首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mutant of Bacillus subtilis 168 (strain 168 KW), defective in its ability to concentrate K(+) from low levels in the growth medium, was used to study the role of K(+) in the development of phage 2C. Both the final burst size and the duration of the rise period depended on the K(+) concentration in the medium. During normal infection (in the presence of K(+)), host deoxyribonucleic acid (DNA) synthesis stopped. The synthesis of host messenger ribonucleic acid (RNA) continued throughout infection, albeit at a steadily decreasing rate. The synthesis of ribosomal RNA and its subsequent incorporation into mature ribosomes also proceeded. In contrast to these findings, host DNA and messenger RNA synthesis were not inhibited in cells infected in the absence of K(+). Only "early" phage messenger RNA was synthesized under these conditions of infection. Phage DNA synthesis was dependent on K(+) irrespective of the requirement for this cation in protein synthesis.  相似文献   

2.
A polyamine-dependent mutant of Escherichia coli KK101 was isolated by treatment of E. coli MA261 with N-methyl-N'-nitro-N-nitrosoguanidine. In the absence of putrescine, doubling time of the mutant was 496 min. The mutation was accompanied by a change in the nature of the 30 S ribosomal subunits. Addition of putrescine to the mutant stimulated the synthesis of proteins and subsequently, this led to stimulation of RNA and DNA synthesis. Under these conditions, we determined which proteins were preferentially synthesized. Putrescine stimulated the synthesis of ribosomal protein S1 markedly, but stimulated ribosomal proteins S4, L20, and X1, and RNA polymerase slightly. The amounts of initiation factors 2 and 3 synthesized were not influenced significantly by putrescine. The preferential stimulation of the synthesis of ribosomal protein S1 occurred as early as 20 min after the addition of putrescine, while stimulation of the synthesis of the other ribosomal proteins and RNA polymerase appeared at 40 min. The stimulation of the synthesis of ribosomal RNA also occurred at 40 min after addition of putrescine. Our results indicate that putrescine can stimulate both the synthesis and the activity of ribosomes. The increase in the activity of ribosomes was achieved by the association of S1 protein to S1-depleted ribosomes. The early stimulation of ribosomal protein S1 synthesis after addition of putrescine may be important for stimulation of cell growth by polyamines.  相似文献   

3.
A mutant of Escherichia coli dependent on erythromycin for growth spontaneously gives erythromycin-independent strains with altered or missing ribosomal proteins. strains with defects in ribosome assembly were sought and obtained from among these revertants. Two organisms in which ribosomal protein L19 is altered and absent respectively have 70S ribosomes whose dissociation into sub-units is particularly sensitive to pressures generated during centrifuging. The mutant that lacks protein L19 also accumulates ribosome precursor particles during exponential growth as do others including mutants that lack proteins S20 or L1. These strains also show unbalanced synthesis of RNA and so will be useful in investigating both the pathways and the regulation of ribosome assembly.  相似文献   

4.
Ribosomal protein synthesis by a mutant of Escherichia coli   总被引:1,自引:0,他引:1  
The mutant strain of Escherichia coli, TP28, synthesises ribosomes by an abnormal pathway and accumulates large quantities of 47S ribonucleoprotein particles. The protein complement of mutant 70S ribosomes is normal but 47S particles contain only traces of proteins L28 and L33 and have a significantly reduced content of four other proteins. The mutation reduces the rates of synthesis of L28 and L33 by about half but other widespread alterations ensue. In particular, ribosomal protein synthesis in the mutant strain becomes less well balanced than in its parent: some proteins, particularly those from promoter-proximal genes, are oversynthesized and their excess then degraded.  相似文献   

5.
Disruption of the external sheath of Streptomyces granaticolor aerial spores and subsequent cultivation in a rich medium result in a synchronous germination. This method was used to analyze RNA and protein patterns during the germination. The germination process took place through a sequence of time-ordered events. RNA and protein synthesis started during the first 5 min and net DNA synthesis at 60-70 min of germination. Within the first 10 min of germination, synthesis of RNA was not sensitive to the inhibitory effect of rifamycin. During this period rRNA and other species including 4-5-S RNA were synthesized. Dormant spores contained populations of ribosomes or ribosomal precursors that were structurally and functionally defective. The ribosomal particles bound a sporulation pigment(s) of the melanine type. The ribosomal proteins complexed to the pigments formed insoluble aggregates which were easily removed from the ribosomes by one wash with 1 M NH4Cl. During the first 10 min of germination, pigment(s) were liberated from the complexes with the ribosomes and protein extracts of the washed ribosomes had essentially the same pattern as the extracts of ribosomes of vegetative cells. These structural alterations were accompanied by enhancement of the ribosome activities in polypeptide synthesis in vivo and in vitro. When the spores were incubated with a 14C-labelled amino acid mixture in the presence of rifamycin, only three proteins (GS1, GL1 and GS9) were identified to be radiolabelled in the extracts from the washed ribosomes. These experiments indicate that liberation of the sporulation pigment(s) from the complexes with ribosomal proteins and assembly of de novo synthesized proteins and proteins from a preexisting pool in the spore are involved in the reactivation of the ribosomes of dormant spores of S. granaticolor.  相似文献   

6.
Inhibition of protein synthesis by puromycin (100 γ/ml) is known to inhibit the synthesis of ribosomes. However, ribosomal precursor RNA (45S) continues to be synthesized, methylated, and processed. Cell fractionation studies revealed that, although the initial processing (45S → 32S + 16S) occurs in the presence of puromycin, the 16S moiety is immediately degraded. No species of ribosomal RNA can be found to have emerged from the nucleolus. The RNA formed in the presence of puromycin is normal as judged by its ability to enter new ribosomal particles after puromycin is removed. This sequence of events is not a result of inhibition of protein synthesis, for cycloheximide, another inhibitor of protein synthesis, either alone or in combination with puromycin allows the completion of new ribosomes.  相似文献   

7.
During the initial ten hours of growth in lymphocytes stimulated by phytohemagglutinin, the cells are converted from a state in which over 70% of all ribosomes are inactive free ribosomes, to one in which over 80% of ribosomes are in polysomes or in native ribosomal subunits. In this initial period, there was a neglible increase in total ribosomal RNA due to increased RNA synthesis, and abolition of ribosomal RNA synthesis with low concentrations of actinomycin D did not interfere with polysome formation. Therefore, the conversion is accomplished by the activation of existing free ribosomes rather than by accumulation of newly synthesized particles. The large free ribosome pool of resting lymphocytes is thus an essential source of components for accelerated protein synthesis early in lymphocyte activation, before increased synthesis can provide a sufficient number of new ribosomes. Free ribosomes accumulate once more after 24 to 48 hours of growth, when RNA and DNA synthetic activity are maximal. This reaccumulation of inactive ribosomes at the peak of growth activity may represent preparation for a return to the resting state where cells are again susceptible to stimulation. Activation of free ribosomes to form polysomes appears to involve modification of at least two steps: (a) dissociation of free ribosomes with stabilization as native subunits, and (b) adjustment of a rate-limiting step at initiation.  相似文献   

8.
Escherichia coli strain 15-28 is a mutant with a defect in ribosome synthesis that leads to the accumulation of large amounts of ribonucleoprotein ("47S") particles during exponential growth. These particles are precursors to 50S ribosomes, but are distinct from precursors detected by pulse-labelling of the parent strain and also from ribosome precursors that accumulate during inhibition of growth by CoC12. Either ribosome assembly in the mutant differs from that in the wild-type strain, or 47S particles represent a hitherto unstudied stage in the synthesis of 50S ribosomes.  相似文献   

9.
Ribosomal protein methylation has been well documented but its function remains unclear. We have examined this phenomenon using an Escherichia coli mutant (prmB2), which fails to methylate glutamine residue number 150 of ribosomal protein L3. This mutant exhibits a cold-sensitive phenotype: its growth rate at 22 degrees C is abnormally low in complete medium. In addition, strains with this mutation accumulate abnormal and unstable ribosomal particles; 50-S and 30-S subunits are formed, but at a lower rate. Once assembled, ribosomes with unmethylated L3 are fully active by several criteria. (a) Protein synthesis in vitro with purified 70-S prmB2 ribosomes is as active as wild-type using either a natural (R17) or an artificial [poly(U)] messenger. (b) The induction of beta-galactosidase in vivo exhibits normal kinetics and the enzyme has a normal rate of thermal denaturation. (c) These ribosomes are standard when exposed in vitro to a low magnesium concentration or increasing molarities of LiCl. Efficient methylation of L3 in vitro requires either unfolded ribosomes or a mixture of ribosomal protein and RNA. We suggest that the L3-specific methyltransferase may qualify as one of the postulated 'assembly factors' of the E. coli ribosome.  相似文献   

10.
Replacement of the protein L11 binding domain within Escherichia coli 23S ribosomal RNA (rRNA) by the equivalent region from yeast 26S rRNA appeared to have no effect on the growth rate of E.coli cells harbouring a plasmid carrying the mutated rrnB operon. The hybrid rRNA was correctly processed and assembled into ribosomes, which accumulated normally in polyribosomes. Of the total ribosomal population, < 25% contained wild-type, chromosomally encoded rRNA; the remainder were mutant. The hybrid ribosomes supported GTP hydrolysis dependent upon E.coli elongation factor G, although at a somewhat reduced rate compared with wild-type particles, and were sensitive to the antibiotic, thiostrepton, a potent inhibitor of ribosomal GTPase activity that binds to 23S rRNA within the L11 binding domain. That thiostrepton could indeed bind to the mutant ribosomes, although at a reduced level relative to that seen with wild-type ribosomes, was confirmed in a non-equilibrium assay. The rationale for the ability of the hybrid ribosomes to bind the antibiotic, given that yeast ribosomes do not, was provided when yeast rRNA was shown by equilibrium dialysis to bind thiostrepton only 10-fold less tightly than did E.coli rRNA. The extreme conservation of secondary, but not primary, structure in this region between E.coli and yeast rRNAs allows the hybrid ribosomes to function competently in protein synthesis and also preserves the interaction with thiostrepton.  相似文献   

11.
Escherichia coli strain 15-28 is a mutant with a defect in ribosome synthesis that caused the accumulation of ribonucleoprotein ('47S') particles during exponential growth. These particles are precursors to 50S ribosomes that lack three ribosomal proteins. Peptidyltransferase activity and binding at the peptidyl site of the peptidyltransferase centre are greatly decreased in 47S particles. Both these activities are lower in the 50S and 70S ribosomes of strain 15-28 than in its parent. Unusual assembly of the larger ribosomal subunit in strain 15-28 may produce completed ribosomes with diminished biological activity.  相似文献   

12.
13.
The functionally important 3' domain of the ribosomal 16S RNA was altered by in vitro DNA manipulations of a plasmid-encoded 16S RNA gene. By in vitro DNA manipulations two double mutants were constructed in which C1399 was converted to A and G1401 was changed to either U or C and a single point mutant was made wherein G1416 was changed to U. Only one of the mutated rRNA genes could be cloned in a plasmid under the control of the natural rrnB promoters (U1416) whereas all three mutations were cloned in a plasmid under the control of the lambda PL promoter. In a strain coding for the temperature-sensitive lambda repressor cI857 the mutant RNAs could be expressed conditionally. We could show that all three mutant rRNAs were efficiently incorporated into 30S ribosomes. However, all three mutants inhibited the formation of stable 70S particles to various degrees. The amounts of mutated rRNAs were quantified by primer extension analysis which enabled us to assess the proportion of the mutated ribosomes which are actively engaged in in vivo protein biosynthesis. While ribosomes carrying the U1416 mutation in the 16S RNA were active in vivo a strong selection against ribosomes with the A1399/U1401 mutation in the 16S RNA from the polysome fraction is apparent. Ribosomes with 16S RNA bearing the A1399/C1401 mutation did not show a measurable protein biosynthesis activity in vivo. The growth rate of cells harbouring the different mutations reflected the in vivo translation capacities of the mutant ribosomes. The results underline the importance of the highly conserved nucleotides in the 3' domain of the 16S RNA for ribosomal function.  相似文献   

14.
In vivo incorporation of the uridine-photoactivable analogue, 4-thiouridine, into the ribosomal RNA of an Escherichia coli pyrD strain has been demonstrated. It is highly dependent on the exogenous uridine and 4-thiouridine concentrations as well as on temperature. We have defined conditions allowing the substitution of 13 +/- 2% of the uridine residues in bulk RNA by 4-thiouridine. On a high-Mg2+ sucrose gradient, 33 +/- 3% of ribonucleic particles sediment as 70S ribosomes, the remaining being in the form of non-associated 50S and 30S particles containing immature rRNA. The thiolated 70S ribosomes tolerate a 4-5% substitution level (40 thiouridine molecules/particle). Surprisingly, 3-4% of ribosomal proteins, about two protein molecules/particle, were spontaneously covalently bound to 4-thiouridine-substituted rRNA. Specific 366-nm photoactivation increased this proportion to 10-12%, i.e. up to six or seven ribosomal protein molecules/particle. The photochemical cross-linking proceeds with apparent first-order kinetics with a quantum yield close to 5 X 10(-3). Although extensive photodynamic breakage of rRNA occurs under aerobic conditions, both the kinetics and yield of ribosomal protein cross-linking were independent of oxygenation conditions. The thiolated (4.5%) 70S ribosomes allowed the poly(U)-directed poly(Phe)synthesis at 48% the control rate. Photoactivation decreased this activity to 28% and 10% when performed under nitrogen and in aerated conditions, respectively.  相似文献   

15.
Polyamine metabolism in potassium-deficient bacteria   总被引:3,自引:0,他引:3       下载免费PDF全文
The metabolism of polyamines was studied in K(+)-dependent strains of Escherichia coli. When these stringent organisms were in a medium containing Na(+) instead of K(+), protein synthesis was arrested, but synthesis of ribonucleic acid continued as it would in a relaxed organism. The Na(+) medium inhibited synthesis of spermidine and S-adenosylmethionine. However, the synthesis of putrescine was accelerated at least five- to eightfold. Exogenous ornithine doubled even this rate of putrescine synthesis but did not increase the low level of putrescine synthesis in the K(+) medium. In K(+) or Na(+) media, with or without 0.3 mm arginine, putrescine was derived almost entirely from ornithine via ornithine decarboxylase. Addition of spermidine (5 mm) to a Na(+) culture markedly inhibited putrescine synthesis. The ornithine decarboxylase of an extract of a K(-)-dependent strain prepared at low ionic strength was separated from ribosomes, deoxyribonucleic acid, and associated polyamines by centrifugation, and from many ions by ultrafiltration and fractionation on Sephadex G-100. Addition of Na(+) and K(+) salts to 200 mm was markedly inhibitory. The combined reductions both in synthesis of the inhibitor spermidine and in intracellular ionic strength may explain the in vivo activation of this enzyme.  相似文献   

16.
Thermally shocked cells of Staphylococcus aureus rapidly synthesized ribonucleic acid (RNA) during the early stages of recovery. During this period, protein synthesis was not observed and occurred only after RNA had reached a maximum level. Even in the absence of coordinated protein synthesis, a large portion of the RNA appeared in newly synthesized ribosomes. Although the 30S subunit was specifically destroyed by the heating process, both ribosomal particles were reassembled during recovery. The addition of chloramphenicol did not inhibit the formation of the ribosomal subunits, nor was the presence of immature chloramphenicol particles detected. Extended recovery with highly prelabeled cells showed that the original ribosomal proteins present before heating are conserved and recycled. Furthermore, the data indicate that the 50S subunit is turned over and used as a source of protein for new ribosome assembly. Kinetic studies of the assembly process by pulse labeling have not revealed the presence of the normally reported precursor particles. Rather, the data suggest that assembly may occur, in this system, in a manner similar to that reported for in vitro assembly of Escherichia coli subunits.  相似文献   

17.
The binding of the EF-Tu.GTP.aminoacyl-tRNA ternary complex (EF, elongation factor) to the ribosome is known to be strengthened by a 2661G-to-C mutation in 23S ribosomal RNA, whereas the binding to normal ribosomes is weakened if the factor is in an appropriate mutant form (Aa). In this report we describe the mutual effects by the 2661C alteration in 23S rRNA and EF-Tu(Aa) on bacterial viability and translation efficiency in strains with normal or mutationally altered ribosomes. The rrnB(2661C) allele on a multicopy plasmid was introduced by transformation into Escherichia coli K-12 strains, harbouring either the wild-type or the mutant gene (tufA) for EF-Tu as well as normal or mutant ribosomal protein S12 (rpsL). Together with wild-type EF-Tu, the 2661C mutant ribosomes decreased the translation elongation rate in a rpsL+ strain or a non-restrictive rpsL224 strain. This reduction was not seen in strains which harbored EF-Tu(Aa) instead of EF-Tu(As) (As, wild-type form). Nonsense codon suppression by tyrT(Su3) suppressor tRNA was reduced by 2661C in a rpsL224 strain in the presence of EF-Tu(As) but not in the presence of EF-Tu(Aa). The lethal effect obtained by the combination of 2661C and a restrictive ribosomal protein S12 mutation (rpsL282) disappeared if EF-Tu(As) was replaced by EF-Tu(Aa) in the strain. In such a viable strain, 2661C had no effect on either the translation elongation rate or nonsense codon suppression. Our data suggest that the G base at position 2661 in 23S rRNA is important for binding of EF-Tu during protein synthesis in vivo. The interaction between this base and EF-Tu is strongly influenced by the structure of ribosomal protein S12.  相似文献   

18.
Human cytomegalovirus stimulates host cell RNA synthesis.   总被引:14,自引:14,他引:0       下载免费PDF全文
Human cytomegalovirus infection of human fibroblast cells (WI-38) induced cellular RNA synthesis. The RNA synthesis in infected cultures preceded the synthesis of viral DNA and progeny virus by approximately 24 h. RNA species synthesized in infected cells included ribosomal 28S and 18S; and 4S transfer RNA; all were markedly increased in comparison to uninfected cells. This induction of host cell RNA synthesis was dependent upon a protein(s) that was synthesized during the early stages of infection.  相似文献   

19.
The ribosomes from four temperature-sensitive mutants of Escherichia coli have been examined for defects in cell-free protein synthesis. The mutants examined had alterations in ribosomal proteins S10, S15, or L22 (two strains). Ribosomes from each mutant showed a reduced activity in the translation of phage MS2 RNA at 44 degrees C and were more rapidly inactivated by heating at this temperature compared to control ribosomes. Ribosomal subunits from three of the mutants demonstrated a partial or complete inability to reassociate at 44 degrees C. 70-S ribosomes from two strains showed a reducton in messenger RNA binding. tRNA binding to the 30 S subunit was reduced in the strains with altered 30-S proteins and binding to the 50 S subunit was affected in the mutants with a change in 50 S protein L22. The relation between ribosomal protein structure and function in protein synthesis in these mutants is discussed.  相似文献   

20.
Strain BM108 of Escherichia coli has a chromosomal mutation in the rpmB , G operon that prevents synthesis of ribosomal proteins L28 and L33. The mutation was lethal unless synthesis of protein L28 was induced from a plasmid. Without protein L28, RNA and protein synthesis were linear rather than exponential. No 70S ribosomes were made. Instead, RNA accumulated in '30S material' and '47S particles'; the latter were distinct from 50S ribosomal subunits, lacked proteins L28 and L33 and had substoicheometric amounts of three other proteins. When L28 synthesis was induced (but protein L33 was still absent), the strain grew as well as, and assembled 70S ribosomes with similar kinetics to, a wild-type control. