首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Thiol and aspartyl proteolytic activities in isolated secretory vesicles of neural (NL) and intermediate (IL) lobes of bovine pituitary were characterized with heterologous enkephalin and tachykinin precursor substrates, 35S-(Met)-preproenkephalin and 35S-(Met)-beta-preprotachykinin. IL and NL secretory vesicles contained thiol-dependent proteolytic activity that cleaved the enkephalin precursor with a pH optimum of 4.5; this activity resembled a novel "prohormone thiol protease' previously purified and characterized from adrenal medulla chromaffin granules. IL and NL vesicles also demonstrated aspartyl proteolytic activity with acidic pH optimum, as shown by pepstatin A inhibition of tachykinin and enkephalin precursor cleaving activity. This activity may be related to a previously characterized chromaffin granule aspartyl protease (CGAP) related to cathepsin D (2), as indicated by the presence of immunoreactive CGAP in NL secretory vesicles by anti-CGAP immunoblots. These results show that pituitary secretory vesicles, like chromaffin granules, may contain similar thiol-dependent and aspartyl proteolytic activities.  相似文献   

3.
Alpha-melanocyte-stimulating hormone (alpha-MSH) is a neuropeptide expressed in pituitary and brain that is known to regulate energy balance, appetite control, and neuroimmune functions. The biosynthesis of alpha-MSH requires proteolytic processing of the proopiomelanocortin (POMC) precursor. Therefore, this study investigated the in vivo role of the prohormone convertase 2 (PC2) processing enzyme for production of alpha-MSH in PC2-deficient mice. Specific detection of alpha-MSH utilized radioimmunoassay (RIA) that does not crossreact with the POMC precursor, and which does not crossreact with other adrenocorticotropin hormone (ACTH) and beta-endorphin peptide products derived from POMC. alpha-MSH in PC2-deficient mice was essentially obliterated in pituitary, hypothalamus, cortex, and other brain regions (collectively), compared to wild-type controls. These results demonstrate the critical requirement of PC2 for the production of alpha-MSH. The absence of alpha-MSH was accompanied by accumulation of ACTH, ACTH-containing imtermediates, and POMC precursor. ACTH was increased in pituitary and hypothalamus of PC2-deficient mice, evaluated by RIA and reversed-phase high pressure liquid chromatography (RP-HPLC). Accumulation of ACTH demonstrates its role as a PC2 substrate that can be converted for alpha-MSH production. Further analyses of POMC-derived intermediates in pituitary, conducted by denaturing western blot conditions, showed accumulation of ACTH-containing intermediates in pituitaries of PC2-deficient mice, which implicate participation of such intermediates as PC2 substrates. Moreover, accumulation of POMC was observed in PC2-deficient mice by western blots with anti-ACTH and anti-beta-endorphin. In addition, increased beta-endorphin1-31 was observed in pituitary and hypothalamus of PC2-deficient mice, suggesting beta-endorphin1-31 as a substrate for PC2 in these tissues. Overall, these studies demonstrated that the PC2 processing enzyme is critical for the in vivo production of alpha-MSH in pituitary and brain.  相似文献   

4.
The intermediate lobe of the pituitary gland synthesizes a glycoprotein, proopiomelanocortin (POMC), which is cleaved by specific proteolytic enzymes to generate several hormonal peptides. The purpose of the present study was to examine the possible role of the carbohydrate moiety in the synthesis, intracellular processing and release of POMC-derived peptides in frog (Rana ridibunda) intermediate lobe cells. In vitro incorporation of [3H]-labelled glucosamine gave rise to three major radioactive products. Trypsin digestion of each of these glycopeptides gave a single glucosamine-labelled tryptic fragment with identical chromatographic characteristics. We conclude that Rana POMC is glycosylated in only one site (its gamma-MSH region) and that intracellular processing of this prohormone gives rise to smaller glycopeptides including glycosylated gamma-MSH. Treatment with the antibiotic tunicamycin (10 micrograms/ml, 6 hr) inhibited the glycosylation of POMC but did not significantly alter the neosynthesis of the peptide moiety of the precursor. Pulse-chase experiments combined with high-performance liquid chromatography analysis of the peptides derived from POMC revealed that inhibition of glycosylation by tunicamycin had no effect on the enzymatic cleavage of the precursor nor on the release of mature peptides. Thus, it is concluded that, in the frog, glycosylation of POMC has no influence on the biosynthesis, processing and release of intermediate lobe hormones.  相似文献   

