimuli.  相似文献   

16.
We investigated the early effects (5–60 s) of progesterone (1 pM–0.1 μM) on cytosolic free calcium concentration ([Ca2+]i) and inositol 1,4,5-trisphosphate (InsP3) formation in nonluteinized and in vitro luteinized porcine granulosa cells (pGCs). Progesterone increased [Ca2+]i and InsP3 formation within 5 s in both cell types. Progesterone induced calcium mobilization from the endoplasmic reticulum via the activation of a phospholipase C linked to a pertussis-insensitive G-protein. This process was controlled by protein kinases C and A. In contrast, only nonluteinized pGCs showed a Ca2+ influx via dihydropyridine-insensitive calcium channel. In both cell types, the nuclear progesterone receptor antagonist RU-38486 did not inhibit the progesterone-induced increase in [Ca2+]i; progesterone immobilized on bovine serum albumin, which did not enter the cell, increased [Ca2+]i within 5 s and was a full agonist, but less potent than the free progesterone; pertussis toxin did not inhibit progesterone effect on InsP3. In conclusion, progesterone may interact with membrane unconventional receptors that belong to the class of membrane receptors coupled to a phospholipase C via a pertussis toxin-insensitive G-protein. The source of the Ca2+ for the progesterone-induced increase in [Ca2+]i also depends on the stage of cell luteinization. © 1996 Wiley-Liss, Inc.  相似文献   

17.
This study investigated the effects of extracellular Mg2+ ([Mg2+]o) on basal and acetylcholine (ACh)-evoked amylase secretion and intracellular free Ca2+ ([Ca2+]i) in rat parotid acinar cells. In a medium containing 1.1 mM [Mg2+]o, ACh evoked significant increases in amylase secretion and [Ca2+]i. Either low (0 mM) or elevated (5 and 10 mM) [Mg2+]o attenuated ACh-evoked responses. In a nominally Ca2+ free medium, elevated [Mg2+]o attenuated basal and ACh-evoked amylase secretion and [Ca2+]i. In parotid acinar cells incubated with either 0, 1.1, 5 or 10 mM [Mg2+]o, ACh evoked a gradual decrease in [Mg2+]i. These results indicate that the ACh-evoked Mg2+ efflux is an active process since Mg2+ has to move against its gradient. Either lidocaine, amiloride, N-methyl-d-glucamine, quinidine, dinitrophenol or bumetanide can elevate [Mg2+]i above basal level. In the presence of these membrane transport inhibitors, ACh still evoked a decrease in [Mg2+]i but the response was less pronounced with either [Na+]o removal or in the presence of either amiloride or quinidine. These results indicate marked interactions between Ca2+ and Mg2+ signalling in parotid acinar cells and that ACh-evoked Mg2+ transport was not dependent upon [Na+]o.  相似文献   

18.
Li B  Dong L  Fu H  Wang B  Hertz L  Peng L 《Cell calcium》2011,50(1):42-53
Primary cultures of mouse astrocytes were used to investigate effects by chronic treatment (3-21 days) with fluoxetine (0.5-10 μM) on capacitative Ca2+ influx after treatment with the SERCA inhibitor thapsigargin and on receptor agonist-induced increases in free cytosolic Ca2+ concentration [Ca2+]i, determined with Fura-2. The agonists were the 5-HT2B agonist fluoxetine, the α2-adrenergic agonist dexmedetomidine, and ryanodine receptor (RyR) and IP3 receptor (IP3R) agonists. In untreated sister cultures each agonist distinctly increased [Ca2+]i, but in cultures treated for sufficient length of time or with sufficiently high doses of fluoxetine, acute administration of fluoxetine, dexmedetomidine, or RyR or IP3R agonists elicited reduced, in some cases abolished, effects. Capacitative Ca2+ entry, meditated by TRPC1 channels, was sufficiently inhibited to cause a depletion of Ca2+ stores, which could explain the reduced agonist effects. All effects of chronic fluoxetine administration could be replicated by TRPC1 channel antibody or siRNA. Since increases in astrocytic [Ca2+]i regulate release of gliotransmitters, these effects may have profound effects on brain function. They may be important for therapeutic effects of all 5 conventional ‘serotonin-specific reuptake inhibitors’ (SSRIs), which at concentrations used therapeutically (∼1 μM) share other of fluoxetine's chronic effects (Zhang et al., Neuron Glia Biol. 16 (2010) 1-13).  相似文献   

19.
Abstract: We found that extracellular ATP can increase the intracellular Ca2+ concentration ([Ca2+]i) in mouse pineal gland tumor (PGT-β) cells. Studies of the [Ca2+]i rise using nucleotides and ATP analogues established the following potency order: ATP, adenosine 5′-O-(3-thiotriphosphate) ≥ UTP > 2-chloro-ATP > 3′-O-(4-benzoyl)benzoyl ATP, GTP ≥ 2-methylthio ATP, adenosine 5′-O-(2-thiodiphosphate) (ADPβS) > CTP. AMP, adenosine, α,β-methyleneadenosine 5′-triphosphate, β,γ-methyleneadenosine 5′-triphosphate, and UMP had little or no effect on the [Ca2+]i rise. Raising the extracellular Mg2+ concentration to 10 mM decreases the ATP-and UTP-induced [Ca2+]i rise, because the responses depend on the ATP4? and UTP4? concentrations, respectively. The P2U purinoceptor-selective agonist UTP and the P2Y purinoceptor-selective agonist ADPβS induce inositol 1,4,5-trisphosphate generation in a concentration-dependent manner with maximal effective concentrations of ~100 µM. In sequential stimulation, UTP and ADPβS do not interfere with each other in raising the [Ca2+]i. Costimulation with UTP and ADPβS results in additive inositol 1,4,5-trisphosphate generation to a similar extent as is achieved with ATP alone. Pretreatment with pertussis toxin inhibits the action of UTP and ATP by maximally 45–55%, whereas it has no effect on the ADPβS response. Treatment with 1 µM phorbol 12-myristate 13-acetate inhibits the ADPβS-induced [Ca2+]i rise more effectively than the ATP- and UTP-induced responses. These results suggest that P2U and P2Y purinoceptors coexist on PGT-β cells and that both receptors are linked to phospholipase C.  相似文献   

20.
The protein kinase C (PKC) activator, phorbol 12, 13-dibutyrate (PDBa) dose-dependently inhibited platelet-activating factor (PAF)-induced [Ca2+]i elevation and inositol monophosphate (IP1) accumulation in neurohybrid NG108-15 cells with IC50 values of 162 nM and 35 nM, respectively. Pretreatment of NG108-15 cells with PKC inhibitor H-7 partially prevented the inhibitory effect of PDBu on PAF-induced [Ca2+]i elevation as well as PI metabolism in NG108-15 cells. Pretreatment of the cells with pertussis toxin (PTX) resulted in a dose-dependent inhibition of PAF-induced IP1 and IP3 accumulation but only slightly affected PAF-induced [Ca2+]i elevation in NG108-15 cells. The results reveal that PAF receptor-mediated Ca2+ mobilization and PI metabolism in NG108-15 cells are regulated by PKC while a PTX-sensitive G protein is coupled to PAF receptor for inducing activation of phospholipase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号