首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of 2, 4 -D on seedling growth and chromosomal abnormalities were studied in Triticum aestivum and Phalaris minor. Seeds were soaked at different concentrations of 2, 4 -D (0.01%, 0.1%, 1.0%) for 4, 8, 12 and 16 hours. 2, 4 -D suppressed the germination more severely in P. minor than in T. aestivum. Shoot and root length was retarded with the increase of concentration and time of treatment in both species. Generally radical was more negatively affected than coleoptile and emergence of radical was not observed at 1.0% concentration at 8, 12, and 16 hours of treatment in T. aestivum while in P. minor there was a total lack of radical emergence at 1.0% concentration for all durations of treatment. Stiff and curled roots and undifferentiated callus like scutellar tissues were observed in T. aestivum, while in P. minor the coleoptile obtained was lean, pale green in colour and was lying flat on filter paper. Mitotic index decreased, while chromosomal abnormalities, bridges and laggards were increased with the increase of concentration and soaking time however, laggards were not observed in T. aestivum. Clumping and chain formation of chromosomes at metaphase was also noticed in P. minor.  相似文献   

2.
The meristematic mitotic cells of Allium cepa is an efficient cytogenetic material for chromosome aberration assay on environmental pollutants. For assessing genotoxicity of pentachlorophenol (PCP), 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-chloro-2,6-diethyl-N-(butoxymethyl) acetanilide (butachlor), 50% effective concentration (EC(50)), c-mitosis, stickiness, chromosome breaks and mitotic index (MI) were used as endpoints of genotoxicity. EC(50) values for PCP and butachlor are 0.73 and 5.13 ppm, respectively. 2,4-D evidently induced morphological changes at higher concentrations. Some changes like crochet hooks, c-tumours and broken roots were unique to 2,4-D at 5-20 ppm. No such abnormalities were found in PCP and butachlor treated groups, however, root deteriorated and degenerated at higher concentrations (<3 ppm) in PCP. MI in 2,4-D showed a low average of 14.32% followed by PCP (19.53%), while in butachlor it was recorded 71.6%, which is near to the control value. All chemicals induced chromosome aberrations at statistically significant level. The highest chromosome aberration frequency (11.90%) was recorded in PCP at 3 ppm. Large number of c-mitotic anaphases indicated that butachlor acts as potent spindle inhibitor, whereas, breaks, bridges, stickiness and laggards were most frequently found in PCP showing that it is a potent clastogen.  相似文献   

3.
Plant regeneration was achieved from coleoptile tissue of wheat (Triticum aestivum L. cv. Kharachia-65). Coleoptiles (1.0 - 3.5 cm long) were excised from 2- to 5-d-old seedlings and cultured on Murashige and Skoog's (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D - 0.5, 2.5, and 5.0 mg dm-3). Cream, friable callus was obtained after 6 weeks of inoculation. This callus was sub-cultured on MS medium supplemented with 2,4-D (2.5 mg dm-3) and 5 % coconut water. After 6 weeks of sub-culturing white, cream or pale, friable, nodular callus was obtained. Plant regeneration occurred when this callus was sub-cultured on MS medium supplemented with 0.2 mg dm-3 1-naphthalene acetic acid + 1.0 mg dm-3 6-benzylaminopurine. For rooting, regenerated shoots or plantlets were transferred on MS medium supplemented with 0.5 mg dm-3 indole-3-acetic acid. Rooted plantlets were directly transferred into pots and grown under field conditions. Seed setting invariably occurred in all plants. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Summary Whole immature inflorescences at 4 different developmental stages (0.5, 1.0, 1.5, 2.0 cm in size) of different genotypes of Triticum aestivum and T. durum were cultured to see the morphogenetic responses on Murashige and Skoog's (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) (2.5 mg/l). Very young inflorescences 0.5 and 1.0cm long formed embryogenic callus from their entire surface while 1.5 and 2.0 cm long inflorescences formed embryogenic callus from the basal spikelets and rachis only. This embryogenic callus was maintained by regular subcultures on MS medium with 2,4-D (2.5 mg/l) for more than a year. Plantlets were regenerated by transferring the embryogenic callus on hormone-free MS medium. Inflorescences (0.5 and 1.0 cm long) responded best in forming callus as well as plantlets at a very high frequency. Variation in response was observed amongst the genotypes but the qualitative response of formation of embryogenic callus and later regeneration of plantlets was observed from all the genotypes. Immature young inflorescence explants could provide a suitable material for particle gun mediated genetic transformation in wheat.Abbreviations BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - MS Murashige and Skoog (1962)  相似文献   

