首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Density counts were taken for 37 plant species on 12 plots which were assigned to three treatments: spring burn, autumn burn, and control. Post-fire sampling was carried out at intervals of up to 6 years when a second fire treatment was applied, followed by further sampling at 1 year. Most pre-fire species returned by 12 months after fire. Initial recovery was slower on the autumn burn plots and these were surpassed after 12 months by the spring burn plots which remained significantly more diverse until 6 years after fire when the treatments converged. The second fire led to further loss of species, especially on the autumn burn plots. Overall, numbers of individuals were lower in the post-fire community and did not fully recover during the 6 years before the second fire. Of the 37 species followed over the study period, eight had population numbers consistently below pre-fire values, seven showed better recovery on the autumn burn plots, eight showed better recovery on the spring burn plots, and fourteen had population numbers equal to or greater than pre-fire values. Most of the species not fully recovering had relatively poor survival rates. The better recovery rate of species on the autumn burn plots was attributable to better recruitment while the species recovering on the spring burn plots showed better survival and recruitment. The species increasing their numbers after the fire did so through good recruitment or survival, or both. For some species post-fire rainfall or temperature was significantly correlated with greater post-fire recruitment; others were more strongly affected by the treatment itself or more directly by the somewhat different fire intensities in spring and autumn, the differences in soil and litter moisture content, or seasonal variations in soil seed populations.  相似文献   

3.
The effects of high intensity fire on the cycling of nutrients in litter and canopy through fall were studied in pole stand jarrah (E. marginata Bonn ex Sm.) forest near Dwellingup, south-western Australia. In the first year following burning, twice as much litter fell on the burnt site as on an unburnt control site. Concentrations of phosphorus and nitrogen were higher in post-fire litter probably because crown scorch during burning prevented withdrawal of phosphorus and nitrogen into the tree before leaf fall. This, together with the increased weight of litter, resulted in a four-fold increase in the accession of phosphorus and nitrogen to the forest floor in litter one year after the fire on the burnt site. The concentrations of potassium, magnesium, sodium and chlorine in the litter were all significantly lower on the burnt site than on the unburnt site in the first year following burning. During the second year after the fire, significantly less litter fell on the burnt area than on the unburnt control site. Phosphorus concentrations in the litter from the burnt site remained 50% higher than in litter from the control but the other nutrient elements returned to their pre-fire levels. There are indications that more phosphorus and potassium are cycled via canopy leaching immediately after burning. In the second winter following the fire there were no significant differences in the amounts of nutrients in canopy leachate on the burnt and unburnt areas.  相似文献   

4.
In the Mediterranean region, wildfires have devastating effects on animals with limited mobility. With their poor dispersal abilities, their habitats on vegetation and in litter, and their sensitivity to humidity and shade, we expected land snails to be an interesting model to assess short, medium and long-term impact of fires on fauna biodiversity and their resilience. Stratified sampling was carried out on 12 sampling sites in garrigues and forests of Provence (southeastern France), according to fire regime (number of fires, fire intervals and age of the last fire) over the past 30 years. Data were investigated using diversity indexes, Kruskal–Wallis test, dendrogram of affinities and Correspondence Analysis (CA). We found, however, that Mediterranean land snail communities are particularly resilient to fires. Although abundance is drastically reduced in the short-term, species richness and community diversity are preserved provided that the time lapse between two successive fires is longer than the time required for recovery (i.e. around 5 years). This high community resilience in the short-term may be partly due to ecological and ethological aptitudes of land snails. However, these astonishing results, which have implications for conservation biology, are mainly due to the presence, within burned areas, of cryptic refuges that allow initial land snail survival, malacofauna persistence after successive fires and consistent biogeographical patterns in the long-term.  相似文献   

