首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used total enteral nutrition (TEN) to moderately overfeed rats high-polyunsaturated fat diets to develop a model for nonalcoholic steatohepatitis (NASH). Male Sprague-Dawley rats were fed by TEN a 187 kcal.kg(-3/4).day(-1) diet containing 5% (total calories) corn oil or a 220 kcal.kg(-3/4).day(-1) diet in which corn oil constituted 5, 10, 25, 35, 40, or 70% of total calories for 21 or 65 days. Rats fed the 5% corn oil, 220 kcal.kg(-3/4).day(-1)diet had greater body weight gain (P < or = 0.05), fat mass (P < or = 0.05), and serum leptin and glucose levels (P < or = 0.05), but no liver pathology. A dose-dependent increase in hepatic triglyceride deposition occurred with increase in percent corn oil in the 220 kcal.kg(-3/4).day(-1) groups (P < or = 0.05). Steatosis, macrophage infiltration, apoptosis, and focal necrosis were present in the 70% corn oil group, accompanied by elevated serum alanine aminotransferase (ALT) levels (P < or = 0.05). An increase in oxidative stress (thiobarbituric acid-reactive substances) and TNF-alpha expression (P < or = 0.05) was observed in the 70% corn oil group, as well as an increase in hepatic CYP2E1 and CYP4A1 expression (P < or = 0.05). Significant positive correlations were observed between the level of dietary corn oil and the degree of pathology, ALTs, oxidative stress, and inflammation. Liver pathology was progressive with increased necrosis, accompanied by fibrosis, observed after 65 days of TEN. Increased expression of CD36 and l-fabp mRNA suggested development of steatosis was associated with increased fatty acid transport. These data suggest that intragastric infusion of a high-polyunsaturated fat diet at a caloric level of 17% excess total calories results in pathology similar to clinical NASH.  相似文献   

2.
Min AK  Kim MK  Kim HS  Seo HY  Lee KU  Kim JG  Park KG  Lee IK 《Life sciences》2012,90(5-6):200-205
AimsNon-alcoholic steatohepatitis (NASH) is a liver disease that causes fat accumulation, inflammation and fibrosis. Increased oxidative stress contributes to hepatic inflammation and fibrosis by upregulation of Cytochrome P450 2E1 (CYP2E1), endoplasmic reticulum (ER) stress and mitogen-activated protein kinase (MAPK) activity. This study examined whether alpha-lipoic acid (ALA), a naturally occurring thiol antioxidant, prevents steatohepatitis through the inhibition of several pathways involved in hepatic inflammation and fibrosis.Main MethodsC57BL/6 mice were fed an MCD diet with or without ALA for 4 weeks. Liver sections from mice on control or MCD diets with or without ALA were stained with hematoxylin-eosin, oil red O, and anti-4-HNE antibody. The effects of ALA on methionine-choline deficient MCD-diet induced plasma AST and ALT as well as tissue TBARS were measured. The effects of ALA on CYP2E1 expression, ER stress, MAPK levels, and NF-κB activity in MCD diet-fed mice liver were measured by northern and western blot analysis.Key findingsDietary supplementation with ALA reduced MCD diet-induced hepatic lipid accumulation, hepatic inflammation, TBARS, 4-HNE, and plasma ALT and AST levels. These effects were associated with a reduced expression of CYP2E1 and reduced ER stress and MAPK and NF-κB activity.SignificanceTaken together, the results of the present study indicate that ALA attenuates steatohepatitis through inhibition of several pathways, and provide the possibility that ALA can be used to prevent the development and progression of non-alcoholic fatty liver disease in patients who have strong risk factors for NASH.  相似文献   

3.
4.
Adipose tissue dysfunction contributes to the pathogenesis of non-alcoholic steatohepatitis (NASH). The adapter protein alpha-syntrophin (SNTA) is expressed in adipocytes. Knock-down of SNTA increases preadipocyte proliferation and formation of small lipid droplets, which are both characteristics of healthy adipose tissue. To elucidate a potential protective role of SNTA in NASH, SNTA null mice were fed a methionine-choline-deficient (MCD) diet or an atherogenic diet which are widely used as preclinical NASH models. MCD diet mediated loss of fat mass was largely improved in SNTA?/? mice compared to the respective wild type animals. Hepatic lipids were mostly unchanged while the oxidative stress marker malondialdehyde was only induced in the wild type mice. The expression of inflammatory markers and macrophage immigration into the liver were reduced in SNTA?/? animals. This protective function of SNTA loss was absent in atherogenic diet induced NASH. Here, hepatic expression of inflammatory and fibrotic genes was similar in both genotypes though mutant mice gained less body fat during feeding. Hepatic cholesterol and ceramide were strongly induced in both strains upon feeding the atherogenic diet, while hepatic sphingomyelin, phosphatidylserine and phosphatidylethanolamine levels were suppressed.SNTA deficient mice are protected from fat loss and NASH in the experimental MCD model. NASH induced by an atherogenic diet is not influenced by loss of SNTA. The present study suggests the use of different experimental NASH models to study the pathophysiological role of proteins like SNTA in NASH.  相似文献   

