首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X rays are well known to cause genetic damage and to induce many types of carcinomas in humans. The Apc(min/+) mouse, an animal model for human familial adenomatous polyposis (FAP), contains a truncating mutation in the APC gene and spontaneously develops intestinal adenomas. To elucidate the role of X rays in the development of intestinal tumors, we examined the promotion of carcinogenesis in X-irradiated Apc(min/+) mice. Forty out of 77 (52%) X-irradiated Apc(min/+) mice developed adenocarcinomas that invaded the proprial muscle layer of the small intestine; 24 of 44 (55%) were in males, and 16 of 33 (49%) were in females. In contrast, invasive carcinomas were detected in the small intestines of only 13 of 64 (20%) nonirradiated Apc(min/+) mice; nine of 32 (28%) were in males and four of 32 (13%) were in females. These differences between X-irradiated and nonirradiated Apc(min/+) mice in the occurrence of invasive intestinal carcinomas were statistically significant (P < 0.05 for males, P < 0.005 for females). In wild-type mice, invasive carcinomas were not detected in either X-irradiated or nonirradiated mice. Apc(min/+) mice had many polyps in the large intestine with or without X irradiation; there was no difference in the number of polyps between the two groups. Also, invasive carcinomas were not detected in the large intestine with or without irradiation. The occurrence of mammary tumors, which was observed in Apc(min/+) mice, was found to be increased in irradiated Apc(min/+) mice (P < 0.01). Apc(min/+) mice had many polyps in the small and large intestines with or without X irradiation. X-irradiated Apc(min/+) mice had highly invasive carcinomas in the small intestine with multiplicities associated with invasiveness. Our results suggest that X radiation may promote the invasive activity of intestinal tumors in Apc(min/+) mice.  相似文献   

2.
Many epidemiological studies have demonstrated that level of exercise is associated with reduced colorectal cancer risk. Treadmill training can decrease Apc(Min/+) mouse intestinal polyp number and size, but the mechanisms remain unclear. Understanding the molecular changes in the tumor following exercise training may provide insight on the mechanism by which exercise decreases Apc(Min/+) mouse polyp formation and growth. The purpose of this study was to determine if exercise can modulate Apc(Min/+) mouse intestinal polyp cellular signaling related to tumor formation and growth. Male Apc(Min/+) mice were randomly assigned to control (n = 20) or exercise (n = 20) treatment groups. Exercised mice ran on a treadmill at a moderate intensity (18 m/min, 60 min, 6 days/wk, 5% grade) for 9 wk. Polyps from Apc(Min/+) mice were used to quantify markers of polyp inflammation, apoptosis, and beta-catenin signaling. Exercise decreased the number of macrophages in polyps by 35%. Related to apoptosis, exercise decreased the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells by 73% in all polyps. Bax protein expression in polyps was decreased 43% by exercise. beta-Catenin phosphorylation was elevated 3.3-fold in polyps from exercised mice. Moderate-intensity exercise training alters cellular pathways in Apc(Min/+) mouse polyps, and these changes may be related to the exercise-induced reduction in polyp formation and growth.  相似文献   

3.
The Apc(Min/+) mouse has a mutation in the Apc tumor suppressor gene and develops intestinal polyps, beginning at 4 wk of age. This mouse develops cachexia by 6 mo, characterized by significant loss of muscle and fat tissue. The purpose of the present study was to determine the role of circulating interleukin-6 (IL-6) and the polyp burden for the development of cachexia in Apc(Min/+) mice. At 26 wk of age, mice exhibiting severe cachectic symptoms had a 61% decrease in gastrocnemius muscle weight, complete loss of epididymal fat, a 10-fold increase in circulating IL-6 levels, and an 89% increase in intestinal polyps compared with mildly cachectic animals. Apc(Min/+)/IL-6(-/-) mice did not lose gastrocnemius muscle mass or epididymal fat pad mass while overall polyp number decreased by 32% compared with Apc(Min/+) mice. Plasmid-based IL-6 overexpression in Apc(Min/+)/IL-6(-/-) mice led to a decrease in gastrocnemius muscle mass and epididymal fat pad mass and increased intestinal polyp burden. IL-6 overexpression did not induce cachexia in non-tumor-bearing mice. These data demonstrate that IL-6 is necessary for the onset of adipose and skeletal muscle wasting in the Apc(Min/+) mouse and that circulating IL-6 can regulate Apc(Min/+) mouse tumor burden.  相似文献   