5.
Fire is an important agent of disturbance in tropical savannas, but relatively few studies have analyzed how soil-and-litter dwelling arthropods respond to fire disturbance despite the critical role these organisms play in nutrient cycling and other biogeochemical processes. Following the incursion of a fire into a woodland savanna ecological reserve in Central Brazil, we monitored the dynamics of litter-arthropod populations for nearly two years in one burned and one unburned area of the reserve. We also performed a reciprocal transplant experiment to determine the effects of fire and litter type on the dynamics of litter colonization by arthropods. Overall arthropod abundance, the abundance of individual taxa, the richness of taxonomic groups, and the species richness of individual taxa (Formiciade) were lower in the burned site. However, both the ordinal-level composition of the litter arthropod fauna and the species-level composition of the litter ant fauna were not dramatically different in the burned and unburned sites. There is evidence that seasonality of rainfall interacts with fire, as differences in arthropod abundance and diversity were more pronounced in the dry than in the wet season. For many taxa the differences in abundance between burned and unburned sites were maintained even when controlling for litter availability and quality. In contrast, differences in abundance for Collembola, Formicidae, and Thysanoptera were only detected in the unmanipulated samples, which had a lower amount of litter in the burned than in the unburned site throughout most of our study period. Together these results suggest that arthropod density declines in fire-disturbed areas as a result of direct mortality, diminished resources (i.e., reduced litter cover) and less favorable microclimate (i.e., increased litter desiccation due to reduction in tree cover). Although these effects were transitory, there is evidence that the increasingly prevalent fire return interval of only 1–2 years may jeopardize the long-term conservation of litter arthropod communities.  相似文献   

6.
Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance.  相似文献   

7.
森林碳库在调节CO2浓度及减缓温室效应中发挥重要作用。选择广东木荷林为研究对象,通过相邻样地法,进行植被生物量、凋落物生物量和土壤样品的采样与分析,研究不同林火干扰强度对生态系统各碳库(植被、凋落物和土壤有机碳)及生态系统碳库产生的变化规律和空间分布格局及其影响因素。结果表明:(1)植被碳密度随着林火干扰强度增强而减少,但不同组分的植被碳密度表现不同,乔木碳密度在不同林火干扰强度下变化与植被碳密度变化一致,而草本碳密度则呈现相反的变化趋势。相同林火干扰强度下,植被各组分碳密度均以乔木层降低幅度最大。林火干扰均显著降低了凋落物碳密度(P<0.05),并随林火干扰强度的增加其降低幅度增大,但不同林火干扰强度对凋落物碳密度的影响有所差异。林火干扰降低了土壤有机碳密度,且降低幅度随土层深度增加而逐渐变小。(2)林火干扰有效改变了生态系统碳库的空间分布格局。对照样地木荷林土壤有机碳库占比为61.59%,重度林火干扰后,土壤有机碳库占比为70.96%呈上升趋势,占生态系统碳库的优势地位,而植被和凋落物碳库占比呈下降趋势,处于生态系统碳库的次要地位。(3)双因素方差分析表明,林火干扰强度和土层深度及其交互作用均对土壤有机碳密度有显著影响。林火干扰强度解释了土壤有机碳密度变异的8.78%,土层深度解释了土壤有机碳密度变异的70.29%,林火干扰强度和土层深度之间的交互作用解释了土壤有机碳密度变异的8.16%。研究发现:林火干扰降低了生态系统碳库,且随林火干扰强度增加,生态系统碳库减少幅度增大。轻度林火干扰对森林生态系统碳库的影响差异不显著,而中度和重度林火干扰对森林生态系统碳库的影响差异显著。研究结果对深化亚热带森林固碳效应的影响机制提供理论支撑。  相似文献   

8.
High severity wildfire events are a feature of forests globally and are likely to be more prevalent with climate change. As a disturbance process, fire has the potential to change important ecological functions, such as decomposition, through its impact on biodiversity. Despite the recognised importance of decomposition in terms of fuel loads and energy flow, little is known about the post-fire effects of fire severity on decomposition by litter-dwelling macroinvertebrate detritivores. We tested the hypotheses that: 1) increasing fire severity is associated with decreased rates of leaf litter decomposition by macroinvertebrate detritivores; and 2) the abundance and biomass of macroinvertebrate detritivores decreases with increasing fire severity, while body size increases. We used a litterbag experiment at long-unburnt, ground-burnt and crown-burnt sites (n = 7 for all treatments) to test the effect of fire severity on: a) macroinvertebrate-driven break-down of litter fuel loads; and b) the size and abundance of macroinvertebrate detritivores three years after fire. Microhabitat conditions differed among fire severity classes. Macroinvertebrate exclusion reduced litter decomposition by 34.7%. Macroinvertebrate detritivores were larger and less abundant following higher severity fires, possibly as a result of fire-induced changes in habitat structure. Opposing effects of fire severity on macroinvertebrate abundance and body size resulted in both similar detritivore biomass and, most interestingly, no differences in leaf litter decomposition under different fire severities. This suggests that the diversity of macroinvertebrates enhances functional resilience of litter decomposition to fire and that litter-breakdown is not inhibited within three years following a high severity fire in this forest type and where recolonisation sources are readily available. We found no support for the hypothesis that high severity fires reduce litter decomposition and therefore increase the likelihood of future fires.  相似文献   

