首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of transduction of proto-oncogene c-src by avian retroviruses   总被引:1,自引:0,他引:1  
L H Wang 《Mutation research》1987,186(2):135-147
Chicken c-src sequences have been transduced by avian leukosis viruses (ALV) and by partial src-deletion (td) mutants of Rous sarcoma virus in several independent events. Analyses of the recombination junctions in the genomes of src-containing viruses and the c-src DNA have shed light on the mechanism of transduction, which involves at least two steps of recombination. The initial recombination between a viral genome and the 5' region of c-src appears to occur at the DNA level. This step does not require extensive homology and can be mediated by stretches of sequences with only partial homology. The 5' recombination junction can also be formed by splicing between viral and c-src sequences. The second recombination is presumed to occur between the transducing ALV or td viral RNA and the viral-c-src hybrid RNA molecule generated from the initial recombination. This step involving recombination at the 3' ends of those molecules restores the 3' viral sequences essential for replication to the viral-c-src hybrid molecule. High frequency of c-src transduction by partial td mutants suggests that the second recombination is greatly enhanced when there is sequence homology between the transducing virus and the 3' region of c-src. Incorporation of the c-src sequences into an ALV genome results in greatly elevated expression of the gene. However, increased expression of c-src alone is insufficient to activate its transforming potential. Structural changes in c-src are necessary to convert it into a transforming gene. The changes can be as small as single nucleotide changes resulting in single amino aid substitutions at certain positions. Mutations can occur rapidly during viral replication after c-src is incorporated into the viral genome. Therefore, it is most likely that transduction of c-src by ALV is followed by subsequent mutation and selection for the sarcomagenic virus. In the case of transduction by td viruses that retain certain src sequences, joining of these sequences with the transduced c-src apparently is sufficient to activate its transforming potential.  相似文献   

2.
Three new erbB transducing viruses generated during avian leukosis virus-induced erythroblastosis have been cloned and sequenced, and their transforming abilities have been analyzed. Provirus 9134 E1 expresses an amino-terminally truncated erbB product that is analogous to the proviral insertionally activated c-erbB gag-erbB fusion product. This virus efficiently induces erythroblastosis, but does not transform fibroblasts in vitro or induce sarcomas in vivo. In contrast, virus 9134 S3 expresses an erbB product identical to the erbB product of 9134 E1, with the exception of a large internal deletion located between the kinase domain and the putative autophosphorylation site, P1. Interestingly, this virus is no longer capable of inducing erythroblastosis, but can induce both fibrosarcomas and hemangiomas in vivo. Provirus 9134 F3 has sustained an approximately 23-amino-acid carboxy-terminal truncation and is capable of inducing both erythroblastosis and sarcomagenesis. This virus expresses an erbB product with the shortest carboxy-terminal truncation sufficient to reveal the sarcomagenic potential of this protein. The distinct transforming properties of these viruses indicate that different structural domains of the erbB product confer distinct disease specificities.  相似文献   

3.
4.
5.
Summary We have artificially introduced 23 avian leukosis virus (ALV) proviral inserts into the chicken germ line by injection of wild-type and recombinant subgroup A ALV near the blastoderm of fertile eggs just before incubation. Eight viremic males were identified as germline mosaics because they transmitted proviral DNA to their generation 1 (G-1) progeny at a low frequency. Eleven female and 9 male G-1 progeny carried 23 distinct proviruses that had typical major clonal proviral-host DNA junction fragments detectable after digestion of their DNA with SacI, Southern blotting and hybridization with a probe representing the complete ALV genome. These proviruses, identified by their typical proviral-host DNA junction fragments, were transmitted to approximately 50% of their G-2 progeny after mating the G-1 parents to a line of chickens lacking endogenous ALV proviral inserts. One G-1 female carried 2 proviruses and another 3. The proviruses appeared to be scattered throughout the genome. One of the 14 proviruses carried by females was on the sex (Z) chromosome. Two of the 3 proviruses carried by a single G-1 female were linked with a recombination frequency of about 0.20. Twenty-one of the proviruses coded for infectious ALV. Two proviruses coded for envelope glycoprotein, and cell cultures carrying them were relatively resistant to subgroup A sarcoma virus, but failed to produce infectious ALV. One of these proviruses coded for internal gag proteins, had a deletion in pol, but produced non-infectious virus particles. The other failed to code for gag proteins and had no detectable internal deletions nor did it produce virus particles. Thus, we have shown that replication-competent ALV can artificially infect germ-line cells and that spontaneous defects in the inherited proviruses occur at a rather low rate.  相似文献   