4.
Moderate-intensity treadmill running can alter male Apc(Min/+) mouse polyp formation. This purpose of this study was to examine whether exercise mode differentially affects Apc(Min/+) mouse intestinal polyp development in male and female mice. Male and female Apc(Min/+) mice were randomly assigned to control, treadmill (18 m/min; 60 min/day; 6 days/wk), or voluntary wheel running (24-h access) groups. Nine weeks of training decreased total intestinal polyps by 29% in male treadmill runners (66 +/- 9; P = 0.038) compared with male controls (93 +/- 7). The number of large polyps (>/=1-mm diameter) were also reduced by 38% in male treadmill runners (49 +/- 6; P = 0.005) compared with male controls (79 +/- 6). Treadmill running in female Apc(Min/+) mice and wheel running in both genders did not affect polyp number or size. Spleen weight decreased in male treadmill runners (91 +/- 9 mg; P = 0.011) and wheel runners (75 +/- 6 mg; P = 0.004) compared with controls (141 +/- 13 mg). Plasma IL-6 was reduced by 96% in male treadmill runners (1.2 +/- 0.6 pg/ml) and 78% in male wheel runners (6.6 +/- 3.3 pg/ml) compared with control mice (27.9 +/- 2.8 pg/ml; P < 0.05). Female mice responded similarly with an 86% decrease in plasma IL-6 with treadmill running (3.2 +/- 1.2 pg/ml) and 90% decrease with wheel running (2.9 +/- 2.0 pg/ml) compared with control mice (21.1 +/- 5.3 pg/ml; P < 0.05). The crypt depth-to-villus height ratio in the intestine, an indirect marker of intestinal inflammation, decreased by 21 (P = 0.024) and 24% (P = 0.029), respectively, in male and female treadmill runners but not wheel runners. Physical activity-induced attenuation of intestinal polyp number and size is dependent on exercise mode and differs between genders. The modulation of systemic and intestinal inflammation may also depend on exercise mode.  相似文献   

5.
We employed transgenic mice overexpressing betacellulin (BTC) to study its effects in the gut. BTC stimulated crypt cell proliferation and markedly increased intestinal size, while the crypt-villus architecture was preserved. Introduction of a dominant negative epidermal growth factor receptor (EGFR) completely abolished the intestinal hyperplasia. BTC increased polyp multiplicity but did not change the mean size or the histological quality of intestinal polyps in Apc(+/Min) mice. Analysis of intact and cleaved caspase-3 levels indicated that BTC has anti-apoptotic effects in the intestinal epithelium. We conclude that increased BTC levels support the survival of nascent adenomas in Apc(+/Min) mice, resulting in a larger total polyp number at later stages.  相似文献   

