首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Slot-blot hybridization technique was used to evaluate growth hormone-releasing hormone (GHRH) mRNA levels in the hypothalamus of long-term (14 days) hypophysectomized (HPX) rats treated or not with 125 micrograms hGH/rat, twice daily IP, since the first day postsurgery. In addition, mRNA levels were determined in the hypothalamus of short-term (4 days) GH-treated (250 micrograms hGH/rat, twice daily IP) intact rats. GHRH mRNA levels were increased in HPX rats, and GH treatment partially counteracted this rise. Short-term administration of GH decreased GHRH mRNA levels in intact rats. These results, evaluated together with previous findings showing decreased hypothalamic GHRH-like immunoreactivity in both HPX rats and intact rats given GH (6, 7, 9), indicate that GH exerts a negative feedback action on the synthesis and release of GHRH.  相似文献   

2.
3.
Regulation of rat growth hormone receptor gene expression   总被引:13,自引:0,他引:13  
A cDNA encoding the growth hormone (GH) receptor was cloned from rat liver. Both the nucleotide and translated amino acid sequence share greater than 70% similarity with the GH receptors from rabbit and human. An RNA probe was generated from this sequence for use in a solution hybridization assay to quantitate GH receptor mRNA expression in rat tissues. Expression was detected in 9/12 tissues examined, with the highest levels observed in the liver. Expression in liver, kidney, heart and muscle was developmentally regulated, being low at birth and rising to adult levels in 5 weeks. No difference was observed between hepatic expression in males and females, although livers from pregnant rats had elevated levels. Hypophysectomy and GH treatment did not affect hepatic GH receptor mRNA levels.  相似文献   

4.
Growth hormone-releasing hormone (GRH) was initially isolated, characterized, sequenced, and cloned from human tumors and subsequently from the hypothalamus of humans and other animal species. Extensive structure-function studies have indicated the amino terminus to be most important for its biologic action, and the primary mechanism of its bioinactivation occurs by cleavage of an amino terminal dipeptide. The GRH gene is expressed primarily in the hypothalamic arcuate nucleus but also in the placenta. Expression of the GRH gene is regulated by growth hormone in a classical feedback manner, with hypophysectomy leading to increased expression that is reversed by growth hormone treatment. GRH gene overexpression in transgenic mice leads to a syndrome similar to that of ectopic GRH secretion with massive pituitary hyperplasia and markedly enhanced growth. The transgenic mouse has been used for studies of GRH biosynthesis and provides a suitable model for the study of precursor processing to the mature hormone.  相似文献   

5.
Internalization and intracellular trafficking of the growth hormone-releasing hormone receptor (GHRH-R) were studied in rat anterior pituitary and human (h) and rat (r) GHRH-R-transfected BHK cells, with the GHRH agonist, [N(alpha)-5-carboxyfluoresceinyl-D-Ala(2), Ala(8), Ala(15), Lys(22)]hGHRH(1-29)NH(2) (Fluo-GHRH). Time- and temperature-dependent internalization of stimulated GHRH-R was blocked by phenyl arsine oxide (PAO) in both cell types. In anterior pituitary and rGHRH-R-transfected BHK cells, only filipin III and cerulenin blocked receptor-mediated internalization of Fluo-GHRH while in hGHRH-R-transfected BHK cells, only hyperosmolar sucrose inhibited this process. These results suggest that hGHRH-R internalization is clathrin-dependent, while fatty acid acylation of rGHRH-R appears to be a prerequisite to caveolin-dependent internalization. Experiments in anterior pituitary using Bodipy-FL-C(5) ganglioside GM1, a specific marker of lipid rafts such as caveolae, confirmed this latter pathway. Co-localization of Fluo-GHRH with LysoTracker indicated that Fluo-GHRH was directed to acidic organelles in both cell types. Finally, studies using cycloheximide and monensin showed that upon stimulation with GHRH, an optimal concentration of functional GHRH-R was maintained at the plasma membrane due to de novo synthesis and recycling in pituitary cells and to de novo synthesis solely in hGHRH-R-transfected BHK cells. This first study on the dynamics of the GHRH/GHRH-R complexes using fluorescence imaging in a native environment compared to cell system models, revealed that both receptor primary structure and concentration at the plasma membrane play important roles in internalization and trafficking of specific G-protein-coupled receptors (GPCR).  相似文献   