5.
The ability of bovine intermediate lobe secretory vesicle membrane-associated enzyme(s) and purified, soluble paired basic residue-specific, pro-opiomelanocortin converting enzyme (Loh, Y.P., Parish, D. C., and Tuteja, R. (1985) J. Biol. Chem. 260, 7194-7205) to cleave bovine NH2-terminal pro-opiomelanocortin1-77 (N-POMC 1-77) was investigated. Purified pro-opiomelanocortin converting enzyme and an enzyme activity associated with the secretory vesicle membrane were shown to cleave bovine N-POMC1-77 to two major products: N-POMC1-49 and Lys-gamma 3-melanotropin (MSH), and one minor product, gamma 3-MSH. These products were identified by their retention times on high performance liquid chromatography, immunological characteristics, and for Lys-gamma 3-MSH, amino acid composition. The products generated indicate cleavage preferentially between Arg 49-Lys 50 of bN-POMC1-77 (where b indicates bovine), which is identical to the processing pattern found in the bovine intermediate lobe in situ. The membrane converting activity was shown to be stimulated by 5 mM Ca2+ and has a pH optimum of 4-5 and an inhibitor profile characteristic of an aspartic protease. This suggests that the membrane-associated enzyme involved is very similar or identical to the purified, soluble pro-opiomelanocortin converting enzyme, which has previously been reported to be an acidic, aspartic protease responsible for the initial steps of POMC processing. The results of this study lead to the proposal that the lack of processing of the Arg49-Lys50 site in POMC in the anterior lobe versus the intermediate lobe of the pituitary in vivo may be due to other regulatory mechanisms rather than invoking the existence in the intermediate lobe of another enzyme specific for this site, different from pro-opiomelanocortin converting enzyme.  相似文献   

6.
Pro-opiomelanocortin (adrenocorticotropin/endorphin prohormone) is processed to yield active hormones by cleavages at paired basic amino acid residues. In this study, an enzyme that specifically cleaves at the paired basic residues of this prohormone has been purified from bovine pituitary intermediate lobe secretory vesicles, the intracellular processing site of proopiomelanocortin. This enzyme, named pro-opiomelanocortin converting enzyme, has been characterized as a glycoprotein of Mr approximately 70,000. It has an apparent isoelectric point between 3.5 and 4.0. The pH optimum of the pro-opiomelanocortin converting enzyme is between 4 and 5, but the enzyme is highly active at the intravesicular pH of 5.1-5.6. The enzyme specifically cleaved the Lys-Arg pairs of pro-opiomelanocortin to yield Mr = to 21,000-23,000 ACTH, beta-lipotropin, Mr 13,000 and 4,500 ACTH, beta-endorphin, and a Mr = 16,000 NH2-terminal glycopeptide, the products synthesized by the pituitary intermediate lobe in situ. NH2- and COOH-terminal analysis of the products indicated that the pro-opiomelanocortin converting enzyme cleaves the peptide bond either between the Lys and Arg or on the carboxyl side of the Arg at Lys-Arg pairs of pro-opiomelanocortin. The intracellular localization, pH optimum, and cleavage specificity of the enzyme suggest that it may function as a pro-opiomelanocortin processing enzyme in the pituitary intermediate lobe in vivo.  相似文献   

7.
Coordinate secretion of two prohormone/proneuropeptide processing enzymes [pro-opiomelanocortin converting enzyme (PCE) and an aminopeptidase B-like enzyme (APBE)] and alpha-melanotropin (alpha-MSH) from bovine intermediate lobe pituitary cells was studied. Stimulation of secretion with 8-bromo-cyclic AMP produced significant increases in levels of immunoreactive alpha-MSH, PCE, and APBE. Treatment of cells with the dopaminergic agonist 2-bromo-alpha-ergocryptine resulted in significant decreases in secretion of alpha-MSH, PCE, and APBE. In neither case were there significant changes in levels of cytosolic lactic dehydrogenase or lysosomal beta-glucuronidase in the medium. The secreted PCE activity was shown to process frog and mouse pro-opiomelanocortin primarily to 23,000-Mr corticotropin (ACTH), 13,000-Mr ACTH, beta-lipotropin, a beta-endorphin-like peptide, and beta-endorphin, products comparable to those synthesized by the mouse and frog intermediate lobe in situ. The secreted enzymatic activity had a pH optimum between 4.0 and 5.0, was strongly inhibited by pepstatin A, and had an inhibitor profile similar to the purified bovine intermediate lobe PCE. The secreted APBE activity cleaved Argo-[Met]-enkephalin to [Met]-enkephalin and had a pH optimum and inhibitor profile similar to that previously reported for an activity from purified secretory vesicle fractions of bovine intermediate and neural lobes. The coordinate regulated secretion of alpha-MSH and enzyme activities (PCE and APBE) strongly indicates their colocalization in the same secretory vesicle compartment within the cell. The characteristics of the two enzymes secreted in the medium paralleled those seen in the tissue and further support their role in pro-opiomelanocortin processing in vivo.  相似文献   