6.
Sphingosine kinase (Sphk) enzymes are important in intracellular sphingolipid metabolism as well as in the biosynthesis of sphingosine 1-phosphate (S1P), an extracellular lipid mediator. Here, we show that Sphk1 is expressed and is required for small intestinal tumor cell proliferation in Apc Min/+ mice. Adenoma size but not incidence was dramatically reduced in Apc Min/+ Sphk(-/-) mice. Concomitantly, epithelial cell proliferation in the polyps was significantly attenuated, suggesting that Sphk1 regulates adenoma progression. Although the S1P receptors (S1P1R, S1P2R, and S1P3R) are expressed, polyp incidence or size was unaltered in Apc Min/+ S1p2r(-/-), Apc Min/+ S1p3r(-/-), and Apc Min/+ S1p1r(+/-) bigenic mice. These data suggest that extracellular S1P signaling via its receptors is not involved in adenoma cell proliferation. Interestingly, tissue sphingosine content was elevated in the adenomas of Apc Min/+ Sphk1(-/-) mice, whereas S1P levels were not significantly altered. Concomitantly, epithelial cell proliferation and the expression of the G1/S cell cycle regulator CDK4 and c-myc were diminished in the polyps of Apc Min/+ Sphk1(-/-) mice. In rat intestinal epithelial (RIE) cells in vitro, Sphk1 overexpression enhanced cell cycle traverse at the G1/S boundary. In addition, RIE cells treated with sphingosine but not C6-ceramide exhibited reduced cell proliferation, reduced retinoblastoma protein phosphorylation, and cyclin-dependent kinase 4 (Cdk4) expression. Our findings suggest that Sphk1 plays a critical role in intestinal tumor cell proliferation and that inhibitors of Sphk1 may be useful in the control of intestinal cancer.  相似文献   

7.
Arachidonic acid is a precursor for biosynthesis of eicosanoids, including prostaglandins, thromboxanes, leukotrienes, and lipoxins. Cytosolic phospholipase A(2) (cPLA(2)) plays a key role in the release of arachidonic acid as the substrate of cyclooxygenase-1 (COX-1) or COX-2. We found that the level of cPLA(2) mRNA was markedly elevated in the polyps and correlated with the polyp size in the small intestine of the Apc(delta)(716) knockout mouse, a model for human familial adenomatous polyposis. To determine the role of cPLA(2) in intestinal tumorigenesis, we then introduced a cPLA(2) gene mutation into Apc(delta)(716) mice. In the compound mutant mice, the size of the small intestinal polyps was reduced significantly, although the numbers remained unchanged. These results provide direct genetic evidence that cPLA(2) plays a key role in the expansion of polyps in the small intestine rather than in the initiation process. In contrast, colonic polyps were not affected in either size or number. Interestingly, group X sPLA(2) was constitutively expressed in the colon at much higher levels than in the small intestine. These results suggest that in the colon, group X sPLA(2) supplies arachidonic acid in both the normal epithelium and the polyps even in the absence of cPLA(2).  相似文献   

8.
The c-myc oncogene plays an important role in tumorigenesis and is frequently deregulated in many human cancers, including gastrointestinal cancers. In humans, mutations of the adenomatous polyposis coli (Apc) tumor suppressor gene occur in most colorectal cancers. Mutation of Apc leads to stabilization of beta-catenin and increases in beta-catenin target gene expression (c-myc and cyclin D1), whose precise functional significance has not been examined using genetic approaches. Apc(Min/+) mice are a model of familial adenomatous polyposis and are heterozygous for an Apc truncation mutation. We have developed a model for examining the role of c-Myc in Apc-mediated tumorigenesis. We crossed c-myc(+/-) mice to Apc(Min/+) to generate Apc(Min/+) c-myc(+/-) animals. The compound Apc(Min/+) c-myc(+/-) mice were used to evaluate the effect of c-myc haploinsufficiency on the Apc(Min/+) phenotype. We observed a significant reduction in tumor numbers in the small intestine of Apc(Min/+) c-myc(+/-) mice compared with control Apc(Min/+) c-myc(+/+) mice. In addition, we observed one to three polyps per colon in Apc(Min/+) c-myc(+/+) mice, whereas only two lesions were observed in the colons of Apc(Min/+) mice that were haploinsufficient for c-myc. Moreover, reduction in c-myc levels resulted in a significant increase in the survival of these animals. Finally, we observed marked decreases in vascular endothelial growth factor, EphA2, and ephrin-B2 expression as well as marked decreases in angiogenesis in intestinal polyps in Apc(Min/+) c-myc(+/-) mice. This study shows that c-Myc is critical for Apc-dependent intestinal tumorigenesis in mice and provides a potential therapeutic target in the treatment of colorectal cancer.  相似文献   

