首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In previous studies cadmium chloride (CdCl2) nonlethally inhibited Y-1 mouse adrenal tumor cell 20-dihydroxyprogesterone (20DHP) secretion, affecting unstimulated and stimulated steroidogenic pathway sites differently. In addition, dibutyryl cAMP-stimulated 20DHP secretion was unaffected by CdCl2, while the site of the unstimulated effect was indirectly shown to involve steps between endogenous cholesterol utilization and 20-hydroxycholesterol association with mitochondrial cytochrome P450 side-chain cleavage enzyme. In the present study we determined CdCl2 effects on plasma membrane sites preceding pre-dbcAMP-stimulation of 20DHP secretion. Y-1 cells were incubated 0.5 h in medium with or without cadmium (using the concentration that inhibited adrenocorticotropin- (ACTH)-stimulated steroid secretion by 50%) together with exogenously added maximally stimulating concentrations of ACTH, cholera toxin, forskolin, or adenosine triphosphate Cholera toxin, forskolin and ATP bypass specific plasma membrane sites involved in the synthesis of intracellular cAMP and activate the steroid hormone biosynthetic pathway. Cadmium effects on ACTH-stimulated endogenous cAMP secretion were also examined. CdCl2 significantly reduced Y-1 cell 20DHP secretion following exposure to ACTH, cholera toxin, forskolin, and ATP; it also significantly decreased endogenous cAMP secretion into culture medium. These data may be interpreted to suggest that CdCl2 altered Y-1 cell regulation of adenyl cyclase activity, which reduced cAMP-activated cholesterol uptake by mitochondria as a consequence.Abbreviations ACTH adrenocorticotropin - ATP adenosine triphosphate - ANOVA analysis of variance - CdCl2 or Cd2+ cadmium chloride - cAMP cyclic 3,5-adenosine monophosphate - CTX cholera toxin - dbcAMP dibutyryl cAMP,N,O-dibutyryl-3,5-adenosine monophosphate - EGTA ethylene glycol bis tetraacetic acid - FMEM serum-free Eagle's Minimum Essential Medium with all other supplements - FSK forskolin - Hepes N-2-hydroxyethylpiperazine-N-1,2-ethanesulfonic acid - IC50' concentration inhibiting stimulated steroid secretion by 50% - IU international unit - MEM Eagle's Minimum Essential Medium - P450scc cytochrome P450 side-chain cleavage enzyme - PREG pregnenolone - PROG progesterone - SEM standard error of the mean - SMEM serum-containing Eagle's Minimum Essential Medium with supplements - 20DHP 20--hydroxy-4-pregnen-3-one  相似文献   

2.
In previous studies, nonlethal CdCl2 concentrations apparently inhibited basal Y-1 mouse adrenal tumor cell endogenous mitochondrial cholesterol conversion to pregnenolone. In addition, CdCl2 inhibited all agents stimulating both plasma membrane-dependent cAMP synthesis and 20-hydroxy-4-pregnen-3-one (20DHP) secretion. Bypassing the plasma membrane using dibutyryl-cAMP (dbcAMP) stimulated cytoplasmic cholesterol metabolism and 20DHP secretion in the presence of CdCl2. Since CdCl2 competed at metabolic steps requiring Ca2+ in other tissues, experiments were designed to examine Cd2+ competition with Ca2+ during steroidogenesis. Sets of cells incubated with either medium or adrenocorticotropin (ACTH) with or without CdCl2 were also treated with 0, 1.0, 5.0 or 10.0 mmol/L CaCl2 in the presence or absence of EGTA, a relatively specific Ca2+, but not Cd2+, chelating agent. Another experimental cell set incubated with either medium or ACTH, with or without CdCl2, was treated with or without 1 mmol/L A23187, an ionophore specifically facilitating extracellular Ca2+ transfer across plasma membranes. Besides determining Ca2+ involvement in steroidogenesis using steroid secretion as an endpoint, we directly measured Ca2+ concentrations using intracellular fura-2 fluorescence. Following loading with 2 mol/L fura-2, cells remained untreated or medium was infused with CdCl2, ACTH, ACTH/CdCl2 or ACTH followed after 50 s by CdCl2. Using Ca2+-supplemented media, we observed that Cd2+ inhibition of ACTH-stimulated 20DHP secretion was completely reversed. Standard Ca2+-containing medium supplemented with Ca2+ also enhanced maximally stimulated 20DHP secretion by ACTH. 20DHP secretion by ACTH-treated and ACTH/Cd2+-treated cells was only reduced by EGTA, when Ca2+ was not supplemented. The ionophore A23187 increased basal and ACTH-stimulated 20DHP secretion by Cd2+-treated cells, suggesting that extracellular Ca2+ resources may compete against Cd2+ effects on plasma membrane cAMP synthesis and on basal cholesterol metabolism by mitochondria. No time-dependent change in Ca2+ concentrations occurred within untreated cell suspensions. ACTH stimulation caused a 25 s burst in Ca2+ concentrations before returning to basal, steady-state levels. Cd2+ also stimulated intracellular fura-2 fluorescence. Untreated cell suspensions infused with Cd2+ exhibited a continuous rise in intracellular fluorescence. ACTH/CdCl2-treated cells exhibited a hyperbolic rise in intracellular fluorescence over the 300 s study period. Cells treated with Cd2+ 50 s after ACTH treatment initially exhibited the 25 s fluorescence burst followed by a Cd2+-induced hyperbolic rise in intracellular Cd2+. These fluorescence measurements suggested that cytoplasmic Ca2+ changes do not appear to be necessary for basal 20DHP synthesis and secretion; only a 25 s burst in intracellular Ca2+ is necessary to a slightly higher plateau level for stimulated 20DHP synthesis and secretion. Cd2+ freely enters the cell under basal conditions and Cd2+ entry is accelerated by ACTH stimulation. Data were consistent with Ca2+ being required for optimal stimulated steroid production and Cd2+ probably competing with Ca2+ during basal mitochondrial cholesterol metabolism and plasma membrane ACTH-stimulated cAMP generation.  相似文献   