8.
The multifunctional prohormone, proopiomelanocortin (POMC), is processed in the melanotrope cells of the pituitary pars intermedia at pairs of basic amino acid residues to give a number of peptides, including alpha-melanophore-stimulating hormone (alpha-MSH). This hormone causes skin darkening in amphibians during background adaptation. Here we report the complete structure of Xenopus laevis prohormone convertase PC2, the enzyme thought to be responsible for processing of POMC to alpha-MSH. A comparative structural analysis revealed an overall amino acid sequence identity of 85-87% between Xenopus PC2 and its mammalian counterparts, with the lowest degree of identity in the signal peptide sequence (28-36%) and the region amino-terminal to the catalytic domain (59-60%). The occurrence of a second, structurally different PC2 protein reflects the expression of two Xenopus PC2 genes. The expression pattern of PC2 in the Xenopus pituitary gland of black- and white-adapted animals was found to be similar to that of POMC, namely high expression in active melanotrope cells of black animals. This observation is in line with a physiological role for PC2 in processing POMC to alpha-MSH.  相似文献   

9.
Cerebral deposition of amyloid beta-protein (A beta) is believed to play a key role in the pathogenesis of Alzheimer's disease. Because A beta is produced from the processing of amyloid beta-protein precursor (APP) by beta- and gamma-secretases, these enzymes are considered important therapeutic targets for identification of drugs to treat Alzheimer's disease. Unlike beta-secretase, which is a monomeric aspartyl protease, gamma-secretase activity resides as part of a membrane-bound, high molecular weight, macromolecular complex. Pepstatin and L685458 are among several structural classes of gamma-secretase inhibitors identified so far. These compounds possess a hydroxyethylene dipeptide isostere of aspartyl protease transition state analogs, suggesting gamma-secretase may be an aspartyl protease. However, the mechanism of inhibition of gamma-secretase by pepstatin and L685458 has not been elucidated. In this study, we report that pepstatin A methylester and L685458 unexpectedly displayed linear non-competitive inhibition of gamma-secretase. Sulfonamides and benzodiazepines, which do not resemble transition state analogs of aspartyl proteases, also displayed potent, non-competitive inhibition of gamma-secretase. Models to rationalize how transition state analogs inhibit their targets by non-competitive inhibition are discussed.  相似文献   

10.
Basophil invasion, i.e., invasion of basophilic corticotrophs from the residual intermediate lobe into the posterior lobe of the human pituitary gland, is believed to be a physiological phenomenon. This study evaluated the distribution of CPE, CPD, CPZ, alpha-MSH, ACTH, and Ki-67 immunoreactivity between human anterior pituitary and basophil invasion of the neurohypophysis. Mild to moderate immunoreactivities for CPE and CPZ were distributed relatively uniformly in the majority of the anterior pituitary cells and basophil invasion. In contrast, only corticotrophs exhibited intense CPD immunoreactivity. Basophil invasion showed similar immunoreactivities for alpha-MSH, ACTH, CPE, and CPZ as corticotrophs in the anterior pituitary, except for CPD, which was detected much less frequently. In the posterior lobe, CPE, CPD, and CPZ were present within the Herring bodies. Although no MIB-1 immunoreactivity was identified in anterior pituitary cells, limited MIB-1 labeling was detected in basophil invasion in five of ten cases. Highly selective expression of CPD in corticotrophs suggests that CPD plays a particularly important role in prohormone (POMC) processing in corticotrophs, with minimal or no significant roles in non-corticotrophs. Evidence that corticotrophs in basophil invasion are undergoing proliferation and are also phenotypically different from their counterpart in the anterior pituitary has further raised the possibility of some neoplastic potential.  相似文献   

11.
This study demonstrates the presence of a rich plexus of neuropeptide Y (NPY) immunoreactive fibers in the hypothalamus and in the intermediate lobe of the pituitary of Xenopus laevis. During superfusion of neurointermediate lobe tissue, synthetic NPY induces a rapid, powerful and dose-dependent inhibition of in vitro release of MSH, endorphin and other proopiomelanocortin (POMC) derived peptides. Therefore, NPY undoubtedly is one of the growing number of neuropeptides that are likely involved in control of the amphibian MSH cells. Although a number of stimulatory neuropeptides have been found, this is the first neuropeptide to apparently function through an inhibitory mechanism. In that a 2-hr treatment with NPY did not influence POMC biosynthesis, nor processing of this prohormone to smaller peptides, we conclude that the primary action of NPY is a direct effect on the secretory process of the MSH cell.  相似文献   