5.
NAFLD (non-alcoholic fatty liver disease), associated with obesity and the cardiometabolic syndrome, is an important medical problem affecting up to 20% of western populations. Evidence indicates that mitochondrial dysfunction plays a critical role in NAFLD initiation and progression to the more serious condition of NASH (non-alcoholic steatohepatitis). Herein we hypothesize that mitochondrial defects induced by exposure to a HFD (high fat diet) contribute to a hypoxic state in liver and this is associated with increased protein modification by RNS (reactive nitrogen species). To test this concept, C57BL/6 mice were pair-fed a control diet and HFD containing 35% and 71% total calories (1 cal approximately 4.184 J) from fat respectively, for 8 or 16 weeks and liver hypoxia, mitochondrial bioenergetics, NO (nitric oxide)-dependent control of respiration, and 3-NT (3-nitrotyrosine), a marker of protein modification by RNS, were examined. Feeding a HFD for 16 weeks induced NASH-like pathology accompanied by elevated triacylglycerols, increased CYP2E1 (cytochrome P450 2E1) and iNOS (inducible nitric oxide synthase) protein, and significantly enhanced hypoxia in the pericentral region of the liver. Mitochondria from the HFD group showed increased sensitivity to NO-dependent inhibition of respiration compared with controls. In addition, accumulation of 3-NT paralleled the hypoxia gradient in vivo and 3-NT levels were increased in mitochondrial proteins. Liver mitochondria from mice fed the HFD for 16 weeks exhibited depressed state 3 respiration, uncoupled respiration, cytochrome c oxidase activity, and mitochondrial membrane potential. These findings indicate that chronic exposure to a HFD negatively affects the bioenergetics of liver mitochondria and this probably contributes to hypoxic stress and deleterious NO-dependent modification of mitochondrial proteins.  相似文献   

6.
7.
8.
The aims of this study were to determine whether combining features of a western lifestyle in mice with trans fats in a high-fat diet, high-fructose corn syrup in the water, and interventions designed to promote sedentary behavior would cause the hepatic histopathological and metabolic abnormalities that characterize nonalcoholic steatohepatitis (NASH). Male C57BL/6 mice fed ad libitum high-fat chow containing trans fats (partially hydrogenated vegetable oil) and relevant amounts of a high-fructose corn syrup (HFCS) equivalent for 1-16 wk were compared with mice fed standard chow or mice with trans fats or HFCS omitted. Cage racks were removed from western diet mice to promote sedentary behavior. By 16 wk, trans fat-fed mice became obese and developed severe hepatic steatosis with associated necroinflammatory changes. Plasma alanine aminotransferase levels increased, as did liver TNF-alpha and procollagen mRNA, indicating an inflammatory and profibrogenic response to injury. Glucose intolerance and impaired fasting glucose developed within 2 and 4 wk, respectively. Plasma insulin, resistin, and leptin levels increased in a profile similar to that seen in patients with NASH. The individual components of this diet contributed to the phenotype independently; isocaloric replacement of trans fats with lard established that trans fats played a major role in promoting hepatic steatosis and injury, whereas inclusion of HFCS promoted food consumption, obesity, and impaired insulin sensitivity. Combining risk factors for the metabolic syndrome by feeding mice trans fats and HFCS induced histological features of NASH in the context of a metabolic profile similar to patients with this disease. Because dietary trans fats promoted liver steatosis and injury, their role in the epidemic of NASH needs further evaluation.  相似文献   