9.
Fire is a major driver of ecosystem change and can disproportionately affect the cycling of different nutrients. Thus, a stoichiometric approach to investigate the relationships between nutrient availability and microbial resource use during decomposition is likely to provide insight into the effects of fire on ecosystem functioning. We conducted a field litter bag experiment to investigate the long‐term impact of repeated fire on the stoichiometry of leaf litter C, N and P pools, and nutrient‐acquiring enzyme activities during decomposition in a wet sclerophyll eucalypt forest in Queensland, Australia. Fire frequency treatments have been maintained since 1972, including burning every 2 years (2yrB), burning every 4 years (4yrB) and no burning (NB). C : N ratios in freshly fallen litter were 29–42% higher and C : P ratios were 6–25% lower for 2yrB than NB during decomposition, with correspondingly lower 2yrB N : P ratios (27–32) than for NB (34–49). Trends in litter soluble and microbial N : P ratios were similar to the overall litter N : P ratios across fire treatments. Consistent with these, the ratio of activities for N‐acquiring to P‐acquiring enzymes in litter was higher for 2yrB than NB, whereas 4yrB was generally intermediate between 2yrB and NB. Decomposition rates of freshly fallen litter were significantly lower for 2yrB (72 ± 2% mass remaining at the end of experiment) than for 4yrB (59 ± 3%) and NB (62 ± 3%), a difference that may be related to effects of N limitation, lower moisture content, and/or litter C quality. Results for older mixed‐age litter were similar to those for freshly fallen litter although treatment differences were less pronounced. Overall, these findings show that frequent fire (2yrB) decoupled N and P cycling, as manifested in litter C : N : P stoichiometry and in microbial biomass N : P ratio and enzymatic activities. Furthermore, these data indicate that fire induced a transient shift to N‐limited ecosystem conditions during the postfire recovery phase.  相似文献   

10.
Fire in the tropical gallery forests of Belize   总被引:1,自引:0,他引:1  
ABSTRACT. Historical records of burning, field observations, and a manipulation experiment were used to evaluate the extent and impact of fire in a system of gallery forests in the Mountain Pine Ridge savanna, Belize. The outer boundaries of gallery forests are fire-prone zones, but fires rarely intrude into these forests. This is attributed to the existence of fire-tolerant trees in the outer zone, which preserve a forest interior of low flammability. Occasional fire incursions are patchily distributed and partially inhibited by slope convexities. Intrusions consume litter and root mats and destroy seedlings and saplings, but create a wide variety of subsequent light regimes depending upon the degree of canopy destruction. At most sites, partial canopy cover persists and seedlings of a subset of forest tree species establish preferentially. Early survivorship of these seedlings is comparable to those established in undamaged forest. Where canopy opening is severe, a secondary succession is initiated, with large numbers of herbaceous plants deriving from the seed bank. Gallery forests contain core zones into which fire very rarely intrudes, and peripheral zones that experience fire incursions that are patchily distributed in space and time. In the latter zones fire incursions play a role comparable to that of canopy gaps in continuous forests, but also create a unique class of micro-habitats to which a subset of tree species is specialized. The fire regime over the recent past in this gallery forest system appears to have had an enriching, rather than a depauperizing, effect on the forest communities, and such systems represent plausible refugia for forest species in fire-prone landscapes.  相似文献   

11.
Dry woodlands frequently experience fire, and the heterogeneous spatial patterning of vegetation cover and fire behavior in these systems can lead to interspersed burned and unburned patches of different vegetation cover types. Biogeochemical processes may differ due to fire and vegetation cover influences on biotic and abiotic conditions, but these persistent influences of fire in the months or years following fire are not as well understood as the immediate impacts of fire. In particular, leaf litter decomposition, a process controlling nutrient availability and soil organic matter accumulation, is poorly understood in drylands but may be sensitive to vegetation cover and fire history. Decomposition is responsive to changes in abiotic drivers or interactions between abiotic conditions and biotic drivers, suggesting that decomposition rates may differ with vegetation cover and fire. The objective of this study was to assess the role of vegetation cover and fire on leaf litter decomposition in a semi-arid pinyon-juniper woodland in southern New Mexico, USA, where prescribed fire is used to combat increasing woody cover. A spatially heterogeneous prescribed burn led to closely co-located but discrete burned and unburned patches of all three dominant vegetation cover types (grass, shrub, tree). Decomposition rates of leaf litter from two species were measured in mesh litterbags deployed in factorial combination of the three vegetation cover types and two fire treatments (burned and unburned patches). For both litter types, decomposition was lower for unburned trees than for unburned grass or shrubs, perhaps due to greater soil–litter mixing and solar radiation away from tree canopies. Fire enhanced litter mass loss under trees, making decomposition rates similarly rapid in burned patches of all three vegetation cover types. Understanding decomposition dynamics in spatially heterogeneous vegetation cover of dry woodlands is critical for understanding biogeochemical process responses to fire in these systems.  相似文献   