12.
Sei C  Toneff T  Aaron W  Hook VY 《Peptides》2002,23(8):1409-1418
The regulation of cellular levels of alpha-melanocyte stimulating factor (alpha-MSH) and beta-endorphin in response to stimulated secretion from intermediate pituitary cells in primary culture was investigated in this study. Regulation of the cell content of alpha-MSH and beta-endorphin occurred in two phases consisting of (a) initial depletion of cellular levels of these peptide hormones during short-term secretion (3 h) induced by isoproterenol, forskolin, or phorbol myristate acetate (PMA) which was followed by (b) long-term (24 h) increases in cellular levels of alpha-MSH and beta-endorphin in response to stimulated secretion induced by isoproterenol and PMA. In short-term experiments (3 h), cellular levels of alpha-MSH and beta-endorphin were reduced by 30-50% during stimulated secretion of these peptide hormones by isoproterenol (agonist for the beta-adrenergic receptor), forskolin that activates protein kinase A (PKA), and PMA that activates protein kinase C (PKC). Moreover, dopamine inhibited isoproterenol-induced depletion of cellular alpha-MSH and beta-endorphin. During long-term incubation of cells (24 h) with isoproterenol, cellular alpha-MSH and beta-endorphin were increased to twice that of controls (unstimulated cells). Treatment with PMA for 24 h also increased cellular levels of alpha-MSH and beta-endorphin. Moreover, cellular levels of alpha-MSH and beta-endorphin were decreased during long-term treatment of cells with an aspartyl protease inhibitor, pepstatin A, and with the cysteine protease inhibitor E64c. These results implicate aspartyl and cysteine proteases in the cellular production of alpha-MSH and beta-endorphin that requires proteolytic processing of their common precursor proopiomelanocortin (POMC). These findings demonstrate the parallel regulation of cellular levels of alpha-MSH and beta-endorphin during their cosecretion, which may involve aspartyl and cysteine proteases in the metabolism of these peptide hormones.  相似文献   

13.
14.
Synthetic peptides, based on sequences of proopiomelanocortin (POMC) cleaved in both the bovine anterior and intermediate pituitaries (-Phe-Pro-Leu-Gly-Phe-Lys-Arg-Glu-Leu-Thr-Gly-) and only in the intermediate lobe (-Gly-Lys-Pro-Val-Gly-Lys-Lys-Arg-Arg-Pro-Val-), were used as substrates for the enzymes that process POMC to active hormones in the anterior and intermediate lobes of the pituitary. Cleavage of these peptides at the dibasic pair of residues, the expected cleavage site, was observed with a lysate from bovine pituitary secretory granules. Cleavage occurred optimally at a pH between 4 and 5 and was inhibited with sulfhydryl reagents, pepstatin, and leupeptin. Little specificity for the nature of the basic residues at the cleavage site was observed. An additional cleavage, following glutamic acid residues, was also seen.  相似文献   

15.
Y P Loh  H Gainer 《Life sciences》1982,31(26):3043-3050
The influence of glycosylation of a prohormone, pro-opiocortin, on its processing by intermediate (pituitary) lobe converting enzyme activity in vitro was studied. [3H]-arginine-labeled glycosylated and non-glycosylated pro-opiocortins were isolated from untreated, and tunicamycin treated toad neurointermediate lobes, respectively, after pulse-labeling in [3H]-arginine containing incubation media. These labeled precursors were then incubated at 37 degrees C in the presence of pro-opiocortin converting enzyme activity derived from rat intermediate lobe (pituitary) secretory granule lysates. The rates of conversion of the glycosylated and nonglycosylated pro-opiocortins to smaller peptide products, in vitro, were similar. Analysis of the peptide products by immunoprecipitation with ACTH and beta-endorphin antisera, and subsequent electrophoresis on acid-urea gels, indicate a comparable processing in vitro of the two forms of pro-opiocortin substrate. The only difference was that the normally glycosylated peptide products derived from glycosylated pro-opiocortin (i.e., 13K ACTH, 21K ACTH, and the 16K glycopeptide) differed in their gel electrophoretic mobilities from their counterparts derived from nonglycosylated prohormone, in a manner consistent with the absence of carbohydrate on the latter's peptides. These data show that glycosylation of the prohormone does not influence its processing in vitro by the converting enzyme activity.  相似文献   