9.
ObjectiveThis investigation attempted to clarify the effects of soy protein on alcoholic liver disease (ALD) in rats undergoing ethanol withdrawal.MethodsAlcoholic liver disease was induced in rats by administration of a low-carbohydrate ethanol liquid diet for 12 weeks, after which the ethanol was withdrawn and the rats were divided into two experimental groups: a control group (EC group) and a soy protein group (EP group) for 4 weeks.ResultsAfter the 12-week ALD-inducing period, the ethanol group had significantly higher hepatic lipid accumulation, oxidative stress and inflammation. We found that the EP group had significantly lower hepatic lipids, malondialdehyde, tumor necrosis factor-α, interleukin (IL)-1β, IL-6, hydroxyproline levels and myeloperoxidase activity compared to the EC group. Moreover, the fecal total cholesterol and total lipids were higher in the EP group. Expression of the hepatic cytochrome P450 2E1 (CYP2E1) protein in the EP group was significantly lower than that in the EC group, and the hepatic peroxisome proliferator-activated receptor (PPAR) α and cytochrome P450 4A (CYP4A) protein expressions in the EP group were significantly higher than those in the EC group. In the histopathological analysis, we also found that soy protein ameliorated fat accumulation in the liver.ConclusionThese results suggest that soy protein may improve alcohol-induced lipid accumulation, oxidative stress and inflammation by decreasing proinflammatory cytokines and CYP2E1 protein expression and by increasing PPARα and CYP4A protein expressions and fecal lipid excretion, thereby producing beneficial effects on ALD during ethanol withdrawal.  相似文献   

10.
Excess fat accumulation renders the liver more vulnerable to ethanol, but it is still unclear how alcohol enhances lipid dysmetabolism and oxidative stress in a pre-existing steatosis condition. The effects produced by binge ethanol consumption in the liver of male Wistar rats fed a standard (Ctrl) or a high-fat diet HFD were compared. The liver status was checked through tissue histology and standard serum parameters. Alteration of hepatic lipid homeostasis and consequent oxidative unbalance were assessed by quantifying the mRNA expression of the lipid-regulated peroxisome proliferator-activated receptors (PPARs), of the cytochromes CYP2E1 and CYP4A1, and of some antioxidant molecules such as the metallothionein isoforms MT1 and MT2 and the enzymes catalase and superoxide dismutase. The number of adipose differentiation-related protein (ADRP)-positive lipid droplets (LDs) was evaluated by immunohistochemical staining. As a response to the double insult of diet and ethanol the rat liver showed: (1) a larger increase in fat accumulation within ADRP-positive LDs; (2) stimulation of lipid oxidation in the attempt to limit excess fat accumulation; (3) induction of antioxidant proteins (MT2, in particular) to protect the liver from the ethanol-induced overproduction of oxygen radicals. The data indicate an increased susceptibility of fatty liver to ethanol and suggest that the synergistic effect of diet and ethanol on lipid dysmetabolism might be mediated, at least in part, by PPARs and cytochromes CYP4A1 and CYP2E1.  相似文献   

11.
This study was designed to determine whether dietary epigallocatechin-3-gallate (EGCG), the most abundant catechin polyphenol in green tea, can protect the liver from cytochrome P450 2E1 (CYP2E1)-dependent alcoholic liver damage. Compared with an ethanol group, when EGCG was present in the ethanol diet, the formation of a fatty liver was significantly reduced and the serum aspartate transaminase (AST) and alanine transaminase (ALT) levels were much lower. Ethanol treatment significantly elevated hepatic CYP2E1 expression while simultaneously reducing hepatic phospho-acetyl CoA carboxylase (p-ACC) and carnitine palmitoyl-transferase 1 (CPT-1) levels. While EGCG markedly reversed the effect of ethanol on hepatic p-ACC and CPT-1 levels, it had no effect on the ethanol-induced elevation in CYP2E1 expression. EGCG prevents ethanol-induced hepatotoxicity and inhibits the development of a fatty liver. These effects were associated with improvements in p-ACC and CPT-1 levels. The use of EGCG might be useful in treating patients with an alcoholic fatty liver.  相似文献   