5.
The cytogenetic effect of 2,4-dichlorophenoxy acetic acid (2,4-D) and its metabolite 2,4-dichlorophenol (2,4-DCP) was studied in bone-marrow, germ cells and sperm head abnormalities in the treated mice. Swiss mice were treated orally by gavage with 2,4-D at 1.7, 3.3 and 33 mg kg(-1)BW (1/200, 1/100 and 1/10 of LD(50)). 2,4-DCP was intraperitoneally (i.p.) injected at 36, 72 and 180 mg kg(-1)BW (1/10, 1/5, 1/2 of LD(50)). A significant increase in the percentage of chromosome aberrations in bone-marrow and spermatocyte cells was observed after oral administration of 2,4-D at 3.3 mg kg(-1)BW for three and five consecutive days. This percentage increased and reached 10.8+/-0.87 (P<0.01) in bone-marrow and 9.8+/-0.45 (P<0.01) in spermatocyte cells after oral administration of 2,4-D at 33 mg kg(-1)BW for 24 h. This percentage was, however, lower than that induced in bone-marrow and spermatocyte cells by mitomycin C (positive control). 2,4-D induced a dose-dependent increase in the percentage of sperm head abnormalities. The genotoxic effect of 2,4-DCP is weaker than that of 2,4-D, as indicated by the lower percentage of the induced chromosome aberrations (in bone-marrow and spermatocyte cells) and sperm head abnormalities. Only the highest tested concentration of 2,4-DCP (180 mg kg(-1)BW, 1/2 LD(50)) induced a significant percentage of chromosome aberrations and sperm head abnormalities after i.p. injection. The obtained results indicate that 2,4-D is genotoxic in mice in vivo under the conditions tested. Hence, more care should be given to the application of 2,4-D on edible crops since repeated uses may underlie a health hazard.  相似文献   

6.
The effects of different treatments with zinc sulfate (Zn(2+)) on the cytology and growth of Nigella sativa and Triticum aestivum were investigated. Five concentrations of zinc sulfate ranging from 5 to 25mg/l were applied for 6, 12, 18, and 24h. The treatments reduced the germination percentages of N. sativa seeds and T. aestivum grains and inhibited the root growth of both plants. Concentrations higher than 25mg/l of Zn(2+) applied for 24h were toxic for both plants. The non-lethal concentrations of Zn(2+) showed an inhibitory effect on cell division in root tips of both plants and caused a decrease in their mitotic index values. The reduction in MI in root tips of T. aestivum was more evident than that of N. sativa. All treatments changed the frequency of mitotic phases as compared with the control values. The total percentage of abnormalities in N. saliva was more than that in T. aestivum. Zn(2+) treatments produced a number of mitotic abnormalities in dividing cells in root tips of both plants resulting from its action on the spindle apparatus such as C-metaphases, lagging chromosomes and multipolar anaphases and telophases. Also, Zn(2+) induced vacuolated nuclei and irregular prophases. The induction of chromosomal stickiness and chromosomal aberrations such as bridges and breaks indicates its action on the chromosome. These abnormalities (chromosome breaks and chromosomal bridges at ana-telophases) indicate true clastogenic potential of the ions tested.  相似文献   

7.
Callus production along with caulogenesis and rhizogenesis were obtained from internodal stem explants of kenaf (Hibiscus cannabinus L.) after 4 weeks in culture. Murashige and Skoog medium was used for two 4×4 matrix experiments designed to determine suitable growth regulator combinations (NAA/BAP or 2,4-D/kinetin) and concentrations (0.1, 0.3, 1.0, 3.0 mg/L). The most abundant callus production was observed at 0.3/3.0 and 1.0/3.0 mg/L 2,4-D/kinetin and at 1.0/1.0 and 3.0/1.0 mg/L NAA/BAP. Rhizogenesis was most extensive with NAA/BAP at concentrations of 0.1/3.0 and 0.3/ 3.0 mg/L. Adventitious shoots developed on both auxin/cytokinin matrixes when each concentration was at 0.3 mg/L or less. These protocols will facilitate the development of in vitro approaches to kenaf improvement and the study of certain host-pathogen interactions.Abbreviations MS Murashige and Skoog (1962) medium - 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine - NAA 1-naphthyleneacetic acid - SDS sodium dodecyl sulfate  相似文献   