6.
7.
Characterization of endogenous ecotropic Akv proviruses in DNA of low and high leukemic mouse strains revealed the presence of one to six copies of the Akv genome per haploid genome equivalent integrated in the germ line. Low leukemic strains analyzed so far contained only one complete copy of the Akv proviral DNA. The site of integration varied among strains, although genetically related strains often carried the Akv proviral gene in the same chromosomal site. The different substrains of the AKR mouse displayed the presence of variable numbers (two to six) of Akv genomes. In all substrains one Akv genome was present in an identical chromosomal site; this locus probably comprised the progenitor genome. Closely related substrains had several Akv proviral DNAs integrated in common sites. The accumulation of Akv genomes in the germ line of the AKR/FuRdA strain is likely the result of independent integration events, since backcross studies with the Akv-negative 129 strain showed random segregation of all six proviral loci. The AKR/Cnb strain carried a recombinant provirus in the germ line. This provirus resembled in structure the AKR mink cell focus-forming viruses, which are generated by somatic recombination during leukemogenesis. Therefore, the germ-line amplification of Akv proviral DNAs occurs most likely through infection of embryonic cells by circulating virus.  相似文献   

8.
Molecular clones of the subgroup A feline leukemia virus FeLV-A/Glasgow-1 have been obtained. Nucleotide sequence analysis of the 3' end of the proviral genome and comparison with the published sequence of FeLV-B/Gardner-Arnstein showed that the most extensive differences are located within the 5' domain of the env gene. Within this domain, several divergent regions of env are separated by more conserved segments. The 3' end of env is highly conserved, with only a single amino acid coding difference in p15env. The proviral long terminal repeats are also highly conserved, differing by only eight base substitutions and one base insertion. Specific probes constructed from the FeLV-A or FeLV-B env genes were used to compare the env genes of various exogenous FeLV isolates and the endogenous FeLV-related proviruses of normal cat DNA. An FeLV-A-derived env probe showed no hybridization to normal cat DNA but detected all FeLV-A and FeLV-C isolates tested. In contrast, an FeLV-B env probe detected independent FeLV-B isolates and a family of endogenous FeLV-related proviruses. Our observations provide strong evidence to support the hypothesis that FeLV-B viruses have arisen by recombination between FeLV-A and endogenous proviral elements in cat DNA.  相似文献   

9.
10.
Two lambda proviral DNA recombinants were characterized with a number of restriction endonucleases. One recombinant contained a complete presumptive avian myeloblastosis virus (AMV) provirus flanked by cellular sequences on either side, and the second recombinant contained 85% of a myeloblastosis-associated virus type 1 (MAV-1)-like provirus with cellular sequences adjacent to the 5' end of the provirus. Comparing the restriction maps for the proviral DNAs contained in each lambda hybrid showed that the putative AMV and MAV-1-like genomes shared identical enzyme sites for 3.6 megadaltons beginning at the 5' termini of the proviruses with respect to viral RNA. Two enzyme sites near the 3'-end of the MAV-1-like provirus were not present in the putative AMV genome. We also examined a number of leukemic myeloblast clones for proviral content and cell-provirus integration sites. The presumptive AMV provirus was present in all the leukemic myeloblast clones regardless of the endogenous proviral content of the target cells or the AMV pseudotype used for conversion. Multiple cellular sites were suitable for integration of the putative AMV genome and the helper genomes. The proviral genomes were all integrated colinearly with respect to linear viral DNA.  相似文献   

11.
Extrachromosomal DNA was purified from canine thymus cells acutely infected with different strains of infectious primate type C viruses of the woolly monkey (simian) sarcoma helper virus and gibbon ape leukemia virus group. All DNA preparations contained linear proviral molecules of 9.1 to 9.2 kilobases, at least some of which represent complete infectious proviral DNA. Cells infected with a replication-defective fibroblast-transforming sarcoma virus and its helper, a replication-competent nontransforming helper virus, also contained a 6.6- to 6.7-kilobase DNA. These proviral DNA molecules were digested with different restriction endonucleases, and the resultant fragments were oriented to the viral RNA by a combination of partial digestions, codigestion with more than one endonuclease, digestion of integrated proviral DNA, and hybridization with 3'- and 5'-specific viral probes. The 3'- and 5'-specific probes each hybridized to fragments from both ends of proviral DNA, indicating that, in common with those of other retroviruses, these proviruses contain a large terminal redundancy at both ends, each of which consists of sequences derived from both the 3' and 5' regions of the viral RNA. The proviral sequences are organized 3',5'-unique-3',5'. Four restriction enzymes (KpnI, SmaI, PstI, and SstI) recognized sites within the large terminal redundancies, and these sites were conserved within all the isolates tested. This suggests that both the 3' and 5' ends of the genomic RNA of these viruses are extremely closely related. In contrast, the restriction sites within the unique portion of the provirus were not strongly conserved within this group of viruses, even though they were related along most of their genomes. Whereas the 5' 60 to 70% of the RNA of these viruses was more closely related by liquid hybridization experiments than was the 3' 30 to 40%, restriction sites within this region were not preferentially conserved, suggesting that small sequence differences or point mutations or both exist throughout the entire unique portion of the genome among these viruses.  相似文献   