3.
Cultured Y-1 mouse adrenal tumor cells, which secrete 20--hydroxy-4-pregnen-3-one (20-DHP), were used to investigate the acute nonlethal effects of incremental cadmium chloride (CdCl2) concentrations on basal and maximally stimulated steroid secretion. In addition, cumulative CdCl2 effects during 4-hr incubations, effect reversibility, and viability were determined. Cells were incubated in 1 ml serum-free Eagle's Minimal Essential Medium (FMEM) with or without 0.5 IU (ca. 1.5 M) adrenocorticotropin (ACTH) in the presence or absence of CdCl2. Following incubation, cell viability was quantitated using trypan blue exclusion. The 20-DHP secreted into the experimental incubation medium was measured by radioimmunoassay. CdCl2 levels of 10.0 g/ml or greater significantly inhibited basal 30 min steroid secretion in a dose-dependent manner; ACTH-stimulated steroid secretion was significantly inhibited by levels 5.0 g/ml or greater. At least 80% of all control and stimulated cells in the presence or absence of cadmium ions excluded trypan blue. The reduction in ACTH-stimulated steroid secretion was greater than the reduction in basal steroid secretion at any cadmium concentration level. The CdCl2 concentration that reduced stimulated steroid hormone secretion by 50% (IC50) was 45.0 g/ml. Exposing Y-1 cells to either 5.0, 10.0, 45.0 or 500.0 g CdCl2/ml FMEM for periods ranging from 0.5 to 4 hr inhibited ACTH-stimulated steroid secretion in a time-dependent manner. After 30 min exposure to 10.0, 45.0 or 500.0 g CdCl2/ml FMEM with or without ACTH, cadmium inhibition was irreversible. When 5.0 g CdCl2/ml was used, basal and stimulated inhibition was reversible by reincubating in medium containing ACTH alone. The relatively greater cadmium effects on ACTH stimulated steroidogenesis might suggest that cadmium modulated the rate-limited transducing system between the ACTH plasma membrane receptor complex and cholesterol side-chain cleaving mitochondrial enzymes. However, cadmium influences on basal secretion indicated effects on the non-rate-limited steroidogenic pathway.Abbreviations ACTH adrenocorticotropin - ANOVA analysis of variance - CdCl2 cadmium chloride - Ci Curie - DNA deoxyribonucleic acid - FMEM serum-free Eagle's Minimum Essential Medium - HEPES N-2-hydroxyethylpiperazine-N-1,2-ethanesulfonic acid - IC50 concentration inhibiting stimulated steroid secretion by 50% - IU international unit - MEM Eagle's Minimum Essential Medium - RIA radioimmunoassay - RNA ribonucleic acid - SEM standard error of the mean - SMEM serum-containing Eagle's Minimum Essential Medium - 20-DHP 20--hydroxy-4-pregnen-3-one  相似文献   

