首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complete primary structures of both subunits of Na+,K+-ATPase from various sources have been established by a combination of the methods for molecular cloning and protein chemistry. The gene family homologous to the alpha-subunit cDNA of animal Na+,K+-ATPases has been found in the human genome. Some genes of this family encode the known isoforms (alpha I and alpha II) of the Na+,K+-ATPase catalytic subunit. The proteins coded by other genes can be either new isoforms of the Na+,K+-ATPase catalytic subunit or other ion-transporting ATPases. Expression of the genes of this family proceeds in a tissue-specific manner and changes during the postnatal development and neoplastic transformation. The complete exon-intron structure of one of the genes of this family has been established. This gene codes for the form of the catalytic subunit, the existence of which has been unknown. Apparently, all the genes of the discovered family have a similar intron-exon structure. There is certain correlation between the gene structure and the proposed domain arrangement of the alpha-subunit. The results obtained have become the basis for the experiments which prove the existence of the earlier unknown alpha III isoform of the Na+,K+-ATPase catalytic subunit and have made possible the study of its function.  相似文献   

2.
The cellular distribution of Na+, K+-ATPase subunit isoforms was mapped in the secretory epithelium of the human prostate gland by immunostaining with antibodies to the alpha and beta subunit isoforms of the enzyme. Immunolabeling of the alpha1, beta1 and beta2 isoforms was observed in the apical and lateral plasma membrane domains of prostatic epithelial cells in contrast to human kidney where the alpha1 and beta1 isoforms of Na+, K+-ATPase were localized in the basolateral membrane of both proximal and distal convoluted tubules. Using immunohistochemistry and PCR we found no evidence of Na+, K+-ATPase alpha2 and alpha3 isoform expression suggesting that prostatic Na+, K+-ATPase consists of alpha1/beta1 and alpha1/beta2 isozymes. Our immunohistochemical findings are consistent with previously proposed models placing prostatic Na+, K+-ATPase in the apical plasma membrane domain. Abundant expression of Na+, K+-ATPase in epithelial cells lining tubulo-alveoli in the human prostate gland confirms previous conclusions drawn from biochemical, pharmacological and physiological data and provides further evidence for the critical role of this enzyme in prostatic cell physiology and ion homeostasis. Na+, K+-ATPase most likely maintains an inwardly directed Na+ gradient essential for nutrient uptake and active citrate secretion by prostatic epithelial cells. Na+, K+-ATPase may also regulate lumenal Na+ and K+, major counter-ions for citrate.  相似文献   

3.
Our previous studies showed that dopamine inhibits Na+,K+-ATPase activity in acutely dissociated neurons from striatum. In the present study, we have found that in this preparation, dopamine inhibited significantly (by approximately 25%) the activity of the alpha3 and/or alpha2 isoforms, but not the alpha1 isoform, of Na+,K+-ATPase. Dopamine, via D1 receptors, activates cyclic AMP-dependent protein kinase (PKA) in striatal neurons. Dopamine is also known to activate the calcium- and phospholipid-dependent protein kinase (PKC) in a number of different cell types. The PKC activator phorbol 12,13-dibutyrate reduced the activity of Na+,K+-ATPase alpha3 and/or alpha2 isoforms (by approximately 30%) as well as the alpha1 isoform (by approximately 15%). However, dopamine-mediated inhibition of Na+,K+-ATPase activity was unaffected by calphostin C, a PKC inhibitor. Dopamine did not affect the phosphorylation of Na+,K+-ATPase isoforms at the PKA-dependent phosphorylation site. Phorbol ester treatment did not alter the phosphorylation of alpha2 or alpha3 isoforms of Na+,K+-ATPase in neostriatal neurons but did increase the phosphorylation of the alpha1 isoform. Thus, in rat neostriatal neurons, treatment with either dopamine or PKC activators results in inhibition of the activity of specific (alpha3 and/or alpha2) isoforms of Na+,K+-ATPase, but this is not apparently mediated through direct phosphorylation of the enzyme. In addition, PKC is unlikely to mediate inhibition of rat Na+,K+-ATPase activity by dopamine in neostriatal neurons.  相似文献   