12.
13.
14.
15.
The genetic structure of the McDonough strain of feline sarcoma virus (SM-FeSV) was deduced by analysis of molecularly cloned, transforming proviral DNA. The 8.2-kilobase pair SM-FeSV provirus is longer than those of other feline sarcoma viruses and contains a transforming gene (v-fms) flanked by sequences derived from feline leukemia virus. The order of genes with respect to viral RNA is 5'-gag-fms-env-3', in which the entire feline leukemia virus env gene and an almost complete gag sequence are represented. Transfection of NIH/3T3 cells with cloned SM-FeSV proviral DNA induced foci of morphologically transformed cells which expressed SM-FeSV gene products and contained rescuable sarcoma viral genomes. Cells transformed by viral infection or after transfection with cloned proviral DNA expressed the polyprotein (P170gag-fms) characteristic of the SM-FeSV strain. Two proteolytic cleavage products (P120fms and pp55gag) were also found in immunoprecipitates from metabolically labeled, transformed cells. An additional polypeptide, detected at comparatively low levels in SM-FeSV transformants, was indistinguishable in size and antigenicity from the envelope precursor (gPr85env) of feline leukemia virus. The complexity of the v-fms gene (3.1 +/- 0.3 kilobase pairs) is approximately twofold greater than the viral oncogene sequences (v-fes) of Snyder-Theilen and Gardner-Arnstein FeSV. By heteroduplex, restriction enzyme, and nucleic acid hybridization analyses, v-fms and v-fes sequences showed no detectable homology to one another. Radiolabeled DNA fragments representing portions of the two viral oncogenes hybridized to different EcoRI and HindIII fragments of normal cat cellular DNA. Cellular sequences related to v-fms (designated c-fms) were much more complex than c-fes and were distributed segmentally over more than 40 kilobase pairs in cat DNA. Comparative structural studies of the molecularly cloned proviruses of Synder-Theilen, Gardner-Arnstein, and SM-FeSV showed that a region of the feline-leukemia virus genome derived from the pol-env junction is represented adjacent to v-onc sequences in each FeSV strain and may have provided sequences preferred for recombination with cellular genes.  相似文献   

16.
We have probed the structure and arrangement of murine leukemia virus genomes in eight spontaneous AKR thymic leukemias by Southern hybridization with one ecotropic pol and four ecotropic env probes. These probes revealed many (in 2 cases over 15) somatically acquired proviruses that had undergone complex patterns of recombination. The large majority were not deleted and were structurally analogous to the oncogenic mink cell focus-inducing murine leukemia viruses isolated from AKR tumors in that the amino-terminal p15E-coding region derived from ecotropic AKR murine leukemia virus sequences, whereas certain gp70-coding sequences were nonecotropic. Nevertheless, we observed a few proviruses which did not appear to be gp70 recombinants; however, these proviruses were in general clearly recombinant within the p15E-coding sequences. Although the proviral recombination patterns were quite variable, in general the large majority of recombinant proviruses within each tumor appeared structurally identical, indicating that they originate from a common parent. Each tumor contained a unique pattern of provirus integrations; densitometer tracings of the Southern hybridizations indicated that many of the integrated proviruses were present at one copy per cell, suggesting that the tumors derive from a single cell which contained multiple integrated copies of a unique recombinant virus structurally similar to the mink cell focus-inducing viruses.  相似文献   

17.
18.
19.
Two human genes homologous to the raf/mil oncogene have been cloned and sequenced. One, c-raf-2, is a processed pseudogene; the other, c-raf-1, contains nine exons homologous to both raf and mil and two additional exons homologous to mil. A 3' portion of c-raf-1 containing six of the seven amino acid differences relative to murine v-raf can substitute for the 3' portion of v-raf in a transformation assay. Sequence homologies between c-raf-1 and Moloney leukemia virus at both ends of v-raf indicate that the viral gene was acquired by homologous recombination. Although the data are consistent with the traditional model of retroviral transduction, they also raise the possibility that the transduction occurred in a double crossover event between proviral DNA and the murine gene.  相似文献   

20.
Induction of renal adenocarcinoma by a nonmutated erbB oncogene.   总被引:3,自引:2,他引:1       下载免费PDF全文
Oncogenicity tests have revealed that a nonmutated erbB oncogene induces renal adenocarcinoma in addition to erythroblastosis. The erbB oncogene is a truncated form of the chicken epidermal growth factor receptor that lacks the extracellular ligand-binding domain. Previously, the nonmutated erbB oncogene has been reported to cause only erythroblastosis. The expansion of the disease potential of erbB to additional neoplasms has been associated with mutations (truncations, deletions, and point mutations) within the erbB gene. Our results indicate that a nonmutated virally expressed erbB oncogene (REB-c) causes a 100% incidence of renal neoplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号