4.
Oxysterol binding protein-related protein 2 (ORP2) is a member of the oxysterol binding protein family, previously shown to bind 25-hydroxycholesterol and implicated in cellular cholesterol metabolism. We show here that ORP2 also binds 22(R)-hydroxycholesterol [22(R)OHC], 7-ketocholesterol, and cholesterol, with 22(R)OHC being the highest affinity ligand of ORP2 (Kd 1.4 × 10−8 M). We report the localization of ORP2 on cytoplasmic lipid droplets (LDs) and its function in neutral lipid metabolism using the human A431 cell line as a model. The ORP2 LD association depends on sterol binding: Treatment with 5 μM 22(R)OHC inhibits the LD association, while a mutant defective in sterol binding is constitutively LD bound. Silencing of ORP2 using RNA interference slows down cellular triglyceride hydrolysis. Furthermore, ORP2 silencing increases the amount of [14C]cholesteryl esters but only under conditions in which lipogenesis and LD formation are enhanced by treatment with oleic acid. The results identify ORP2 as a sterol receptor present on LD and provide evidence for its role in the regulation of neutral lipid metabolism, possibly as a factor that integrates the cellular metabolism of triglycerides with that of cholesterol.  相似文献   

5.
Oxidized low-density lipoproteins play important roles in the development of atherosclerosis and contain several lipid-derived, bioactive molecules which are believed to contribute to atherogenesis. Of these, some cholesterol oxidation products, refered to as oxysterols, are suspected to favor the formation of atherosclerotic plaques involving cytotoxic, pro-oxidant and pro-inflammatory processes. Ten commonly occurring oxysterols (7α-, 7β-hydroxycholesterol, 7-ketocholesterol, 19-hydroxycholesterol, cholesterol-5α,6α-epoxide, cholesterol-5β,6β-epoxide, 22R-, 22S-, 25-, and 27-hydroxycholesterol) were studied for both their cytotoxicity and their ability to induce superoxide anion production (O2⋅ −) and IL-8 secretion in U937 human promonocytic leukemia cells. Cytotoxic effects (phosphatidylserine externalization, loss of mitochondrial potential, increased permeability to propidium iodide, and occurrence of cells with swollen, fragmented and/or condensed nuclei) were only identified with 7β-hydroxycholesterol, 7-ketocholesterol and cholesterol-5β,6β-epoxide, which also induce lysosomal destabilization associated or not associated with the formation of monodansylcadaverine-positive cytoplasmic structures. No relationship between oxysterol-induced cytotoxicity and HMG-CoA reductase activity was found. In addition, the highest O2⋅ − overproduction quantified with hydroethidine was identified with 7β-hydroxycholesterol, 7-ketocholesterol and cholesterol-5β,6β-epoxide, with cholesterol-5α, 6α-epoxide and 25-hydroxycholesterol. The highest capacity to simultaneously stimulate IL-8 secretion (quantified by ELISA and by using a multiplexed, particle-based flow cytometric assay) and enhance IL-8 mRNA levels (determined by RT-PCR) was observed with 7β-hydroxycholesterol and 25-hydroxycholesterol. None of the effects observed for the oxysterols were detected for cholesterol. Therefore, oxysterols may have cytotoxic, oxidative, and/or inflammatory effects, or none whatsoever.  相似文献   

6.
1. Cholesteryl 3β-sulphate is oxidized in vitro by preparations of bovine adrenal-cortex mitochondria to pregnenolone sulphate and isocaproic acid (4-methyl-pentanoic acid) without hydrolysis of the ester linkage. 2. Free cholesterol is the preferred substrate for adrenal-cortex cholesterol oxidase; the apparent Km for cholesteryl sulphate is 500μm and for free cholesterol 50μm under the same conditions. 3. Cholesteryl 3β-acetate is hydrolysed by bovine adrenal-cortex mitochondria in vitro to free cholesterol, which is subsequently oxidized to more polar steroids and isocaproic acid. Evidence was obtained that other cholesterol esters behave similarly. Cholesterol esters may thus act as precursors of steroid hormones. 4. Cholest-4-en-3-one is only poorly oxidized to isocaproic acid and more polar steroids and thus is probably not a significant precursor of steroid hormones. 5. Cholesteryl esters inhibit the oxidation of cholesterol competitively (Ki for cholesteryl phosphate 28μm, for cholesteryl sulphate 110μm, for cholesteryl acetate 65μm) but pregnenolone esters do not inhibit this system. 6. Pregnenolone and 20α-hydroxycholesterol (both metabolites of cholesterol in this system) inhibit the oxidation of cholesterol non-competitively. Ki for pregnenolone is 130μm and Ki for 20α-hydroxycholesterol is 17μm. 7. 25-Oxo-27-norcholesterol inhibits cholesterol oxidation non-competitively (Ki16μm). A number of other Δ5-3β-hydroxy steroids inhibit cholesterol oxidation and evidence was obtained that the 3β-hydroxyl group was necessary for inhibitory activity. 8. Pregnenolone, 20α-hydroxycholesterol and 25-oxo-27-norcholesterol inhibit oxidation of cholesteryl sulphate by this system but their sulphates do not. 9. 3β-Hydroxychol-5-enoic acid, 3α-hydroxy-5β-cholanic acid and 3β-hydroxy-22,23-bisnorchol-5-enoic acid stimulated formation of isocaproic acid from cholesterol. 10. No evidence was obtained that phosphorylation or sulphation are obligatory steps in cholesterol oxidation by adrenal-cortex mitochondria. 11. The cholesteryl 3β-sulphate sulphatase of bovine adrenal cortex was found mostly in the microsomal fraction and was inhibited by inorganic phosphate.  相似文献   