12.
Fatty liver disease is an emerging public health problem without effective therapies, and chronic hepatic inflammation is a key pathologic mediator in its progression. Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs), which have potent anti-inflammatory effects. Although promoting the effects of EETs elicits anti-inflammatory and protective effects in the cardiovascular system, the contribution of CYP-derived EETs to the regulation of fatty liver disease-associated inflammation and injury is unknown. Using the atherogenic diet model of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH), our studies demonstrated that induction of fatty liver disease significantly and preferentially suppresses hepatic CYP epoxygenase expression and activity, and both hepatic and circulating levels of EETs in mice. Furthermore, mice with targeted disruption of Ephx2 (the gene encoding soluble epoxide hydrolase) exhibited restored hepatic and circulating EET levels and a significantly attenuated induction of hepatic inflammation and injury. Collectively, these data suggest that suppression of hepatic CYP-mediated EET biosynthesis is an important pathological consequence of fatty liver disease-associated inflammation, and that the CYP epoxygenase pathway is a central regulator of the hepatic inflammatory response in NAFLD/NASH. Future studies investigating the utility of therapeutic strategies that promote the effects of CYP-derived EETs in NAFLD/NASH are warranted.  相似文献   

13.
14.
Several studies suggest that low levels of hepatic phosphatidylcholine (PC) play a role in the pathogenesis of non-alcoholic steatohepatitis (NASH). CTP: phosphocholine cytidylyltransferase (CT) is the key regulatory enzyme in the CDP-choline pathway for PC biosynthesis. Liver-specific elimination of CTα (LCTα(-/-)) in mice fed a chow diet decreases very-low-density lipoprotein secretion, reduces lipid efflux from liver, and causes mild steatosis. We fed LCTα(-/-) mice a high fat diet to determine if impaired PC biosynthesis played a role in development of NASH. LCTα(-/-) mice developed NASH within one week of high fat feeding. Hepatic CTα deficiency caused hepatic steatosis, a 2-fold increase in ceramide mass, and a 20% reduction in PC content. In an attempt to prevent NASH, LCTα(-/-) mice were either injected daily with CDP-choline or fed the high fat diet supplemented with betaine. In addition, LCTα(-/-) mice were injected with adenoviruses expressing CTα. CDP-choline injections and adenoviral expression of CTα increased hepatic PC, while dietary betaine supplementation normalized hepatic triacylglycerol but did not alter hepatic PC mass in LCTα(-/-) mice. Interestingly, none of the treatments normalized hepatic ceramide mass or fully prevented the development of NASH in LCTα(-/-) mice. These results show that normalizing the amount of hepatic PC is not sufficient to prevent NASH in LCTα(-/-) mice.  相似文献   

15.
16.
Cong WN  Tao RY  Tian JY  Liu GT  Ye F 《Life sciences》2008,82(19-20):983-990
Non-alcoholic steatohepatitis (NASH) is a hepatic manifestation of the metabolic syndrome that can progress to liver cirrhosis. The major aim of this study was to establish a novel NASH mouse model accompanied by obesity and insulin resistance, then explore the molecular mechanisms of NASH and evaluate the effects of both the peroxisome proliferator-activated receptor alpha (PPARalpha) agonist fenofibrate and the PPARgamma agonist rosiglitazone in this established NASH model. The novel model was induced in C57BL/6 mice by 23 weeks of ad libitum feeding of a modified high-fat diet (mHFD), with lower methinione and choline and higher fat content. In comparison to the controls, the model animals developed pronounced obesity, dyslipidemia and insulin resistance. Marked liver lesions characterized by severe steatosis, inflammation, fibrosis, increased hepatic triglyceride content, and elevated serum alanine aminotransferase (ALT) levels were observed in the models. In this novel model, treatment with fenofibrate or rosiglitazone significantly improved insulin sensitivity and corrected dyslipidemia; however, fenofibrate was more effective than rosiglitazone in improving hepatic morphology and ALT levels. Further study showed that long-term feeding of mHFD significantly increased expression of mRNA for hepatic PPARgamma, adipose fatty acid binding protein (ap2) and CD36 and suppressed expression of mRNA for hepatic PPARalpha and carnitine palmitoyl transferase-1a (CPT-1a). These results showed the successful establishment of the combined NASH and obese-insulin resistance mouse model. Additionally, aberrant expressions of hepatic PPARalpha and PPARgamma may play a major role in the pathogenesis of NASH by affecting hepatic lipogenesis and fatty acid oxidation in this novel model.  相似文献   