12.
The upland shrub community of the New Jersey Pine Barrens maintains strong compositional and structural stability despite frequent low-intensity fires. To determine the mechanisms by which individual species respond to fire, regrowth of vegetation was monitored for 3 years after fire at a burned site, and at a nearby site that had not been burned. At both sites, experimental treatments simulated various physical aspects of fire, including clipping of stems, removal of leaf litter, and application of fertilizer. Both fire and clipping were followed by multiple resprouting and enhanced growth of the dominant shrub, Gaylussacia baccata, suggesting that sprout growth is controlled by correlative inhibition of adventitious buds. By contrast, neither fertilizer nor litter removal had a significant impact on G. baccata. Other species were only observed at very low numbers, and appeared to act independently of either fire or experimental treatments. Recruitment from seed was not observed in any treatment at either site, despite reports of a large soil seed bank. Thus, compositional stability is maintained through a large reserve of dormant buds on the dominant species, and through a lack of opportunities for associate species. This stability is precarious, however, depending strongly on fire frequency and intensity.  相似文献   

13.
Climate change is increasing the frequency of extreme fires. In 2019–2020, extreme fires burned 97 000 km2 of native vegetation in south-eastern Australia, affecting many areas of rainforest, which has historically burned less frequently. One year post-fires, we surveyed litter macroinvertebrates in 52 temperate rainforest sites. Sites had experienced increasing levels of fire severity (unburnt, medium severity and high severity). We asked how fire severity affected: (1) litter macroinvertebrate habitats; (2) the abundance of litter macroinvertebrate taxa per unit area; and (3) abundance relative to litter habitat (volumetric density). We also estimated the loss of litter macroinvertebrates across rainforests in the study region. High severity burns supported only a fifth of the litter volume and canopy cover as unburnt sites, lower soil moisture and higher herb cover. Medium burns were intermediate. Macroinvertebrate abundance declined with burn severity: high severity burns supported only 26% of the abundance in unburnt sites; medium severity burns supported 80% of that in unburnt sites. Patterns were similar for all taxa, with millipedes declining most. High severity fires resulted in up to 1.90 million fewer macroinvertebrates per hectare; 0.53 million fewer per hectare of medium burn rainforest. Across the study region, we estimate that 60 billion fewer litter macroinvertebrates persisted in temperate rainforests alone. Volumetric densities of many litter macroinvertebrate taxa in high severity burns were marginally higher than in unburnt sites, suggesting nutrients may be more available post-fire, or that persisting individuals become concentrated in the leaf litter. For less desiccation-tolerant groups (e.g., amphipods), density declines with increasing severity may reflect the combined impact of low soil moisture and reduced litter cover. Many taxa persisted following high severity fires, but declines were substantial, and taxa differed in their vulnerability. Longer-term monitoring is required to understand the recovery trajectory and impacts on ecological function.  相似文献   

14.
Decomposition is a vital ecosystem process, increasingly modified by human activity. Theoretical frameworks and empirical studies that aim to understand the interplay between human land‐use, macro‐fauna and decomposition processes have primarily focused on leaf and wood litter. For a whole‐plant understanding of how land‐use and macro‐fauna influence decomposition, investigating root litter is required. Using litterbags, we quantified rates of root decomposition across contrasting tropical savanna land‐uses, namely wildlife and fire‐dominated protected areas and livestock pastureland without fire. By scanning litterbags for termite intrusion, we differentiated termite and microbial driven decomposition. Root litter was buried underneath different tree canopies (leguminous and non‐leguminous trees) and outside canopies to account for savanna landscape effects. Additionally, we established a termite cafeteria‐style experiment and common garden to explore termite selectivity of root litter and root trait relationships, respectively. After one year, we found no significant differences in root litter mass loss between wildlife dominated areas and pastureland. Instead, we found consistent species differences in root litter mass loss across land‐uses and additive and non‐additive effects of termites on root decomposition across plant species. Termite selectivity for root litter species occurred for both root and leaf litter buried near termite mounds, but was not explained by root traits measured in the common garden. Termite foraging was greater under leguminous tree canopies than other canopies; however, this did not influence rates of root decomposition. Our study suggests that land‐use has a weak direct effect on belowground processes in savannas. Instead, changes in herbaceous species composition and termite foraging have stronger impacts on belowground decomposition. Moreover, termites were not generalist decomposers of root litter, but their impact varies depending on plant species identity and likely associated root traits. This root litter selectivity by termites is likely to be an important contributor to spatial heterogeneity in savanna nutrient cycling.  相似文献   