7.
In vitro and in vivo cadmium toxicity studies focus almost exclusively on CdCl2 effects. Only a few studies have used adrenocortical cells and tissue to determine cadmium salt effects during stress of adrenocorticotropin stimulation. Because several biologically relevant water-soluble cadmium salts exist, this study extended work with CdCl2 to evaluate the acute adrenocortical cell steroid secretory responses to non-lethal cadmium acetate (CdAc2) and CdSO4 4 concentrations. Control or ACTH-stimulated cultured Y-1 mouse adrenal tumor cells (ATCC) which secrete 20-dihydroprogesterone (20-DHP) were incubated for 0.5 h in serum-free medium (FMEM) with or without 0.5, 1.0, 5.0, 10.0, 50.0, 100.0, 500.0 and 1000.0 µg CdAc2 or CdSO4/ml FMEM (1.9, 3.8, 19.0, 38.0, 190.0, 380.0 and 1900.0 µmol/L, respectively). For each salt, cell viability was measured at the end of the incubation using live cell trypan blue exclusion. In addition, cumulative CdAc2 effects during 4 h incubations and effect reversibility were determined for control and stimulated cells. After each experimental incubation, the 20-DHP secreted into the medium was determined by radioimmunoassay. Over 80% of all control or ACTH-stimulated cells were viable after incubation in the presence or absence of various CdAc2 or CdSO4 concentrations. Cadmium acetate and sulfate inhibited basal and ACTH-stimulated steroid secretion in a dose-dependent manner. For basal steroid secretion the CdAc2 concentration that first significantly inhibited was 0.5 µg/ml medium (1.9 µmol/L); stimulated secretion was significantly inhibited beginning at 5.0 µg/ml (19.0 µmol/L) and the concentration reducing stimulated 20-DHP secretion by 50% (IC50) was 5.6 µg/ml (21.3 µmol/L). Similarly, the first CdSO4 concentration to significantly inhibit basal and ACTH-stimulated steroid secretion was 10.0 µg/ml medium (39.0 µmol/L); the IC50 was 7.8 µg/ml (29.8 µmol/L). Except that basally secreting Cd2+ 2+-treated cells almost doubled 20-DHP secretion after Cd2+ removal and subsequent incubation with ACTH, all basal and ACTH-stimulated steroid secretion was irreversibly inhibited by every CdAc2 concentration. All CdAc2 concentrations initiated and maintained cumulative inhibitory effects on basal and ACTH-stimulated steroid secretion over a 4 h period. Reversibility and cumulative CdSO4 treatment studies were not conducted. Based on the results from the present studies, both CdAc2 and CdSO4 appeared to incrementally inhibit control and ACTH-stimulated steroidogenesis without affecting cell viability and to be more potent inhibitors of adrenocortical cell steroid secretion than CdCl2. Finally, CdAc2 effects on control and stimulated cells were cumulative and irreversible.  相似文献   

8.
Metabolism of the neuroactive steroids pregnenolone (PREG), progesterone (PROG), dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulphate (DHEAS) was investigated in day-old chick brain following direct injection of the 3H-labelled compounds into the intermediate medial mesopallium and sampling at times known to be crucial for memory formation in this brain region. 3H-label from these steroids was cleared rapidly from the brain, decreasing to barely detectable levels within 5 h. Following extraction and fractionation, the 3H-labelled brain steroids were identified by TLC, coupled with acetylation and/or separation in different solvent systems. PREG and PROG were converted within 10 min mostly to 20β-dihydropregnenolone (20β-DHPREG) and 5β-dihydroprogesterone, respectively. There was no detectable metabolism of DHEA. Label from DHEAS persisted for longer (half-time 18.9 min) than the free steroid but with no detectable metabolism other than a small amount (4%) of desulphation to DHEA. Further investigation of chick brain steroid metabolism by incubation of subcellular fractions (1–3 h, 37°C) with PREG, PROG or DHEA plus NADPH led to the formation of the following compounds: 20β-DHPREG from PREG (particularly in cytosol); 5β-dihydroprogesterone and 3α,5β-tetrahydroprogesterone from PROG and no detectable metabolism of DHEA. Following incubation of the same brain fractions and labelled steroids with NAD+, there was no detectable metabolism of PREG or PROG but some conversion of DHEA to androstenedione, especially in the nuclear fraction. The results suggest direct actions of DHEA(S) on the early stages of memory formation in the chick and introduce the possibility that PREG may act indirectly via 20β-DHPREG.  相似文献   