16.
It was shown previously that abnormal prohormone processing or inactive proconverting enzymes that are responsible for this processing cause profound obesity. Our laboratory demonstrated earlier that in the diet-induced obesity (DIO) state, the appetite-suppressing neuropeptide α-melanocyte-stimulating hormone (α-MSH) is reduced, yet the mRNA of its precursor protein proopiomelanocortin (POMC) remained unaltered. It was also shown that the DIO condition promotes the development of endoplasmic reticulum (ER) stress and leptin resistance. In the current study, using an in vivo model combined with in vitro experiments, we demonstrate that obesity-induced ER stress obstructs the post-translational processing of POMC by decreasing proconverting enzyme 2, which catalyzes the conversion of adrenocorticotropin to α-MSH, thereby decreasing α-MSH peptide production. This novel mechanism of ER stress affecting POMC processing in DIO highlights the importance of ER stress in regulating central energy balance in obesity.  相似文献   

17.
Vacuolar H+-ATPases (V-ATPases) are multisubunit enzymes that acidify various intracellular organelles, including secretory pathway compartments. We have examined the effects of the specific V-ATPase inhibitor bafilomycin A1 (Baf) on the intracellular transport, sorting, processing and release of a number of neuroendocrine secretory proteins in primary Xenopus intermediate pituitary cells. Ultrastructural examination of Baf-treated intermediate pituitary cells revealed a reduction in the amount of small dense-core secretory granules and the appearance of vacuolar structures in the trans-Golgi area. Pulse-chase incubations in combination with immunoprecipitation analysis showed that in treated cells, the proteolytic processing of the newly synthesized prohormone proopiomelanocortin, prohormone convertase PC2 and secretogranin III (SgIII) was inhibited, and an intracellular accumulation of intact precursor forms and intermediate cleavage products became apparent. Moreover, we found that treated cells secreted considerable amounts of a PC2 processing intermediate and unprocessed SgIII in a constitutive fashion. Collectively, these data indicate that in the secretory pathway, V-ATPases play an important role in creating the microenvironment that is essential for proper transport, sorting, processing and release of regulated secretory proteins.  相似文献   

18.
Lee J  Danielson P  Sollars C  Alrubaian J  Balm P  Dores RM 《Peptides》1999,20(12):1391-1399
A signature feature of tetrapod pro-opiomelanocortin (POMC) is the presence of three melantropin (MSH) coding regions (alpha-MSH, beta-MSH, gamma-MSH). The MSH duplication events occurred early during the radiation of the jawed vertebrates well over 400 million years ago. However, in at least one order of modern bony fish (subdivision Teleostei; order Salmoniformes; i.e. salmon and trout) the gamma-MSH sequence has been deleted from POMC. To determine whether the gamma-MSH deletion has occurred in other teleost orders, a POMC cDNA was cloned from the pituitary of the neoteleost Oreochromis mossambicus (order Perciformes). In O. mossambicus POMC, the deletion is more extensive and includes the gamma-MSH sequence and most of the joining peptide region. Because the salmoniform and perciform teleosts do not share a direct common ancestor, the gamma-MSH deletion event must have occurred early in the evolution of the neoteleost fishes. The post-translational processing of O. mossambicus POMC occurs despite the fact that the proteolytic recognition sequence, (R/K)-Xn-(R/K) where n can be 0, 2, 4, or 6, a common feature in mammalian neuropeptide and polypeptide hormone precursors, is not present at several cleavage sites in O. mossambicus POMC. These observations would indicate that either the prohormone convertases in teleost fish use distinct recognition sequences or vertebrate prohormone convertases are capable of recognizing a greater number of primary sequence motifs around proteolytic cleavage sites.  相似文献   

19.
The effect of reduced temperature on the delivery of the prohormone pro-opiomelanocortin (POMC) to the site of prohormone processing was investigated in the mouse anterior pituitary cell line AtT20. At 20 degrees C processing was substantially inhibited and was almost completely arrested at 18 degrees C. Earlier studies with membrane glycoproteins indicated that at these temperatures protein movement was blocked at the level of exit from the Golgi apparatus. In contrast it was found here that the inhibition of processing at reduced temperature was due to the retention of POMC in the endoplasmic reticulum. When POMC was allowed to progress to the Golgi before temperature was reduced, subsequent processing was only slightly retarded by incubation at 18 degrees C. This indicates either that Golgi exit is not inhibited at this temperature, or that the processing apparatus exists in the Golgi. A surprising incidental result was that when held in the endoplasmic reticulum at low temperature POMC is apparently subject to post-translational N-linked glycosylation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号