9.
Clinical data suggest that progestins have chemopreventive properties in the development of colorectal cancer. We set out to examine a potential protective effect of progestins and progesterone signaling on colon cancer development. In normal and neoplastic intestinal tissue, we found that the progesterone receptor (PR) is not expressed. Expression was confined to sporadic mesenchymal cells. To analyze the influence of systemic progesterone receptor signaling, we crossed mice that lacked the progesterone receptor (PRKO) to the Apc(Min/+) mouse, a model for spontaneous intestinal polyposis. PRKO-Apc(Min/+) mice exhibited no change in polyp number, size or localization compared to Apc(Min/+). To examine effects of progestins on the intestinal epithelium that are independent of the PR, we treated mice with MPA. We found no effects of either progesterone or MPA on gross intestinal morphology or epithelial proliferation. Also, in rats treated with MPA, injection with the carcinogen azoxymethane did not result in a difference in the number or size of aberrant crypt foci, a surrogate end-point for adenoma development. We conclude that expression of the progesterone receptor is limited to cells in the intestinal mesenchyme. We did not observe any effect of progesterone receptor signaling or of progestin treatment in rodent models of intestinal tumorigenesis.  相似文献   

10.
Arachidonic acid is metabolized to prostaglandin H(2) (PGH(2)) by cyclooxygenase (COX). COX-2, the inducible COX isozyme, has a key role in intestinal polyposis. Among the metabolites of PGH(2), PGE(2) is implicated in tumorigenesis because its level is markedly elevated in tissues of intestinal adenoma and colon cancer. Here we show that homozygous deletion of the gene encoding a cell-surface receptor of PGE(2), EP2, causes decreases in number and size of intestinal polyps in Apc(Delta 716) mice (a mouse model for human familial adenomatous polyposis). This effect is similar to that of COX-2 gene disruption. We also show that COX-2 expression is boosted by PGE(2) through the EP2 receptor via a positive feedback loop. Homozygous gene knockout for other PGE(2) receptors, EP1 or EP3, did not affect intestinal polyp formation in Apc(Delta 716) mice. We conclude that EP2 is the major receptor mediating the PGE2 signal generated by COX-2 upregulation in intestinal polyposis, and that increased cellular cAMP stimulates expression of more COX-2 and vascular endothelial growth factor in the polyp stroma.  相似文献   

11.
The SMAD4 gene plays a key role in the TGF-beta signaling pathway. We inactivated its mouse homolog Smad4. The homozygous mutants were embryonically lethal, whereas the heterozygotes were viable and fertile. Although young heterozygotes appeared normal, old mice developed gastric and duodenal polyps similar to human juvenile polyps characterized by abundant stroma and eosinophilic infiltrations. These data are consistent with the reports that a subset of human juvenile polyposis kindreds carry germline mutations in the SMAD4 gene. We then introduced the Smad4 mutation into the Apc(Delta716) knockout mice, a model for human familial adenomatous polyposis. Because both Apc and Smad4 are located on mouse chromosome 18, we constructed by meiotic recombination compound heterozygotes carrying both mutations on the same chromosome. In such mice, intestinal polyps developed into more malignant tumors than those in the simple Apc(Delta716) heterozygotes, showing an extensive stromal cell proliferation and strong submucosal invasion. These results indicate that mutations in SMAD4 play a significant role in the malignant progression of colorectal tumors.  相似文献   

