首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activation function 2/ligand-dependent interaction between nuclear receptors and their coregulators is mediated by a short consensus motif, the so-called nuclear receptor (NR) box. Nuclear receptors exhibit distinct preferences for such motifs depending both on the bound ligand and on the NR box sequence. To better understand the structural basis of motif recognition, we characterized the interaction between estrogen receptor alpha and the NR box regions of the p160 coactivator TIF2. We have determined the crystal structures of complexes between the ligand-binding domain of estrogen receptor alpha and 12-mer peptides from the Box B2 and Box B3 regions of TIF2. Surprisingly, the Box B3 module displays an unexpected binding mode that is distinct from the canonical LXXLL interaction observed in other ligand-binding domain/NR box crystal structures. The peptide is shifted along the coactivator binding site in such a way that the interaction motif becomes LXXYL rather than the classical LXXLL. However, analysis of the binding properties of wild type NR box peptides, as well as mutant peptides designed to probe the Box B3 orientation, suggests that the Box B3 peptide primarily adopts the "classical" LXXLL orientation in solution. These results highlight the potential difficulties in interpretation of protein-protein interactions based on co-crystal structures using short peptide motifs.  相似文献   

2.
3.
4.
5.
6.
Coactivator recruitment by activation function 2 (AF2) in the steroid receptor ligand binding domain takes place through binding of an LXXLL amphipathic alpha-helical motif at the AF2 hydrophobic surface. The androgen receptor (AR) and certain AR coregulators are distinguished by an FXXLF motif that interacts selectively with the AR AF2 site. Here we show that LXXLL and FXXLF motif interactions with steroid receptors are modulated by oppositely charged residues flanking the motifs and charge clusters bordering AF2 in the ligand binding domain. An increased number of charged residues flanking AF2 in the ligand binding domain complement the two previously characterized charge clamp residues in coactivator recruitment. The data suggest a model whereby coactivator recruitment to the receptor AF2 surface is initiated by complementary charge interactions that reflect a reversal of the acidic activation domain-coactivator interaction model.  相似文献   

7.
8.
9.
10.
The activation function 2 (AF-2)-dependent recruitment of coactivator is essential for gene activation by nuclear receptors. We show that the peroxisome proliferator-activated receptor gamma (PPARgamma) (NR1C3) coactivator-1 (PGC-1) requires both the intact AF-2 domain of PPARgamma and the LXXLL domain of PGC-1 for ligand-dependent and ligand-independent interaction and coactivation. Although the AF-2 domain of PPARgamma is absolutely required for PGC-1-mediated coactivation, this coactivator displayed a unique lack of requirement for the charge clamp of the ligand-binding domain of the receptor that is thought to be essential for LXXLL motif recognition. The mutation of a single serine residue adjacent to the core LXXLL motif of PGC-1 led to restoration of the typical charge clamp requirement. Thus, the unique structural features of the PGC-1 LXXLL motif appear to mediate an atypical mode of interaction with PPARgamma. Unexpectedly, we discovered that various ligands display variability in terms of their requirement for the charge clamp of PPARgamma for coactivation by PGC-1. This ligand-selective variable requirement for the charge clamp was coactivator-specific. Thus, distinct structural determinants, which may be unique for a particular ligand, are utilized by the receptor to recognize the coactivator. Our data suggest that even subtle differences in ligand structure are perceived by the receptor and translated into a unique display of the coactivator-binding surface of the ligand-binding domain, allowing for differential recognition of coactivators that may underlie distinct pharmacological profiles observed for ligands of a particular nuclear receptor.  相似文献   

11.
12.
13.
14.
The androgen receptor (AR) is required for male sex development and contributes to prostate cancer cell survival. In contrast to other nuclear receptors that bind the LXXLL motifs of coactivators, the AR ligand binding domain is preferentially engaged in an interdomain interaction with the AR FXXLF motif. Reported here are crystal structures of the ligand-activated AR ligand binding domain with and without bound FXXLF and LXXLL peptides. Key residues that establish motif binding specificity are identified through comparative structure-function and mutagenesis studies. A mechanism in prostate cancer is suggested by a functional AR mutation at a specificity-determining residue that recovers coactivator LXXLL motif binding. An activation function transition hypothesis is proposed in which an evolutionary decline in LXXLL motif binding parallels expansion and functional dominance of the NH(2)-terminal transactivation domain in the steroid receptor subfamily.  相似文献   

15.
The interaction of coactivators with the ligand-binding domain of nuclear receptors (NRs) is mediated by amphipathic alpha-helices containing the signature motif LXXLL. TRAP220 contains two LXXLL motifs (LXM1 and LXM2) that are required for its interaction with NRs. Here we show that the nuclear receptor interaction domain (NID) of TRAP220 interacts weakly with Class I NRs. In contrast, SRC1 NID binds strongly to both Class I and Class II NRs. Interaction assays using nine amino acid LXXLL core motifs derived from SRC1 and TRAP220 revealed no discriminatory NR binding preferences. However, an extended LXM1 sequence containing amino acids -4 to +9, (where the first conserved leucine is +1) showed selective binding to thyroid hormone receptor and reduced binding to estrogen receptor. Replacement of either TRAP220 LXXLL motif with the corresponding 13 amino acids of SRC1 LXM2 strongly enhanced the interaction of the TRAP220 NID with the estrogen receptor. Mutational analysis revealed combinatorial effects of the LXM1 core and flanking sequences in the determination of the NR binding specificity of the TRAP220 NID. In contrast, a mutation that increased the spacing between TRAP220 LXM1 and LXM2 had little effect on the binding properties of this domain. Thus, a 13-amino acid sequence comprising an extended LXXLL motif acts as the key determinant of the NR binding specificity of TRAP220. Finally, we show that the NR binding specificity of full-length TRAP220 can be altered by swapping extended LXM sequences.  相似文献   

16.
17.
18.
19.
20.
BACKGROUND: We describe a novel microsphere-based system to identify and characterize multiplexed interactions of nuclear receptors with peptides that represent the LXXLL binding region of coactivator proteins. METHODS: In this system, individual microsphere populations with unique red and orange fluorescent profiles are coupled to specific coactivator peptides. The coactivator peptide-coupled microsphere populations are combined and incubated with a nuclear receptor that has been coupled to a green fluorochrome. Flow cytometric analysis of the microspheres simultaneously decodes each population and detects the binding of receptor to respective coactivator peptides by the acquisition of green fluorescence. RESULTS: We have used this system to determine the binding affinities of human estrogen receptor beta ligand binding domain (ERbeta LBD) and human peroxisome proliferator activated receptor gamma ligand binding domain (PPARgamma LBD) to a set of 34 coactivator peptides. Binding of ERbeta LBD to a coactivator peptide sequence containing the second LXXLL motif of steroid receptor coactivator-1 (SRC-1(2) (676-700) is shown to be specific and saturable. Analysis of receptor binding to a multiplexed set of coactivator peptides shows PPARgamma LBD binds with high affinity to cAMP response element binding protein (CBP) peptides and to the related P300 peptide while ERbeta LBD exibits little binding to these peptides. Using the microsphere-based assay we demonstrate that ERbeta LBD and PPARgamma LBD binding affinities for the coactivator peptides are increased in the presence of agonist (estradiol or GW1929, respectively) and that ERbeta LBD binding is decreased in the presence of antagonist (raloxifene or tamoxifen). CONCLUSIONS: This unique microsphere-based system is a sensitive and efficient method to simultaneously evaluate many receptor-coactivator interactions in a single assay volume. In addition, the system offers a powerful approach to study small molecule modulation of nuclear receptor binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号