15.
Fire is an integral part of savanna ecology and changes in fire patterns are linked to biodiversity loss in savannas worldwide. In Australia, changed fire regimes are implicated in the contemporary declines of small mammals, riparian species, obligate-seeding plants and grass seed-eating birds. Translating this knowledge into management to recover threatened species has proved elusive. We report here on a landscape-scale experiment carried out by the Australian Wildlife Conservancy (AWC) on Mornington Wildlife Sanctuary in northwest Australia. The experiment was designed to understand the response of a key savanna bird guild to fire, and to use that information to manage fire with the aim of recovering a threatened species population. We compared condition indices among three seed-eating bird species–one endangered (Gouldian finch) and two non-threatened (long-tailed finch and double-barred finch)—from two large areas (> 2,830 km2) with initial contrasting fire regimes (‘extreme’: frequent, extensive, intense fire; versus ‘benign’: less frequent, smaller, lower intensity fires). Populations of all three species living with the extreme fire regime had condition indices that differed from their counterparts living with the benign fire regime, including higher haematocrit levels in some seasons (suggesting higher levels of activity required to find food), different seasonal haematocrit profiles, higher fat scores in the early wet season (suggesting greater food uncertainty), and then lower muscle scores later in the wet season (suggesting prolonged food deprivation). Gouldian finches also showed seasonally increasing stress hormone concentrations with the extreme fire regime. Cumulatively, these patterns indicated greater nutritional stress over many months for seed-eating birds exposed to extreme fire regimes. We tested these relationships by monitoring finch condition over the following years, as AWC implemented fire management to produce the ‘benign’ fire regime throughout the property. The condition indices of finch populations originally living with the extreme fire regime shifted to resemble those of their counterparts living with the benign fire regime. This research supports the hypothesis that fire regimes affect food resources for savanna seed-eating birds, with this impact mediated through a range of grass species utilised by the birds over different seasons, and that fire management can effectively moderate that impact. This work provides a rare example of applied research supporting the recovery of a population of a threatened species.  相似文献   

16.
The red imported fire ant is becoming a global ecological problem, having invaded the United States, Puerto Rico, New Zealand and, most recently, Australia. In its established areas, this pest is devastating natural biodiversity. Early attempts to halt fire ant expansion with pesticides actually enhanced its spread. Phorid fly parasitoids from South America have now been introduced into the United States as potential biological control agents of the red imported fire ant, but the impact of these flies on fire ant populations is currently unknown. In the laboratory, we show that an average phorid density of as little as one attacking fly per 200 foraging ants decreased colony protein consumption nearly twofold and significantly reduced numbers of large-sized workers 50 days later. The high impact of a single phorid occurred mainly because ants decreased foraging rates in the presence of the flies. Our experiments, the first (to our knowledge) to link indirect and direct effects of phorids on fire ants, demonstrate that colonies can be stressed with surprisingly low parasitoid densities. We interpret our findings with regard to the more complex fire ant-phorid interactions in the field.  相似文献   

17.
Aim This study investigates inter‐annual variability in burnt area in southern Africa and the extent to which climate is responsible for this variation. We compare data from long‐term field sites across the region with remotely sensed burnt area data to test whether it is possible to develop a general model. Location Africa south of the equator. Methods Linear mixed effects models were used to determine the effect of rainfall, seasonality and fire weather in driving variation in fire extent between years, and to test whether the effect of these variables changes across the subcontinent and in areas more and less impacted by human activities. Results A simple model including rainfall and seasonality explained 40% of the variance in burnt area between years across 10 different protected areas on the subcontinent, but this model, when applied regionally, indicated that climate had less impact on year‐to‐year variation in burnt area than would be expected. It was possible to demonstrate that the relative importance of rainfall and seasonality changed as one moved from dry to wetter systems, but most noticeable was the reduction in climatically driven variability of fire outside protected areas. Inter‐annual variability is associated with the occurrence of large fires, and large fires are only found in areas with low human impact. Main conclusions This research gives the first data‐driven analysis of fire–climate interactions in southern Africa. The regional analysis shows that human impact on fire regimes is substantial and acts to limit the effect of climate in driving variation between years. This is in contrast to patterns in protected areas, where variation in accumulated rainfall and the length of the dry season influence the annual area burnt. Global models which assume strong links between fire and climate need to be re‐assessed in systems with high human impact.  相似文献   