9.
Recently, cadmium has been described to disturb ovarian function in rats. In this paper the direct influence of cadmium on steroid production of ovarian cellsin vitro has been studied. Granulosa and luteal cells were obtained from proestrous and pregnant rats, and incubated with 0, 5, 10, 20 or 40 g ml–1 CdCl2 in the presence or absence of 0.1–1000 ng ml–1 follicle stimulating hormone (FSH) or luteinizing hormone (LH) for 24 or 48 h. Production of progesterone (P) and 17-estradiol (E2) by granulosa and that of P by luteal cells were measured by radioimmunoassay. In FSH-stimulated granulosa cell cultures, 5 and 40 g ml–1 CdCl2 suppressed P accumulation to 65 and 10%, respectively; accumulation of E2 (at 5 g ml–1 CdCl2) decreased to 44%. P production of LH-supported luteal cells dropped to 86 and 66%, respectively, when 5 and 40 g ml–1 CdCl2 was added to the medium. No alteration in basal P accumulation occurred in granulosa and luteal cell cultures following incubations with 20 and 40 g ml–1 CdCl2, whereas basal E2 production of granulosa cells was markedly diminished. It is concluded that CdCl2 suppressing steroid synthesisin vitro exerts a direct influence on granulosa and luteal cell function.  相似文献   

10.
The rat central nervous system (CNS) has previously been shown to synthesize pregnenolone (PREG) and convert it to progesterone (PROG) and 7 alpha-hydroxy-PREG (7 alpha-OH PREG). Astrocytes, which participate to the regulation of the CNS function, might be involved in the metabolism of neurosteroids. Purified type 1 astrocytes were obtained from fetal rat forebrain with the use of selective culture conditions and were identified by immunostaining with specific antibodies (GFAP+, A2B5-). They were plated at low, intermediate, or high densities (2.5-5 x 10(5), 1-2 x 10(6), or 4-8 x 10(6) cells/dish, respectively) and maintained for 21 d. They were then incubated with 14C-PREG and 14C-DHEA for 24 h and the steroids extracted from cells and media were analyzed. Most radioactive derivatives were released into incubation media. Two metabolic pathways were mainly observed. PREG and DHEA were oxidized to PROG and androstenedione (ADIONE), respectively, [3 beta-hydroxysteroid-dehydrogenase, delta 5-->4 3- ketosteroid-isomerase (3 beta-HSD) activity], and converted to 7 alpha- OH PREG and 7 alpha-OH DHEA, respectively (7 alpha-hydroxylase activity). After low density plating, the formation of PROG and ADIONE was approximately 10% of incubated radioactivity, tenfold larger than that of 7 alpha-hydroxylated metabolites. In contrast, after high density plating, low levels of PROG and ADIONE were formed, whereas the conversion to either 7 alpha-OH PREG or 7 alpha-OH DHEA was > or = 50%. The results expressed per cell indicated that the 3 beta-HSD activity was almost completely inhibited at high cell density, in contrast to the 7 alpha-hydroxylation which was maintained or increased. The pattern of steroid metabolism was related to cell density at the time of measurement and not to an early commitment of cells: when primary cultures were plated at high density (8 x 10(6) cells/dish), then subcultured after several dilutions (3-, 9-, or 27-fold), the 3 beta- HSD activity was recovered only at low density. Furthermore, when 5 x 10(5) cells were centrifuged and the resulting clusters were plated, 3 beta-HSD activity was decreased, whereas steroid 7 alpha-hydroxylation was enhanced. This implies that cell density per se, but neither cell number nor a diffusible factor(s) is involved in the regulation of steroid metabolism. We conclude that astrocytes in culture metabolize PREG and DHEA, and that the metabolic conversions and, therefore, the related enzymatic activities depend on cell-to-cell contacts.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Adrenal mitochondrial cytochrome P-450 which functions in cholesterol side chain cleavage (P-450scc) exhibited type I (lambdamax 385, lambdamin 420 nm) and inverse type I (lambdamin 385, lambdamax 420 nm) difference spectra with several steroids. The magnitude and type of response were dependent on the particular steroid and on the extent to which cholesterol was bound to the cytochrome in the intact mitochondrion. the inverse type I difference spectrum induced by 3beta-hydroxy-pregn-5-ene-20-one (pregnenolone) was dependent on the proportion of high spin cholesterol-cytochrome P-450scc complexes. With rat adrenal mitochondria cholest-5-ene-3beta, 20alpha-diol (20alpha-hydroxycholesterol) invariably induced a smaller inverse type I response and, under conditions where cytochrome P-450scc was nearly free of cholesterol, even produced a small type I response. Two distinct steroid binding sites on cytochrome P-450scc were detected by, respectively, the slow type I response to cholest-5-ene-3beta, 25-diol (25-hydroxycholesterol) and the rapid type I response to a subsequent addition of cholest-5-ene-3beta, 20alpha, 22 R-triol (20alpha, 22R-dihydroxycholesterol). The relative proportions of the spectral responses to these steroids were dependent on the previous extent of adrenal activation by adrenocorticotropic hormone (ACTH), because this stimulatory process altered the combination of mitochondrial cholesterol with cytochrome P-450scc. It is proposed that the two steroid binding sites on cytochrome P-450scc interact with steroids in the following way: site I binds cholesterol, 25-hydroxycholesterol, and 20alpha, 22R-dihydroxycholesterol with formation of a partially high spin cytochrome; site II binds both pregnenolone and 20alpha-OH cholesterol resulting in a low spin cytochrome. Interactions between sites I and II are not competitive, and occupancy of site II ensures a low spin state irrespective of the occupancy of site I. A second mode of interaction by 20alpha, 22R-dihydroxycholesterol stabilizes a high spin cytochrome and is competitive with site II binding by 20alpha-hydroxycholesterol or pregnenolone. Formation of a maximally high spin cytochrome follows occupancy by 20alpha, 22R-dihydroxycholesterol at both sites.  相似文献   