17.
Alcohol-induced liver disease is associated with unacceptable morbidity and mortality. When activated, Kupffer cells (KCs), the resident macrophages in the liver, release proinflammatory cytokine TNF-α, a key mediator of hepatic damage. Although chronic alcohol causes increase in norepinephrine (NE) release leading to hepatic dysfunction, the mechanism of NE-induced hepatic injury in chronic alcohol exposure has not been elucidated. This study was conducted to determine whether chronic alcohol exposure increases NE and upregulates KC α2A-adrenoceptors (α2A-AR) to cause TNF-α release. We also examined the role of mitogen activated protein kinase (MAPK) phosphatase-1 (MKP-1) in this process. Male adult rats were fed the Lieber–DeCarli liquid diet containing alcohol as 36% of total calories. The animals were sacrificed after 6 weeks and blood and liver samples were harvested for further analysis. KCs from healthy male rats were cultured with alcohol for 7 days, and cells then harvested for RNA and protein analyses. Chronic alcohol exposure resulted in hepatic damage. Alcohol caused a 276% increase in circulating NE and 86% increase in TNF-α in the liver. There was a 75% and 62% decrease in MKP-1 mRNA and protein levels, respectively in the liver. In-vitro experiments revealed 121% and 98% increase in TNF-α and α2A-AR mRNA levels with alcohol exposure, respectively, and a 32% decrease in MKP-1 mRNA compared to controls. In summary, chronic alcohol exposure elevates NE and upregulates KC α2A-AR to release TNF-α. Alcohol induced downregulation of MKP-1 leads to further release of TNF-α and hepatic injury.  相似文献   

18.
The pathogenesis of nonalcoholic steatohepatitis (NASH) is a two-stage process in which steatosis is the “first hit” and an unknown “second hit.” We hypothesized that “a binge” could be a “second hit” to develop NASH from obesity-induced simple steatosis. Thirty-week-old male Otsuka Long-Evans Tokushima fatty (OLETF) rats were administered 10 mL of 10% ethanol orally for 5, 3, 2, and 1 d/wk for 3 consecutive weeks. As control, male Otsuka Long-Evans Tokushima (OLET) rats were administered the same amount of alcohol. Various biochemical parameters of obesity, steatosis and NASH were monitored in serum and liver specimens in untreated and ethanol-treated rats. The liver sections were evaluated for histopathological alterations of NASH and stained for cytochrome P-4502E1 (CYP2E1) and 4-hydroxy-nonenal (4-HNE). Simple steatosis, hyperinsulinemia, hyperglycemia, insulin resistance, hypertriglycemia and marked increases in hepatic CYP2E1 and 4-HNE were present in 30-wk-old untreated OLETF rats. Massive steatohepatitis with hepatocyte ballooning was observed in the livers of all OLETF rats treated with ethanol. Serum and hepatic triglyceride levels as well as tumor necrosis factor (TNF)-α mRNA were markedly increased in all ethanol-treated OLETF rats. Staining for CYP2E1 and 4-NHE demonstrated marked increases in the hepatic tissue of all the groups of OLETF rats treated with ethanol compared with OLET rats. Our data demonstrated that “a binge” serves as a “second hit” for development of NASH from obesity-induced simple steatosis through aggravation of oxidative stress. The enhanced levels of CYP2E1 and increased oxidative stress in obesity play a significant role in this process.  相似文献   

19.
20.
The pathogenesis of nonalcoholic steatohepatitis (NASH) is poorly defined. Feeding mice a diet deficient in methionine and choline (MCD diet) induces experimental NASH. Osteopontin (OPN) is a Th1 cytokine that plays an important role in several fibroinflammatory diseases. We examined the role of OPN in the development of experimental NASH. A/J mice were fed MCD or control diet for up to 12 wk, and serum alanine aminotransferase (ALT), liver histology, oxidative stress, and the expressions of OPN, TNF-alpha, and collagen I were assessed at various time points. MCD diet-fed mice developed hepatic steatosis starting after 1 wk and inflammation by 2 wk; serum ALT increased from day 3. Hepatic collagen I mRNA expression increased during 1-4 wk, and fibrosis appeared at 8 wk. OPN protein expression was markedly increased on day 1 of MCD diet and persisted up to 8 wk, whereas OPN mRNA expression was increased at week 4. TNF-alpha expression was increased from day 3 to 2 wk, and evidence of oxidative stress did not appear until 8 wk. Increased expression of OPN was predominantly localized in hepatocytes. Hepatocytes in culture also produced OPN, which was stimulated by transforming growth factor-beta and TNF-alpha. Moreover, MCD diet-induced increases in serum ALT levels, hepatic inflammation, and fibrosis were markedly reduced in OPN(-/-) mice when compared with OPN(+/+) mice. In conclusion, our results demonstrate an upregulation of OPN expression early in the development of steatohepatitis and suggest an important role for OPN in signaling the onset of liver injury and fibrosis in experimental NASH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号