8.
Callus was induced in different somatic organs of Oryza sativa L. Specific minimum 2,4-dichlorophenoxyacetic acid (2,4-D) concentrations in the medium were necessary for the induction of callus from different organs while high levels of 2,4-D (6–10 mg/l) induced callus formation in each organ tested. The optimum 2,4-D concentration for callus induction and growth for root-derived calli was 2 mg/l and for leaf-derived 6 mg/l. Root and shoot organogenesis were induced in both root- and leaf-derived calli by sub-culturing to a medium lacking 2,4-D. Root organogenesis occurred at a higher frequency than shoot organogenesis. Shoot organogenesis rarely occurred in calli without differentiated roots. Increased age of callus cultures almost completely inhibited shoot development. The addition of the cytokinin 6-γ,γ-dimethylallyl-amino purine partially restored the potential for shoot organogenesis. Whole plants were easily recovered from the calli and grown to maturity with some plants exhibiting phenotypic abnormalities.  相似文献   

9.
The rates of mineralization of nitrilotriacetic acid (NTA), 2,4-dichlorophenoxyacetic acid (2,4-D), p-nitrophenol, aniline, and isopropyl N-phenylcarbamate (IPC) at one or more concentrations ranging from 100 pg/ml to 1.0 microgram/ml were proportional to chemical concentrations in samples of three lakes. The rates at 100 pg of NTA, 2,4-D, p-nitrophenol, and aniline per ml in samples of one or more lakes were less than predicted, assuming the rates were linearly related to the concentration. Neither NTA nor 2,4-dichlorophenol at 2.0 ng/ml was mineralized in some lake waters, but higher levels of the two chemicals were converted to CO2 in samples of the same waters. In samples from two lakes, little or no mineralization of IPC or 2,4-D occurred at 1.0 microgram/ml, but 10 ng/ml or lower levels of the herbicides were mineralized. The mineralization in sewage of 1.0 microgram of NTA per ml was biphasic; about 20% of the substrate was mineralized in 20 h, and mineralization was only reinitiated after a period of 130 h. The biphasic transformation was not a result of the accumulation of organic products, and it was still evident if protozoan activity was inhibited. NTA also underwent a biphasic mineralization in lake waters, and the biphasic pattern was not altered by additions of growth factors and inorganic nutrients. From 40 to 60% of the carbon of aniline added to lake water at levels of 100 pg/ml to 1.0 microgram/ml was mineralized, but more than 90% of the carbon of NTA, 2,4-D, or p-nitrophenol added to lake water at 10 ng/ml or 1.0 microgram/ml was mineralized.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The rates of mineralization of nitrilotriacetic acid (NTA), 2,4-dichlorophenoxyacetic acid (2,4-D), p-nitrophenol, aniline, and isopropyl N-phenylcarbamate (IPC) at one or more concentrations ranging from 100 pg/ml to 1.0 microgram/ml were proportional to chemical concentrations in samples of three lakes. The rates at 100 pg of NTA, 2,4-D, p-nitrophenol, and aniline per ml in samples of one or more lakes were less than predicted, assuming the rates were linearly related to the concentration. Neither NTA nor 2,4-dichlorophenol at 2.0 ng/ml was mineralized in some lake waters, but higher levels of the two chemicals were converted to CO2 in samples of the same waters. In samples from two lakes, little or no mineralization of IPC or 2,4-D occurred at 1.0 microgram/ml, but 10 ng/ml or lower levels of the herbicides were mineralized. The mineralization in sewage of 1.0 microgram of NTA per ml was biphasic; about 20% of the substrate was mineralized in 20 h, and mineralization was only reinitiated after a period of 130 h. The biphasic transformation was not a result of the accumulation of organic products, and it was still evident if protozoan activity was inhibited. NTA also underwent a biphasic mineralization in lake waters, and the biphasic pattern was not altered by additions of growth factors and inorganic nutrients. From 40 to 60% of the carbon of aniline added to lake water at levels of 100 pg/ml to 1.0 microgram/ml was mineralized, but more than 90% of the carbon of NTA, 2,4-D, or p-nitrophenol added to lake water at 10 ng/ml or 1.0 microgram/ml was mineralized.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Small callus pieces excised from theAgrobacterium transformed root line D2 ofDatura stramonium, were cultured onto solidified MS medium supplemented with a 1.0 μM kinetin and three different concentrations (0.1, 0.5 and 1.0 μM) of 2,4-dichlorophenoxyacetic acid (2,4-D), and were examined for their alkaloid productivity in relation to organization level and growth rate. Growth of transformed roots (in a MS liquid medium without plant growth regulators) was greater than that of transformed calli excised from them and cultured separately. The addition of 1.0 μM 2,4-D to the culture medium had a positive effect on callus biomass production, while it inhibited root formation by this tissue (the lower the 2,4-D concentration in the medium the greater the number of roots which emerged from the calli). Hyoscyamine production was also higher in the transformed roots than in the transformed calli, and in these tissues the production of hyoscyamine was positively correlated with organogenesis index (i.e. its ability for rooting). At the same time, the epoxidation of hyoscyamine to scopolamine only took place in the transformed calli. This occurred to a greater extent at the lower concentrations of 2,4-D in the culture medium. The mode through which the 2,4-D could control the alkaloid production of transformed callus is discussed.  相似文献   