4.
In this study we have evaluated the specificity of different PKC isozymes for the phosphorylation of the catalytic alpha1 subunit of rat renal Na+,K+-ATPase (alpha1 Na+,K+-ATPase). Using in vitro phosphotransferase assays we found that classical PKCs (cPKCs) alpha, betaI, and gamma efficiently phosphorylate alpha1 Na+,K+-ATPase. However, alpha1 Na+,K+-ATPase was a poor substrate for the novel PKCs (nPKCs) delta and epsilon. Two-dimensional phosphopeptide mapping revealed a similar pattern of phosphorylation by all cPKCs. The functional significance of this finding was evaluated by measuring Na+,K+-ATPase activity (assessed by 86Rb+ uptake) in COS-7 cells expressing the rat alpha1 Na+,K+-ATPase. 1-oleoyl-2-acetoyl-sn-glycerol (OAG), a nonselective PKC activator, inhibited Na+,K+-ATPase activity in this system. On the other hand, 12-deoxyphorbol-13-phenylacetate (DPP), which preferentially activates nPKCepsilon, did not affect 86Rb+ uptake. These results indicate a differential pattern of phosphorylation and regulation of rat renal Na+,K+-ATPase activity by PKC isoforms and suggest an important role for cPKCs in the physiological regulation of the pump.  相似文献   

5.
The Na+,K(+)-ATPase alpha 1, alpha 2, and alpha 3 subunit isoforms have been shown to be differentially expressed in the nonpigmented (NPE) and pigmented (PE) cells of the ocular ciliary epithelium (CE) (Martin-Vasallo et al., J. Cell. Physiol., 141:243-252, 1989; Ghosh et al., J. Biol. Chem., 265:2935-2940, 1990). In this study we analyzed and compared the pattern of expression of the multiple Na+,K(+)-ATPase alpha (alpha 1, alpha 2, alpha 3) subunit genes with the pattern of expression of the Na+,K(+)-ATPase beta (beta 1, beta 2) subunit genes along the bovine CE. We have selected three regions in the CE, referred to as 1) the anterior region of the pars plicata, near the iris; 2) the middle region of the pars plicata; and 3) the posterior region of the pars plana, near the ora serrata. Using isoform-specific cDNA probes and antibodies for the Na+,K(+)-ATPase alpha 1, alpha 2, alpha 3, beta 1, and beta 2 subunits on Northern and Western blot analysis, we found that mRNA and polypeptides are expressed in all three CE regions with different abundance. The pattern of expression of alpha and beta isoforms detected along the NPE cell layers suggests a gradient of alpha 1, alpha 2, alpha 3, beta 1, and beta 2 mRNAs and polypeptides that correlates with decreasing Na+,K(+)-ATPase activity from the most anterior region at the pars plicata towards the posterior region at the ora serrata. We also found marked differences in the pattern of immunolocalization of Na+,K(+)-ATPase alpha 1, alpha 2, alpha 3, beta 1, and beta 2 subunit isoforms in different regions of the CE. In the anterior region, NPE cells stained intensely at the basal lateral membrane with specific monoclonal and polyclonal antibodies for each of the alpha (alpha 1, alpha 2, alpha 3) and beta (beta 1, beta 2) Na,K-ATPase isoforms. In the middle and posterior regions of the CE, NPE cells showed lower or absent levels of staining with alpha 1, alpha 2, alpha 3, and beta 1 antibodies, although staining with beta 2 was abundant. In contrast, PE cells throughout the CE were stained at the basal lateral membrane by antibodies to alpha 1 and beta 1, while no staining signals were detected with the rest of the antibodies (i.e. alpha 2, alpha 3, and beta 2). Our results support the conclusion that the three alpha and two beta isoforms of the Na+,K(+)-ATPase are differentially expressed in the two cell layers that make up the CE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The chondrocyte is the cell responsible for the maintenance of the articular cartilage matrix. The negative charges of proteoglycans of the matrix draw cations, principally Na+, into the matrix to balance the negative charge distribution. The Na+,K(+)-ATPase is the plasma membrane enzyme that maintains the intracellular Na+ and K+ concentrations. The enzyme is composed of an alpha and a beta subunit, so far, 4 alpha and 3 beta isoforms have been identified in mammals. Chondrocytes are sensitive to their ionic and osmotic environment and are capable of adaptive responses to ionic environmental perturbations particularly changes to extracellular [Na+]. In this article we show that human fetal and adult chondrocytes express three alpha (alpha 1, alpha 2 and the neural form of alpha 3) and the three beta isoforms (beta 1, beta 2 and beta 3) of the Na+,K(+)-ATPase. The presence of multiple Na+,K(+)-ATPase isoforms in the plasma membrane of chondrocytes suggests a variety of kinetic properties that reflects a cartilage specific and very fine specialization in order to maintain the Na+/K+ gradients. Changes in the ionic and osmotic environment of chondrocytes occur in osteoarthritis and rheumatoid arthritis as result of tissue hydration and proteoglycan loss leading to a fall in tissue Na+ and K+ content. Although the expression levels and cellular distribution of the proteins tested do not vary, we detect changes in p-nitrophenylphosphatase activity "in situ" between control and pathological samples. This change in the sodium pump enzymatic activity suggests that the chondrocyte responds to these cationic environmental changes with a variation of the active isozyme types present in the plasma membrane.  相似文献   