12.
Aberrant activation of the Wnt/β-catenin pathway is critical for the initiation and progression of most colon cancers. This activation provokes the accumulation of nuclear β-catenin and the induction of its target genes. Apc(min/+) mice are the most commonly used model for colon cancer. They harbor a mutated Apc allele and develop intestinal adenomas and carcinomas during the first months of life. This phenotype is caused by the mutation of the second Apc allele and the consequent accumulation of nuclear β-catenin in the affected cells. Here we describe that vitamin D receptor (VDR) is a crucial modulator of nuclear β-catenin levels in colon cancer in vivo. By appropriate breeding of Apc(min/+) mice and Vdr(+/-) mice we have generated animals expressing a mutated Apc allele and two, one, or none Vdr wild type alleles. Lack of Vdr increased the number of colonic Aberrant Crypt Foci (ACF) but not that of adenomas or carcinomas in either small intestine or colon. Importantly, colon ACF and tumors of Apc(min/+)Vdr(-/-) mice had increased nuclear β-catenin and the tumors reached a larger size than those of Apc(min/+)Vdr(+/+). Both ACF and carcinomas in Apc(min/+)Vdr(-/-) mice showed higher expression of β-catenin/TCF target genes. In line with this, VDR knock-down in cultured human colon cancer cells enhanced β-catenin nuclear content and target gene expression. Consistently, VDR depletion abrogated the capacity of 1,25(OH)(2)D(3) to promote the relocation of β-catenin from the nucleus to the plasma membrane and to inhibit β-catenin/TCF target genes. In conclusion, VDR controls the level of nuclear β-catenin in colon cancer cells and can therefore attenuate the impact of oncogenic mutations that activate the Wnt/β-catenin pathway.  相似文献   

13.
14.
Gastrointestinal tumorigenesis in Smad4 (Dpc4) mutant mice   总被引:3,自引:0,他引:3  
Taketo MM  Takaku K 《Human cell》2000,13(3):85-95
The SMAD4 (Dpc4) gene plays a key role in the TGF-beta signaling pathway. We recently inactivated the mouse homolog Smad4. The homozygous mutants were embryonic lethals, whereas the heterozygotes were viable and fertile. Although young heterozygotes were normal, old mice developed gastric and duodenal polyps similar to those found in human juvenile polyps characterized by abundant stroma and eosinophilic infiltrations. These data are consistent with the reports that a subset of human juvenile polyposis kindreds carry germline mutations in the SMAD4 gene. We then introduced the Smad4 mutation into the Apc delta 716 knockout mice, a model for human familial adenomatous polyposis. Because both Apc and Smad4 are located on mouse chromosome 18, we constructed by meiotic recombination, compound heterozygotes carrying both mutations on the same chromosome. In such mice, intestinal polyps developed into more malignant tumors than those in the simple Apc delta 716 heterozygotes, showing an extensive stromal cell proliferation and strong submucosal invasion. These results indicate that mutations in SMAD4 play a significant role in the malignant progression of colorectal tumors.  相似文献   

15.
Epidemiological studies indicate that adequate dietary folate is protective against colon cancer, although mechanisms remain largely elusive. We investigated the effects of genetic disruptions of folate transport and metabolism and of dietary folate deficiency in a mouse model of colon cancer, the Apc(min/+) mouse. Apc(min/+) mice with heterozygous knockout of the gene for reduced folate carrier 1 (Rfc1(+/-)) developed significantly fewer adenomas compared to Rfc1(+/+)Apc(min/+) mice [30.3+/-4.6 vs. 60.4+/-9.4 on a control diet (CD) and 42.6+/-4.4 vs. 55.8+/-7.6 on a folate-deficient diet, respectively]. Rfc1(+/-)Apc(min/+) mice also carried a lower tumor load, an indicator of tumor size as well as of tumor number. In contrast, there were no differences in adenoma formation between Apc(min/+) mice carrying a knockout allele for methionine synthase (Mtr(+/-)), an enzyme that catalyzes folate-dependent homocysteine remethylation, and Mtr(+/+)Apc(min/+) mice. However, in both Mtr groups of mice, dietary folate deficiency significantly increased adenoma number (from 32.3+/-3.8 on a CD to 48.1+/-4.2 on a folate-deficient diet), increased plasma homocysteine, decreased global DNA methylation in preneoplastic intestines and increased apoptosis in tissues. There were no genotype-associated differences in these parameters in the Rfc1 group, suggesting that the protection conferred by Rfc1 deficiency is carried out through a different mechanism. In conclusion, genetic and nutritional disturbances in folate metabolism can have distinct influences on tumorigenesis in Apc(min/+) mice; altered levels of homocysteine, global DNA methylation and apoptosis may contribute mechanistically to dietary influence.  相似文献   