12.
An improved method of direct somatic embryogenesis (SE) was developed in Swertia chirata for the first time using leaves and roots of in vitro-grown young seedlings. In the present study, 2,4-dichlorophenoxyacetic acid (2,4-D) was assessed individually and in combination with other auxins, as well as with cytokinin for its effectiveness to induce somatic embryos. Leaf explants with abaxial side in the medium produced maximum number of somatic embryos. This system omits the callus stage and thus reduces the process of SE in S. chirata by 35–45 days. Embryos at different stages of development were observed. Maturation of heart stage embryos were observed on Murashige and Skoog (MS) medium containing 1 mg L−1 2,4-D. Upon transfer to the germination medium, they were converted to cotyledonary stage and then plantlets of 33% and 68% of them were converted to cotyledonary stage and then plantlets on MS medium supplemented with 0.05 and 0.1 mg L-1 GA3 respectively. The 2,4-D alone at 1.0 or 1.5 mg L−1 was found to be better for embryogenic tissue initiation than 2,4-D in combination with indole-3-acetic acid or α-naphthalene acetic acid. For further embryo development, 2,4-D was combined with cytokinins such as 6-benzylaminopurine (BAP) and kinetin or plant growth regulator free medium or medium with 50% reduced concentration of the same hormone while subculturing. Mean germination and percentage of survival were maximum in the medium containing 1.0 mg L−1 2,4-D in combination with 0.1 mg L−1 BAP. Regenerated plantlets were morphologically and genetically identical. This method offers a vast scope for the clonal propagation of endangered plants.  相似文献   

13.
The role of auxin in the recovery of plant tissue from oxidant treatment was investigated. Treatment of oat coleoptile sections with concentrations of indoleacetic acid (IAA) or 2,4-dichlorophenoxyacetic acid (2,4-D) optimal for normal growth, following pretreatment with moderately inhibiting levels of peroxyacetyl nitrate (PAN) immediately accelerated recovery of growth rate. In some cases inhibition was also less at supraoptimal values of auxin. Treatment of ozonepretreated tissue with IAA or 2,4-D enhanced inhibition at high levels of auxin and produced an optimal growth concentration level which was lower than for sections not given ozone pretreatment. Auxin treatment also reduced the degree of inhibition in fluoride and iodoacetamide-pretreated sections. Mechanisms by which auxin-induced recovery from inhibition may occur are discussed.  相似文献   