7.
By regulating transmembrane Na+ and K+ concentrations and membrane potential, the Na+,K(+)-ATPase plays an important role in regulating cardiac, skeletal, and smooth muscle function. A high degree of amino acid sequence and structural identity characterizes the three Mr 100,000 Na+,K(+)-ATPase alpha subunit isoforms expressed in cardiac and skeletal muscle. Strikingly, vascular smooth muscle utilizes alternative RNA processing of the alpha-1 gene to express a structurally distinct Mr approximately 65,000 isoform, alpha 1-T (truncated). Analysis of both its mRNA and protein structure reveals that alpha-1-T represents a major, evolutionarily conserved, truncated Na+,K(+)-ATPase isoform expressed in vascular smooth muscle. This demonstrates an unexpected complexity in the regulation of vascular smooth muscle Na+,K(+)-ATPase gene expression and suggests that a structurally novel, truncated alpha subunit may play a role in vascular smooth muscle active ion transport.  相似文献   

8.
The catalytic alpha isoforms of the Na+, K(+)-ATPase and stimuli controlling the plasma membrane abundance and intracellular distribution of the enzyme were studied in isolated bovine articular chondrocytes which have previously been shown to express low and high ouabain affinity alpha isoforms (alpha 1 and alpha 3 respectively; alpha 1 > alpha 3). The Na+, K(+)-ATPase density of isolated chondrocyte preparations was quantified by specific 3H-ouabain binding. Long-term elevation of extracellular medium [Na+] resulted in a significant (31%; p < 0.05) upregulation of Na+, K(+)-ATPase density and treatment with various pharmacological inhibitors (Brefeldin A, monensin and cycloheximide) significantly (p < 0.001) blocked the upregulation. The subcellular distribution of the Na+, K(+)-ATPase alpha isoforms was examined by immunofluorescence confocal laser scanning microscopy which revealed predominantly plasma membrane immunostaining of alpha subunits in control chondrocytes. In Brefeldin A treated chondrocytes exposed to high [Na+], Na+, K(+)-ATPase alpha isoforms accumulated in juxta-nuclear pools and plasma membrane Na+, K(+)-ATPase density monitored by 3H-ouabain binding was significantly down-regulated due to Brefeldin A mediated disruption of vesicular transport. There was a marked increase in intracellular alpha 1 and alpha 3 staining suggesting that these isoforms are preferentially upregulated following long-term exposure to high extracellular [Na+]. The results demonstrate that Na+, K(+)-ATPase density in chondrocytes is elevated in response to increased extracellular [Na+] through de novo protein synthesis of new pumps containing alpha 1 and alpha 3 isoforms, delivery via the endoplasmic reticulum-Golgi complex constitutive secretory pathway and insertion into the plasma membrane.  相似文献   

9.
10.
The Na+,K+-ATPase transforms the energy of ATP to the maintenance of steep electrochemical gradients for sodium and potassium across the plasma membrane. This activity is tissue specific, in particular due to variations in the expressions of the alpha subunit isoforms one through four. Several mutations in alpha2 and 3 have been identified that link the specific function of the Na+,K+-ATPase to the pathophysiology of neurological diseases such as rapid-onset dystonia parkinsonism and familial hemiplegic migraine type 2. We show a mapping of the isoform differences and the disease-related mutations on the recently determined crystal structure of the pig renal Na+,K+-ATPase and a structural comparison to Ca2+-ATPase. Furthermore, we present new experimental data that address the role of a stretch of three conserved arginines near the C-terminus of the alpha subunit (Arg1003-Arg1005).  相似文献   