16.
The C57BL/6J-Min/+ (multiple intestinal neoplasia) mouse has a heterozygous nonsense Apc(Min) (adenomatous polyposis coli) mutation, and numerous adenomas spontaneously develop in the intestine. Neonatal exposure of Min/+ mice to the food carcinogens 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) or 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) (one injection of 50mg/kg) increased the number of small intestinal tumours about three- and two-fold, respectively. The number of colonic tumours was only increased in males. We examined whether the wild-type Apc allele was affected in intestinal tumours induced by either PhIP or IQ. In spontaneously formed and in IQ-induced small intestinal and colonic tumours from these mice, the main mechanism for tumour induction was loss of wild-type Apc allele, i.e. loss of heterozygosity (LOH). In contrast to the IQ-induced (84% LOH) and spontaneously (88% LOH) formed tumours, only 55% of the PhIP-induced small intestinal tumours from males showed LOH. Tumours that apparently had retained the wild-type Apc allele were further analysed for the presence of truncated Apc proteins by the in vitro synthesised protein (IVSP) assay. Truncated Apc proteins, indicating truncation mutations in exon 15 of the Apc gene, were detected in two of the 12 PhIP-induced tumours in segment 2 (codons 686-1217), and two of five IQ-induced tumours, one in segment 2 and the other in segment 3 (codons 1099-1693). Three of these four mutations, all in segment 2 of the Apc gene, were confirmed by sequencing. The PhIP-induced mutations were detected at codon 1125 (C deletion) and 1130 (G-T transversion), and the IQ-induced mutation was at codon 956 (C-T transition). Importantly, no truncated proteins were detected in tumours from unexposed mice with apparently retained wild-type Apc allele. These results show that one injection of either PhIP or IQ induces intestinal tumours in the Min/+ mice by inactivation of the wild-type Apc allele either by causing LOH or truncation mutations.  相似文献   

17.
The heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induces intestinal tumours in C57BL/6J-multiple intestinal neoplasia (Min)/+ mice. The main mechanism for PhIP-induced tumour induction in Min/+ mice is loss of the wild-type adenomatous polyposis coli (Apc) allele, i.e. loss of heterozygosity (LOH). In this study, single injections of either 10, 17.5 or 25 mg/kg PhIP on days 3-6 after birth all increased the mean number of small intestinal tumours two to three-fold, from 37.7 in controls to 124.8 in the PhIP-treated Min/+ mice. In total, we analysed 292 small intestinal tumours and 253 of these had LOH. The frequency of LOH in the Apc gene was 88, 93, 83 and 84% in tumours of 0, 10, 17.5 and 25 mg/kg PhIP-treated mice, respectively. Therefore, these lower doses of PhIP did not reduce the frequency of LOH, as found in our previous study with a single injection of 50 mg/kg PhIP (Mutat. Res. 1-2 (2002) 157). In the second part of this study, we wanted to characterise Apc truncation mutations from tumour samples apparently retaining the Apc wild-type allele from this and two previous experiments with PhIP-exposed Min/+ mice. In the first half of exon 15 in Apc, we verified 25 mutations from 804 tumour samples of PhIP-treated mice. Of these were 60% G-->T transversions, and 16% G deletions, indicating that these are the predominant types of PhIP-induced truncation mutations in the Apc gene in Min/+ mice. Most of the mutations were located between codon 989 and 1156 corresponding to the first part of the beta-catenin binding region. We also identified two Apc truncation mutations from 606 spontaneously formed intestinal tumours from untreated Min/+ mice, one C-->T transition and one T insertion, which were different from those induced by PhIP.  相似文献   

18.
Familial adenomatous polyposis (FAP) is a human cancer syndrome characterized by the development of hundreds to thousands of colonic polyps and extracolonic lesions including desmoid fibromas, osteomas, epidermoid cysts, and congenital hypertrophy of the pigmented retinal epithelium. Afflicted individuals are heterozygous for mutations in the APC gene. Detailed investigations of mice heterozygous for mutations in the ortholog Apc have shown that other genetic factors strongly influence the phenotype. Here we report qualitative and quantitative modifications of the phenotype of Apc mutants as a function of three genetic variables: Apc allele, p53 allele, and genetic background. We have found major differences between the Apc alleles Min and 1638N in multiplicity and regionality of intestinal tumors, as well as in incidence of extracolonic lesions. By contrast, Min mice homozygous for either of two different knockout alleles of p53 show similar phenotypic effects. These studies illustrate the classic principle that functional genetics is enriched by assessing penetrance and expressivity with allelic series. The mouse permits study of an allelic gene series on multiple genetic backgrounds, thereby leading to a better understanding of gene action in a range of biological processes.  相似文献   

19.
2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is one of the mutagenic heterocyclic amines derived from cooked meat. In previous animal studies, spontaneous tumour formation in B6(Min/+) mice was associated with somatic loss of the wild-type Apc+ allele by loss of the entire chromosome 18 or by recombination. The objective of this study was to examine genetic changes caused by PhIP-exposure in a mouse intestinal cell line and in tumours from hybrid mice by keeping track of the chromosomes carrying the two Apc alleles. We transformed the SV40 T-immortalised intestinal epithelial cell line IMCE, derived from the B6(Min/+) mice by exposure to N-OH-PhIP, and studied the effect on Apc status and chromosome 18. Eighteen transformed cultures were obtained and all of them had retained the Apc+ allele. Five of seven transformed cultures were tumorigenic after implantation in nude mice. Chromosomal analysis of these five cultures and the parent IMCE cell line showed that the IMCE cells were near-tetraploid with an average of 77 chromosomes/cell, while the tumorigenic cell cultures were all triploid to hyper-triploid with a range of 61-69 chromosomes/cell. The number of copies of chromosome 18 was about four in the IMCE line and this copy number was retained in the transformed lines derived from IMCE. Changes in chromosome 18 and Apc during tumour development in vivo were examined in spontaneously formed and PhIP-induced intestinal tumours from two hybrid mice strains, i.e. B6(Min/+) - a murine FAP model - crossed with either AKR/J or A/J. We evaluated the allelic status of Apc, and the heterogenic microsatellite markers D18Mit19 and D18Mit4, located at the upper and lower ends of chromosome 18, respectively. In tumours from untreated animals, instability in the D18Mit19 and Apc was observed. Upon PhIP exposure, the B6(Min/A+) hybrid mouse tumours differed distinctly in genetic profile from those obtained from untreated animals and we detected three genetically different tumour groups, all of which had apparently retained Apc+. One group had allelic balance between the Apc(Min) and Apc+, the second had allelic imbalance between the Apc and D18Mit4 alleles, indicative of chromosomal stability in the first group and instability in the lower end of chromosome 18 in the second group, respectively. The third group showed variable allelic status of the three markers. A similar change in genetic profile was also seen in intestinal tumours of PhIP-exposed B6(Min/AKR+) hybrid mice, but it was less pronounced. Chromosomal breaks and/or recombinational events could be alternative explanations for the observed allelic imbalances in chromosome 18 markers in intestinal tumours from PhIP-exposed mice.  相似文献   

20.
Ectopic expression of certain Wnt genes in mouse mammary tissue is tumorigenic, and mutations that stabilize beta-catenin are found in various human cancers including colorectal cancer. To determine the role of stabilized beta-catenin in intestinal tumorigenesis in mice, we constructed by embryonic stem (ES) cell-mediated homologous recombination, a mutant beta-catenin allele whose exon 3 was sandwiched by loxP sequences. When the germline heterozygotes were crossed with mice expressing Cre recombinase in the intestines, the serines and threonine encoded by exon 3 and to be phosphorylated by glycogen synthase kinase 3beta (GSK3beta) were deleted in the offspring intestines, which caused adenomatous intestinal polyps resembling those in Apc(Delta716) knockout mice. Some nascent microadenomas were also found in the colon. These results present experimental genetic evidence that activation of the Wnt signaling pathway can cause intestinal and colonic tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号