12.

Background

Oxysterols are promising biomarkers of neurodegenerative diseases that are linked with cholesterol and vitamin D metabolism. There is an unmet need for methods capable of sensitive, and simultaneous quantitation of multiple oxysterols, vitamin D and cholesterol pathway biomarkers.

Methods

A method for simultaneous determination of 5 major oxysterols, 25-hydroxy vitamin D3 and cholesterol in human plasma was developed. Total oxysterols were prepared by room temperature saponification followed by solid phase extraction from plasma spiked with deuterated internal standards. Oxysterols were resolved by reverse phase HPLC using a methanol/water/0.1% formic acid gradient. Oxysterols and 25-hydroxy vitamin D3 were detected with atmospheric pressure chemical ionization mass spectrometry in positive ion mode; in-series photodiode array detection at 204nm was used for cholesterol. Method validation studies were performed. Oxysterol levels in 220 plasma samples from healthy control subjects, multiple sclerosis and other neurological disorders patients were quantitated.

Results

Our method quantitated 5 oxysterols, cholesterol and 25-hydroxy vitamin D3 from 200 μL plasma in 35 minutes. Recoveries were >85% for all analytes and internal standards. The limits of detection were 3-10 ng/mL for oxysterols and 25-hydroxy vitamin D3 and 1 μg/mL for simultaneous detection of cholesterol. Analytical imprecision was <10 %CV for 24(S)-, 25-, 27-, 7α-hydroxycholesterol (HC) and cholesterol and ≤15 % for 7-keto-cholesterol. Multiple Sclerosis and other neurological disorder patients had lower 27-hydroxycholesterol levels compared to controls whereas 7α-hydroxycholesterol was lower specifically in Multiple Sclerosis.

Conclusion

The method is suitable for measuring plasma oxysterols levels in human health and disease. Analysis of human plasma indicates that the oxysterol, bile acid precursors 7α-hydroxycholesterol and 27-hydroxycholesterol are lower in Multiple Sclerosis and may serve as potential biomarkers of disease.  相似文献   

13.
Pregnenolone (PREG) can be converted to PREG esters (PE) by the plasma enzyme lecithin: cholesterol acyltransferase (LCAT), and by other enzyme(s) with unknown identity. Acyl-CoA:cholesterol acyltransferase 1 and 2 (ACAT1 and ACAT2) convert various sterols to steryl esters; their activities are activated by cholesterol. PREG is a sterol-like molecule, with 3-β-hydroxy moiety at steroid ring A, but with much shorter side chain at steroid ring D. Here we show that without cholesterol, PREG is a poor ACAT substrate; with cholesterol, the V(max) for PREG esterification increases by 100-fold. The binding affinity of ACAT1 for PREG is 30-50-fold stronger than that for cholesterol; however, PREG is only a substrate but not an activator, while cholesterol is both a substrate and an activator. These results indicate that the sterol substrate site in ACAT1 does not involve significant sterol-phospholipid interaction, while the sterol activator site does. Studies utilizing small molecule ACAT inhibitors show that ACAT plays a key role in PREG esterification in various cell types examined. Mice lacking ACAT1 or ACAT2 do not have decreased PREG ester contents in adrenals, nor do they have altered levels of the three major secreted adrenal steroids in serum. Mice lacking LCAT have decreased levels of PREG esters in the adrenals. These results suggest LCAT along with ACAT1/ACAT2 contribute to control pregnenolone ester content in different cell types and tissues.  相似文献   