11.
The BATP gene coding for the beta-subunit of Na+,K+-ATPase has been localized on chromosome 13 of the American mink (Mustela vison) using mink-Chinese hamster somatic cell hybrids and pig cDNA clones as probes. The AATP gene for the alpha-subunit of Na+,K+-ATPase is on mink chromosome 2 [(1987) FEBS Lett. 217, 42-44]. Consequently, the AATP and BATP genes for the Na+,K+-ATPase occupy separate mink chromosomes.  相似文献   

12.
To investigate the functional role of the different Na+, K(+)-ATPase alpha (catalytic) subunit isoforms in neuronal cells, we used quantitative in situ hybridization with riboprobes specific for alpha 1, alpha 2, and alpha 3 isoforms to measure the level of alpha isoform-specific expression in the neuroendocrine cells of the supraoptic (SON) and paraventricular (PVN) nuclei of rat hypothalamus. A prolonged increase in electrical activity of these cells, achieved by 5 days of salt treatment, increased the amount of alpha 1 isoform mRNA in the SON and PVN by 50%. Levels of alpha 1 mRNA in other brain regions and levels of alpha 2 and alpha 3 mRNAs were not affected by salt treatment. We conclude that the alpha 1 isoform Na+, K(+)-ATPase may be specifically adapted to pump out Na+, which enters the cells through voltage-gated channels during neuronal depolarization.  相似文献   

13.
In interleukin-2 (IL-2)-induced human blood lymphocytes, the Na+/K+ pump function (assessed by ouabain-sensitive Rb+ influx), the abundance of Na+, K+-ATPase alpha1-subunit (determined by Western blotting) and the alpha1- and beta1-subunits mRNA of Na+, K+-ATPase (RT-PCR), as well as the phosphorylation of STAT5 and STAT3 family proteins and ERK1/2 kinase have been examined. A 3.5-4.0-fold increase in the expression of alpha1- and beta1-subunits mRNA of Na+, K+-ATPase was found at 24 h of IL-2 stimulation. The inhibitors of JAK3 kinase (B-42, WHI-P431) was shown to decrease both the phosphorylation of STATs and the rise in the oubain-sensitive rubidium influx as well as the increased abundance of Na+, K+-ATPase alpha1-subunit. The inhibition of the protein kinases ERK1/2 by PD98059 (20 microM) suppressed the alpha1-subunit accumulation. All the kinase inhibitors tested did not alter the intracellular content ofmonovalent cations in resting and IL-2-stimulated lymphocytes. It is concluded that MAPK and JAK/STAT signaling pathways mediate the IL-2-dependent regulation of the Na+, K+-ATPase expression during the lymphocyte transition from resting stage to proliferation.  相似文献   

14.
Na+,K+-ATPase (porcine alpha/his10-beta) has been expressed in Pichia Pastoris, solubilized in n-dodecyl-beta-maltoside and purified to 70-80% purity by nickel-nitrilotriacetic acid chromatography combined with size exclusion chromatography. The recombinant protein is inactive if the purification is done without added phospholipids. The neutral phospholipid, dioleoylphosphatidylcholine, preserves Na+,K+-ATPase activity of protein prepared in a Na+-containing medium, but activity is lost in a K+-containing medium. By contrast, the acid phospholipid, dioleoylphosphatidylserine, preserves activity in either Na+- or K+-containing media. In optimal conditions activity is preserved for about 2 weeks at 0 degrees C. Both recombinant Na+,K+-ATPase and native pig kidney Na+,K+-ATPase, dissolved in n-dodecyl-beta-maltoside, appear to be mainly stable monomers (alpha/beta) as judged by size exclusion chromatography and sedimentation velocity. Na+,K+-ATPase activities at 37 degrees C of the size exclusion chromatography-purified recombinant and renal Na+,K+-ATPase are comparable but are lower than that of membrane-bound renal Na+,K+-ATPase. The beta subunit is expressed in Pichia Pastoris as two lightly glycosylated polypeptides and is quantitatively deglycosylated by endoglycosidase-H at 0 degrees C, to a single polypeptide. Deglycosylation inactivates Na+,K+-ATPase prepared with dioleoylphosphatidylcholine, whereas dioleoylphosphatidylserine protects after deglycosylation, and Na+,K+-ATPase activity is preserved. This work demonstrates an essential role of phospholipid interactions with Na+,K+-ATPase, including a direct interaction of dioleoylphosphatidylserine, and possibly another interaction of either the neutral or acid phospholipid. Additional lipid effects are likely. A role for the beta subunit in stabilizing conformations of Na+,K+-ATPase (or H+,K+-ATPase) with occluded K+ ions can also be inferred. Purified recombinant Na+,K+-ATPase could become an important experimental tool for various purposes, including, hopefully, structural work.  相似文献   

15.
A series of Northern blot hybridization experiments using probes derived from the rat gastric H+,K(+)-ATPase cDNA and the human ATP1AL1 gene revealed the presence of a 4.3-kilobase mRNA in colon that seemed likely to encode the distal colon H+,K(+)-ATPase, the enzyme responsible for K+ absorption in mammalian colon. A rat colon library was then screened using a probe from the ATP1AL1 gene, and cDNAs containing the entire coding sequence of a new P-type ATPase were isolated and characterized. The deduced polypeptide is 1036 amino acids in length and has an Mr of 114,842. The protein exhibits 63% amino acid identity to the gastric H+,K(+)-ATPase alpha-subunit and 63% identity to the three Na+,K(+)-ATPase alpha-subunit isoforms, consistent with the possibility that it is a K(+)-transporting ATPase. Northern blot analyses show that the 4.3-kilobase mRNA is expressed at high levels in distal colon; at much lower levels in proximal colon, kidney, and uterus; and at trace levels in heart and forestomach. The high mRNA levels in distal colon and the similarity of the colon pump to both gastric H+,K(+)- and Na+,K(+)-ATPases suggest that it is the distal colon H+,K(+)-ATPase. Furthermore, expression of its mRNA in kidney raises the possibility that the enzyme also corresponds to the H+,K(+)-ATPase that seems to play a role in K+ absorption and H+ secretion in the distal nephron.  相似文献   

16.
The dose dependence of the Na+, K(+)-ATPase ouabain inhibition in the rat colon smooth muscle permeabilized microsomes has been analyzed according to the model of two independent binding sites of inhibitor to determine the activity of separate molecular forms of the enzyme that differ by affinity for cardiac glycosides. The two-phase inhibition curve with moderate content of the high-affinity activity component was revealed. The apparent inhibition constant of the low-affinity component corresponds to the value for the rat kidney microsomal Na+, K(+)-ATPase (alpha1-isoform). The specific role of the alpha2- and alpha1- Na+, K(+)-ATPase catalytic subunit isoforms in colonic smooth muscle electromechanical coupling is considered.  相似文献   

17.
The data concerning the distribution of Na+,K(+)-ATPase alpha and beta subunit isoforms in the spinal cord and partly in the motor neurons of the ventral horns are limited. The lumbo-sacral portion of the spinal cord of adult rats was immunotested with polyclonal antibodies (UBI, NY) specific for alpha 1, alpha 2, alpha 3 and beta 1, beta 2 isoforms. After paraformaldehyde perfusion and postfixation, free-floating 50 microns thick vibratome sections were immunostained with Vectastatin Elite ABC. Sites of bound primary antibodies were visualized by incubation in DAB-H2O2 substrate medium. The histochemical technique revealed immunostaining for all five isoforms of Na+,K(+)-ATPase in the motor neurons. The findings show a principal similarity in the distribution pattern of the immuno-like reactivity for alpha 1 and alpha 2 isoforms, the staining of the pericarya being more or less continuous with that of the microenvironment. The immunostaining for beta 2 (in comparison with alpha 1 and alpha 2) outlines the pericarya of the motor neurons slightly better, whereas the staining for beta 1 outlines them extremely sharply. The immunostaining pattern for the alpha 3 isoform differs considerably from that for the other isoforms. The immuno-like reactivity for this isoform is concentrated at the surface of the pericarya and processes of the motor neurons. Accumulation of alpha 3 immunoreactivity on the surface of the motor neurons might reflect the intensive traffic of the alpha 3 isoform from the pericaryon to the plasma membrane and the processes of the neurons. The findings from the investigations performed here support the opinion, that, in addition to the conventional catalytic role in Na+,K(+)-ATPase activity, Na+,K(+)-ATPase isozymes play a part in different specific phenomena in the nervous system.  相似文献   