18.
Fire suppression has removed an important ecological force previously responsible for shaping many plant communities throughout the world. Upland areas of north‐central Mississippi that have been protected from fire are now closed‐canopy forests including species known to be uncommon as bearing/witness trees in upland portions of the landscape (historically off‐site species) and sparse ground cover vegetation. Anecdotal evidence suggests that warm‐season grasses were prevalent in the understory of these communities, which could have provided more consistent fuel. We corroborate the historic presence of these grasses by looking at their natural co‐occurrence with oak regeneration (a requisite of self‐replacing stands of oaks found historically). Restoration of these communities has typically focused on burning and off‐site tree thinning. Utilizing a restoration experiment implementing these treatments, we found significantly reduced understory leaf litter in treatment areas. To test which variables associated with restoration treatments were most important for the survival of these grasses, we measured the effect of leaf litter removal and its interaction with environmental conditions on the survival of transplanted shoots. Survival of little bluestem increased with decreasing canopy density and decreasing leaf litter. Leaf‐litter removal did not increase survival, nor did it interact with either pre‐treatment leaf litter depth or canopy density. These results show that little bluestem benefits from conditions expected historically: increased light and possibly fire.  相似文献   

19.
In grassland systems across the globe, ecologists have been attempting to understand the complex role of fire, grazing and rainfall in creating habitat heterogeneity and the consequences of anthropogenic control of these factors on ecosystem integrity and functioning. Using a South African grassland ecosystem as a model, we investigated the impact of fire and grazing pressure on small mammal communities during three differing periods of a rainfall cycle. Over 2 years, 15,203 trap nights revealed 1598 captures of 11 species (nine rodents, one macroscelid and one insectivore). Results highlighted the importance of the interplay between factors and showed that the role of fire, grazing and rainfall in determining small mammal abundance was species-dependant. While no two species were affected by the same environmental variables, grass cover or height was important to 56% of species. Considered independently, high rainfall had a positive influence on small mammal abundance and diversity, although the lag period in population response was species-specific. High grazing negatively affected overall abundance, but specifically in Mastomys coucha; fire alone had little immediate impact on small mammal diversity. Six months after the fire, vegetation cover had recovered to similar levels as unburned areas, although small mammal diversity and richness were higher in burned areas than unburned areas. Grazing levels influenced the rate of vegetation recovery. In conclusion, low-level grazing and burning can help to maintain small mammal biodiversity, if conducted under appropriate rainfall levels. A too high grazing pressure, combined with fire, and/or fire conducted under drought conditions can have a negative impact on small mammal biodiversity. To maintain small mammal diversity in grassland ecosystems, the combined effects of the previous year’s rainfall and existing population level as well as the inhibition of vegetation recovery via grazing pressure need to be taken into consideration before fire management is applied. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Despite impressive efforts at clearing stands of invasive Australian Acacia species in South Africa, insufficient attention has been given to understanding the role of seed banks in the invasiveness and long-term persistence of populations. We review information on seeds of these species, considering seed production, seed rain, and the dynamics of seeds in three layers: leaf litter, and upper and lower seed banks in the soil. Many factors affect the accumulation and susceptibility to destruction of seed banks and thus the opportunities for intervention to reduce seed numbers for each of these components. Reduction of seed banks is crucial for the overall success of the multi-million dollar management initiatives against these species. Classical biological control of buds, flower and young pods has reduced the seed production of many Australian acacias in South Africa. Fire can be applied to reduce seed numbers in the leaf litter and upper seed bank in some cases, although there are serious problems associated with high fire intensities in dense acacia stands. Other options, e.g. soil inversion and solarisation, exist to exercise limited reduction of seed numbers in some situations. There is little prospect of meaningful reduction of seed numbers in the lower seed bank. Preventing the accumulation of seed banks by limiting seed production through biological control is by far the most effective means, and in almost all cases the only practical means, of reducing seed numbers. This must be an integral part of management strategies. Several invasive Australian acacias are already under effective biological control, and further work to identify additional potential agents for all the currently invasive species and potentially invasive alien species is the top priority for improving the efficiency of management programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号