14.
高羊茅组织培养再生体系及GUS基因瞬间表达研究   总被引:5,自引:0,他引:5  
以成熟种子为外值体,对高羊茅纰织培养和植株再生体系进行了优化,分析了不同浓度2.4-D、6-BA和激动素对高羊茅愈伤组织诱导和愈伤组织分化成苗的影响.结果表明:9.0mg/L 2.4-L)对愈伤组织的诱导效果最佳.0.2mg/L激动素是愈伤组织分化成苗的最适浓度.二者的诱导率和分化率分别达到68.08%和45.83%。在愈伤组织继代培养基中附加1.0mg/L 2.4-D、0.5mg/L 6-BA和1.25mg/L CuSO4;有利于胚性愈伤组织的形成,可以明显促进愈伤组织分化。同时.采用基因枪法将GUS基因导入高羊茅愈伤组织中,通过组织化学染色检测到了GUS瞬间表达活性;并对影响CUS基因瞬间表达的因素进行了分析.以期为提高基因枪法遗传转化效率提供参考。  相似文献   

15.
Embryogenic and non-embryogenic calluses were induced from 3,4,5 and 7d old coleoptile segments of indica rice (Oryza sativa L. cv. CH 1039). Compact, globular, yellow and creamy embryogenic and white friable non-embryogenic callus arose from the cut end and entire length of the coleoptile segments. Murashige and Skoog's (MS) medium supplemented with 2.5mg/1 2,4-D was used as callus induction medium. Plant regeneration from coleoptile segments occurred with the transfer of embryogenic callus to MS basal medium supplemented with 2.0mg/1 BAP and 0.5mg/1 NAA in combination. Average number of regenerated plants from one coleoptile ranged from9.1 to 14.0.Four day old coleoptiles showed the highest frequency of plant regeneration.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine - MS Murashige and Skoog (1962) - NAA 1-naphthalene acetic acid  相似文献   

16.
小麦遗传转化受体系统建立的研究   总被引:4,自引:0,他引:4  
选用‘小偃22’和‘宁春16’小麦品种的成熟胚和幼胚进行培养,研究不同种类的胚和培养因子对愈伤组织诱导和分化的影响。结果表明,幼胚和成熟胚的愈伤组织诱导率无明显差异,但较高浓度的2,4-D有利于成熟胚的诱导,而幼胚培养时2,4-D浓度的影响效果因品种而异;两种外植体分化率的高低与KT/IAA的配比均有密切关系,但高浓度的激素水平不利于成熟胚的分化;诱导培养基中低浓度的2,4-D有利于所诱导的愈伤组织的分化。同时,在诱导培养基中添加低浓度的KT能显著提高两品种成熟胚愈伤组织的分化率;各种培养基处理与品种间都存在显著的互作效应,‘小偃22’成熟胚培养的最佳培养基组合为MSD 3.0 mg/L 2,4-D和MSD 0.5 mg/LIAA 1.0 mg/L KT,幼胚培养为MSD 4.0 mg/L 2,4-D和MSD 0.5 mg/L IAA 1.0 mg/L KT;‘宁春16’成熟胚培养为MSD 4.0 mg/L 2,4-D和MSD 1.0 mg/L IAA 1.0 mg/L KT,幼胚培养时为MSD 1.0 mg/L 2,4-D和MSD 2.0 mg/L IAA 2.0 mg/L KT。  相似文献   

17.
Summary An efficient method was established for high-frequency embryogenic callus induction and plant regeneration from 3-,4-, 5- and 7-d-old coleoptile segments of Indica rice (Oryza sativa L. cv. Kasturi), Compact and friable callus developed from the cut ends and also on the entire length of the coleoptile segments cultured on Murashige and Skoog (MS) basal medium (1962) supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D, 4.50–18.0 μM), kinetin (2.32 μM) and sucrose (3%, w/v). High frequency embryogenic callus induction and somatic embryo development was achieved when embryogenic calluses were transferred to MS medium supplemented with 2.25 μM 2,4-D, 2.32 μM kinetin, 490 μM L-tryptophan and 3% (w/v) sucrose. Plant regeneration was achieved by transferring clumps of embryogenic callus onto MS medium containing 2.85 μM indole-3-acetic acid (IAA), 17.77 μM 6-benzylaminopurine (BA) and 3% (w/v) sucrose. Histological observations of embryogenic calluses revealed the presence of somatic embryos and also plant regeneration via multiple shoot bud formation. Three, 4- and 5-d-old coleoptile segments showed a significantly (P<0.05) higher frequency of plant regeneration and mean number of plantlets per explant in comparison to 7-d-old coleoptile segments. The highest frequency (73.5%) of plant regeneration and mean number of plantlets (11.9±1.0) was obtained from 4-d-old coleoptile segments. Regenerated shoots were rooted on MS basal medium containing 4.92 μM indole-3-butyric acid (IBA) and plants were successfully transferred to soil and grown to maturity.  相似文献   

18.
Summary A tissue culture of five wild species of the Secale genus, i.e., S. africanum (Stapf.), S. ancestrale (Zhuk.), S. kuprianovii (Grossh), S. segetale (Rosher.), and S. vavilovii (Grossh), from immature embryos of sizes (stages) varying between 1.0 mm to 3.0mm, cultured on MS (1962) mineral nutrient medium supplemented with 0.62 mg/1–5.0 mg/1 of 2,4-D, was established. Initially various types of callus were observed and a correlation between genotype, size of explant and 2,4-D concentration was found. The best embryogenic response was observed when explants were smaller than 1.0 mm. Induction of somatic embryogenesis of 2.0 mm–3.0 mm explants required a higher concentration of 2,4-D. Most embryoids were formed in the presence of 5.0 mg/l of 2,4-D. Secale africanum and S. kuprianovii appeared to have the highest embryogenic capacity among the five investigated species. For embryoids germination to plantlets the MS medium supplemented with GA3 and cytokinins was used. Ultimately, out of the 932 regenerants obtained 364 originated from somatic embryogenesis.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - GA3 deGibberellic acid - BAP Benzylaminopurine  相似文献   

19.
A pilot field study was conducted to assess the impact of bioaugmentation with two plasmid pJP4-bearing microorganisms: the natural host, Ralstonia eutropha JMP134, and a laboratory-generated strain amenable to donor counterselection, Escherichia coli D11. The R. eutropha strain contained chromosomal genes necessary for mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D), while the E. coli strain did not. The soil system was contaminated with 2,4-D alone or was cocontaminated with 2,4-D and Cd. Plasmid transfer to indigenous populations, plasmid persistence in soil, and degradation of 2,4-D were monitored over a 63-day period in the bioreactors. To assess the impact of contaminant reexposure, aliquots of bioreactor soil were reamended with additional 2,4-D. Both introduced donors remained culturable and transferred plasmid pJP4 to indigenous recipients, although to different extents. Isolated transconjugants were members of the Burkholderia and Ralstonia genera, suggesting multiple, if not successive, plasmid transfers. Upon a second exposure to 2,4-D, enhanced degradation was observed for all treatments, suggesting microbial adaptation to 2,4-D. Upon reexposure, degradation was most rapid for the E. coli D11-inoculated treatments. Cd did not significantly impact 2,4-D degradation or transconjugant formation. This study demonstrated that the choice of donor microorganism might be a key factor to consider for bioaugmentation efforts. In addition, the establishment of an array of stable indigenous plasmid hosts at sites with potential for reexposure or long-term contamination may be particularly useful.  相似文献   

20.
Summary The work presented deals with the fact that rice coleoptiles elongate more rapidly and more extensively under water than in air.Coleoptile segments of rice were cultured under submerged condition as well as under floating condition. On application of 2,4-D a sharp and significant increase in growth in elongation was recorded.At higher concentrations e. g., 100 and 10 p. p. m. the growth rate was higher in floating segments of coleoptiles. But at lower concentrations, including control, the growth rate was higher in submerged ones, which apparently indicates that the optimum concentration of 2,4-D for growth of rice coleoptile is shifted with shifting of oxygen tension. Three different mutually opposing factors namely, lowered auxin destruction under submergence, concentration of auxin in the plant tissue and lowered aerobic respiration have been stated to be responsible for growth of rice tissue under water.At the end we offer our sincere thanks to Dr. P. K.Sen, Khaira Professor and Head of the Department of Agriculture, University of Calcutta for granting all facilities to complete this investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号