18.
By altering the Na+/K+ electrochemical gradient, Na+,K(+)-ATPase activity profoundly influences cardiac cell excitability and contractility. The recent finding of mineralocorticoid hormone receptors in the heart implies that Na+,K(+)-ATPase gene expression, and hence cardiac function, is regulated by aldosterone, a corticosteroid hormone associated with certain forms of hypertension and classically involved in regulating Na+,K(+)-ATPase gene expression and transepithelial Na+ transport in tissues such as the kidney. The regulation by aldosterone of the major cardiac Na+,K(+)-ATPase isoform genes, alpha-1 and beta-1, were studied in adult and neonatal rat ventricular cardiocytes grown in defined serum-free media. In both cell types, aldosterone-induced a rapid and sustained 3-fold induction in alpha-1 mRNA accumulation within 6 h. beta-1 mRNA was similarly induced. alpha-1 mRNA induction occurred over the physiological range with an EC50 of 1-2 nM, consistent with binding of aldosterone to the high affinity mineralocorticoid hormone receptor. In adult cardiocytes, this was associated with a 36% increase in alpha subunit protein accumulation and an increase in Na(+)-K(+)-ATPase transport activity. Aldosterone did not alter the 3-h half-life of alpha-1 mRNA, indicating an induction of alpha-1 mRNA synthesis. Aldosterone-dependent alpha-1 mRNA accumulation was not blocked by the protein synthesis inhibitor cycloheximide, whereas amiloride inhibited both an aldosterone-dependent increase in intracellular Na+ [Na+]i) and alpha-1 mRNA accumulation. This demonstrates that aldosterone directly stimulates Na+,K(+)-ATPase alpha-1 subunit mRNA synthesis and protein accumulation in cardiac cells throughout development and suggests that the heart is a mineralocorticoid-responsive organ. An early increase in [Na+]i may be a proximal event in the mediation of the hormone effect.  相似文献   

19.
The four isoforms of the catalytic subunit of Na(+)/K(+)-ATPase identified in rats differ in their affinities for ions and ouabain. Moreover, its expression is tissue-specific, developmentally and hormonally regulated. The aim of the present work was to evaluate the influence of age on the ratio and density of these isoforms in crude membrane preparations from rat brain hemispheres, brainstem, heart ventricles and kidneys. In all tissues investigated, Na(+)/K(+)-ATPase activity was higher in adults than in neonates but brain tissues presented the most remarkable differences. In these tissues, ouabain inhibition curves for Na(+)/K(+)-ATPase activity revealed the presence of two processes with different sensitivities to ouabain. An increase of approximately sixfold in the expression of the high affinity isoforms was observed between newborn and adult rats. In contrast, the low affinity isoform increased only approximately twofold in brainstem whereas it increased ninefold in brain hemispheres. Unlike brain tissues, a decrease (almost fourfold) in the number of high affinity ouabain binding sites was observed during ontogenesis of the heart. Although limited by the inability to resolve alpha(2) and alpha(3) isoforms, present data indicate that the influence of development on the expression of Na(+)/K(+)-ATPase depends not only on the isoform, but also on the tissue where the enzyme is expressed.  相似文献   

20.
Active preparations of Na+,K(+)-ATPase containing three types of catalytic isoforms were isolated from the bovine brain to study the structure and function of the sodium pump. Na+,K(+)-ATPase from the brain grey matter was found to have a biphasic kinetics with respect to ouabain inhibition and to consist of a set of isozymes with subunit composition of alpha 1 beta 1, alpha 2 beta m and alpha 3 beta m (where m = 1 and/or 2). The alpha 1 beta 1 form clearly dominated. For the first time, glycosylation of the beta 1-subunit of the alpha 1 beta 1-type isozymes isolated from the kidney and brain was shown to be different. Na+,K(+)-ATPase from the brain stem and axolemma consisted mainly of a mixture of alpha 2 beta 1 and alpha 3 beta 1 isozymes having identical ouabain inhibition constants. In epithelial and arterial smooth muscle cells, where the plasma membrane is divided into functionally and biochemically distinct domains, the polarized distribution of Na+,K(+)-ATPase is maintained through interactions with the membrane cytoskeleton proteins ankyrin and spectrin (Nelson and Hammerton, 1989; Lee et al., 1996). We were the first to show the presence of the cytoskeleton protein tubulin (beta 5-isoform) and glyceraldehyde-3-phosphate dehydrogenase in a high-molecular-weight complex with Na+,K(+)-ATPase in brain stem neuron cells containing alpha 2 beta 1 and alpha 3 beta 1 isozymes. Consequently, the influence of not only subunit composition, but also of glycan and cytoskeleton structures and other plasma membrane-associated proteins on the functional properties of Na+,K(+)-ATPase isozymes is evident.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号