6.
7.
8.
9.
A novel cDNA was isolated from rat pituitary mRNA using the polymerase chain reaction to amplify sequences encoding G protein-coupled receptors. The human homolog of this cDNA was isolated and expressed in human kidney 293 cells, and membrane fractions from these cells were found to bind human GH-releasing hormone (GHRH) with high affinity and specificity. GHRH also stimulates intracellular cAMP production in these transfected cells. The encoded receptor protein contains seven potential membrane-spanning domains, a hallmark of G protein-coupled receptors, and is homologous to previously identified receptors for secretin and vasoactive intestinal peptide, ligands that are related to GHRH. The rat GHRH receptor mRNA is expressed predominantly, if not exclusively, in the anterior pituitary gland, the major target for GHRH action. These results define a mechanism for cellular signaling by GHRH and provide the opportunity to examine the role of the GHRH receptor in growth abnormalities that involve the GH axis.  相似文献   

10.
11.
12.
13.
14.
15.
To examine the functional relationship between distinct cis-active elements within the distal enhancer region of the rat PRL gene, we have used deletional and mutational analysis of that region in transient transfection studies in GH3 pituitary tumor cells. Results from these studies demonstrate that the region of the PRL distal enhancer containing the Pit-1-binding sites is critical not only for enhancer activity and the response to cAMP, but also for the response to estradiol. An interaction of the estrogen receptor with factors conferring basal enhancer activity is suggested by studies with a mutant distal enhancer region in which the PRL estrogen response element was converted to a palindromic estrogen response element. To directly examine potential interactions, cotransfection studies using PRL distal enhancer reporter gene constructs and expression vectors for Pit-1 and rat estrogen receptor were performed in two heterologous cell lines. The activity of the reporter gene under the control of the PRL distal enhancer linked to either the thymidine kinase promoter or the PRL proximal promoter was not significantly altered by cotransfection with the Pit-1 expression vector in COS-1 or RAT-1 cells. Coexpression of these reporter constructs and an expression vector for estrogen receptor resulted in only a slight response to estradiol. However, when both Pit-1 and estrogen receptor were cotransfected with the distal enhancer reporter gene, a marked induction was observed in response to estradiol, and this activity was dependent upon the concentration of the Pit-1 expression vector.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The primary structure of the rat liver prolactin receptor has been deduced from a single complementary DNA clone. The sequence begins with a putative 19 amino acid signal peptide followed by the 291 amino acid receptor that includes a single 24 amino acid transmembrane segment. In spite of the fact that the prolactin receptor has a much shorter cytoplasmic region than the growth hormone receptor, there is strong localized sequence identity between these two receptors in both the extracellular and cytoplasmic domains, suggesting that the two receptors originated from a common ancestor.  相似文献   

17.
18.
M J Twery  R L Moss 《Peptides》1985,6(4):609-613
The effects of iontophoretically applied human pancreatic growth hormone-releasing factor (hpGRF), peptide histidine isoleucine (PHI-27), and somatostatin (SS) on the extracellular activity of single cells in the hypothalamus, thalamus, and cortex of the rat brain were studied in urethane-anesthetized, male rats. Neurons with membrane sensitivity to hpGRF, PHI-27, and SS were present in each brain region. Although neurons excited by these peptides were encountered in thalamus and hypothalamus, depression of neuronal firing was the predominant response observed. Overall, the neurons responding to hpGRF also possessed membrane sensitivity to PHI-27, whereas, the hpGRF sensitive neurons appeared to be more divided as to their ability to respond to SS. The results clearly demonstrate that hpGRF and PHI-27 are capable of affecting the membrane excitability of neurons in several brain regions. The distribution of neurons sensitive to hpGRF suggests that hypothalamic GRF, in addition to its well documented role in the regulation of pituitary growth hormone secretion, may subserve other physiological events in the rat central nervous system as a neurotransmitter and/or neuromodulator.  相似文献   

19.
20.
Expression of the endogenous human GH (hGH) gene in response to glucocorticoids, thyroid hormone, and insulin was studied in cultures of dispersed GH-secreting human pituitary adenomas. Results were compared to those obtained when the hGH gene was transfected into rat pituitary tumor cells (GC). In the human pituitary cells the glucocorticoid dexamethasone [(Dex) 10(-6) M] increased the release of GH and the levels of GH mRNA by 2 to 4-fold (P less than 0.05). T3 (10(-8) M) had no effect on GH mRNA but increased hGH release by 2- to 6-fold (P less than 0.01). Insulin (5 x 10(-9) M) alone had no significant effect on either hGH mRNA or protein, but blunted the effect of Dex. Among 11 of 18 GC cell clones transfected with the hGH gene with detectable hGH mRNA expression, Dex increased hGH mRNA levels in seven and T3 treatment reduced hGH mRNA levels in eight. Conversely, rat GH mRNA levels from the endogenous rat gene were increased by either Dex or T3 in all 18 clones. Insulin alone or in combination with T3 or Dex was found to increase hGH mRNA levels in some cell lines and to decrease hGH mRNA levels in others; these effects were correlated strongly (r = 0.88; P less than 0.001) with the influence of insulin on the endogenous rat GH gene, implying that individual cellular differences can simultaneously affect the insulin responsiveness of both genes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号