14.
A short and efficient synthesis of steroid synthons, di(tert-butyldimethylsilyl) ethers of 3,21-dihydroxy-24-nor-chol-5-en-23-al (8 and 10) and of ethyl 3,21-dihydroxy-25-homo-chola-5,23-dien-25-oate (9 and 11), having natural (20R) and unnatural (20S) configuration from 3β-(tert-butyldimethylsilyloxy)-14α,20ξ-card-5-enolide (2) is reported. Further elongation of the side chain of these synthons provides a new method for the synthesis of (20R) and (20S)-21-hydroxy steroids. The utility of the method was exemplified by the synthesis of a natural marine sterol - 21-hydroxycholesterol (18).  相似文献   

15.
The early kinetics of the conversion of cholesterol (A) to (22R)-22-hydroxycholesterol (B), (20R, 22R)-20, 22-dihydroxycholesterol (C) and pregnenolone (D) has been studied with bovine adrenocortical mitochondrial acetone-dried powder preparations. The sequential appearance of B, C, and D was demonstrated. During the lag period of D appearance, B, and C approached steady state levels, at which time the formation of D approximated linearity. The initial rate of B appearance approximated the rate of the linear phase of pregnenolone formation. When cholesterol was initially incubated in an 18O2-enriched atmosphere, the gas phase abruptly changed to air and incubation continued for a relatively short period, there was a drop in the 18O content of the recovered B and C. These results demonstrated for the first time the turnover of these compounds as they formed in the system from cholesterol, without the use of exogenously added tracer B or C. The 18O content of the recovered glycol was lower at position C-20 than at C-22, as would be expected from a consecutive process involving an initial oxygen attack of cholesterol at C-22. These results suggest the sequence A→ B→ C→ D as the basic mechanism for the conversion of cholesterol to pregnenolone.  相似文献   

16.
A goat antibody produced against homogeneous bovine adrenal ferrodoxin has been employed to study the involvement of this iron-sulfur protein in the side-chain cleavage of 20α-hydroxycholesterol catalyzed by a soluble fraction, supernatant S1, prepared from sonicated bovine adrenocortical mitochondria. When added to this supernatant, the antibody inhibited the side-chain cleavage of 20α-hydroxycholesterol as well as the side-chain cleavage of cholesterol, the 11β-hydroxylation of deoxycorticosterone, and the NADPH-dependent reduction of cytochrome c. These results demonstrate that, similar to the NADPH-cytochrome c reductase and both the cholesterol side-chain cleavage and steroid 11β-hydroxylase reactions, adrenal ferredoxin is also required for the side-chain cleavage of 20α-hydroxycholesterol.  相似文献   

17.
Novel synthetic oxysterols (22S,23S)-3β-hydroxy-22,23-oxido-5α-ergost-8(14)-en-15-one (I) and (22R,23R)-3β-hydroxy-22,23-oxido-5α-ergost-8(14)-en-15-one (II) influenced biosynthesis of cholesteryl esters from [14C]acetate (85% and 180% of control at 5 μM concentration) in the human hepatoma Hep G2 cell line. Ketosterol (I) increased the level of cholesteryl ester biosynthesis from [14C]oleate in Hep G2 cells in a dose dependent manner, whereas the level of cholesteryl esters biosynthesis in the presence of ketosterol (II) reached the maximal value (269±20% of control) at 1 μM concentration of this compound. In a cell free system ketosterol (I) increased the rate of ACAT-dependent cholesterol acylation similar to 25-hydroxycholesterol, however, ketosterol (II)), efficiently stimulated an initial rate of ACAT-catalyzed cholesterol esterification, followed by rapid inactivation of this enzyme.  相似文献   

18.
The interactions of phospholipids with four different cholesterol derivatives substituted with one OH or one keto group at position C20 or C22 of the side-chain were studied. The derivatives were the 22,R-hydroxy; 22,S-hydroxy; 22-keto- and 20,S-hydroxycholesterol. Two aspects of the interactions were investigated: (1) the effect of the cholesterol derivatives on the gel → liquid crystalline phase transition of dipalmitoylphosphatidylcholine (DPPC) and of dielaidoylphosphatidylethanolamine (DEPE) monitored by differential scanning calorimetry and (2) The effect on the lamellar → hexagonal HII phase transition of DEPE monitored by DSC and by 31P-NMR to determine structural changes. The gel → liquid crystalline phase transition was affected by the cholesterol derivatives to a much larger extent in the case of DPPC than of DEPE. In both cases, there was a differential effect of the four derivatives, the 22,R-hydroxycholesterol being the less effective. In DPPC-sterol 1:1 systems, 22,R-hydroxycholesterol does not suppress the melting transition, the ΔH values becomes 7.1 kcal · mol?1 as compared to 8.2 kcal · mol?1 for the pure lipid. 22,S-OH cholesterol has a much stronger effect (ΔH = 3.1 kcal · mol?1) and 22-ketocholesterol suppresses the transition completely. In DEPE mixtures of all these compounds, the melting transition of the phospholipid is still observable. The transition temperature was shifted to lower values (?13.5°C in the presence of 20,S-OH cholesterol). The ΔH of the transition was lowered by these compounds except in DEPE-22,R-OH cholesterol mixtures and the cooperativity of the transition (reflected by the width at half peak height) was reduced. The lamellar → hexagonal HII phase transition was also affected by the presence of these cholesterol derivatives. The transition temperature value was depressed with all these compounds. 20,S-OH cholesterol was the most effective followed by 22,R-OH cholesterol. The ΔH of the transition was not strongly affected. The molecular interfacial properties of these derivatives were studied by the monomolecular film technique. It is most likely that 22,R-OH cholesterol due to the hydroxyl groups at the 3β- and 22,R-positions orients with the sterol nucleus lying flat at the air/water interface, since the compression isotherm of either the pure sterol or the DOPC-sterol mixture (molar ration, 1:1) monomolecular film exhibits a transition at approx. 103 Å2, corresponding to the area of revolution of the sterol nucleus. This remarkable property, due probably to the existence of a kink between the side-chain and the long axis of the steroid nucleus, might explain the smaller effect of this sterol on the melting transition of either PC or PE systems.  相似文献   

19.
1.  The cross-adapting effects of chemical backgrounds on the response of primary chemoreceptor cells to superimposed stimuli were studied using NH4 receptor cells, of known spectral tuning, from the lobster (Homarus americanus).
2.  Spectrum experiments: The spectral tuning of NH4 receptor cells was investigated using NH4Cl and 7 other compounds selected as the most stimulatory non-best compounds for NH4 cells from a longer list of compounds tested in previous studies. Based on their responses to the compounds tested, 3 spectral subpopulations of NH4 cells were revealed: NH4-Glu cells which responded second-best to Glutamate (Glu); NH4- Bet cells which responded second-best to Betaine (Bet); and pure NH4 cells, which responded to NH4C1 only (Fig. 1).
3.  Cross-adaptation experiments: Overall, cross-adaptation with Glu and Bet backgrounds caused suppression of response of NH4 receptor cells to various concentrations of NH4Cl. However, the different subpopulations of NH4 cells were affected differently: (a) The stimulus-response functions of NH4-Glu cells were significantly suppressed by both a 3 M (G3) and 300 M (G300) Glu backgrounds, (b) The stimulus-response functions of NH4-Bet cells was not affected by a 3 M (B3), but significantly suppressed by a 300M (B300) Bet background. (c) The stimulus-response functions of pure NH4 cells were not affected by any of the Glu or Bet backgrounds (Figs. 3, 4).
4.  The stimulus-response functions of 5 cells from all different subpopulations were enhanced by cross-adaptation with the G300 and B300 backgrounds (Fig. 4, Table 1).
5.  Whereas self-adaptation caused parallel shifts in stimulus-response functions (Borroni and Atema 1988), cross-adaptation caused a decrease in slope of stimulus-response functions. Implications of the results from cross- and self-adaptation experiments on NH4 receptor cells, for a receptor cell model are discussed.
  相似文献   

20.
The rate of pregnenolone synthesis by cytochrome P-450scc was measured in mitochondria isolated from ovaries of immature rats treated with pregnant mare's serum gonadotropin and human choriogonadotropin. Using cholesterol, 25-hydroxycholesterol, 20 alpha-hydroxycholesterol, (22R)-22-hydroxycholesterol and (22R)-20 alpha,22-dihydroxycholesterol as substrates, we have determined that the first hydroxylation of cholesterol, in the 22R position, is rate limiting in pregnenolone synthesis. It proceeds at only 22% of the rate of either of the subsequent two hydroxylations. 25-Hydroxycholesterol proved to be a suitable substrate for determining the maximum rate of pregnenolone synthesis by cytochrome P-450scc in isolated mitochondria. The maximum rate was 13 mol steroid.min-1.mol cytochrome P-450scc-1 and did not change after the follicles in the immature ovary had been stimulated to mature and luteinize with gonadotropin. Using endogenous cholesterol in isolated mitochondria as substrate, the time course of pregnenolone synthesis was the same during the follicular phase as in the luteal stage of gonadotropin-induced development. We conclude that during the artificial induced development of follicles in the immature ovary, the major cause of the increase in the rate of pregnenolone synthesis is the increase in the cytochrome P-450scc content of the mitochondria, rather than changes in the catalytic activity of cytochrome P-450scc or the cholesterol availability to the cytochrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号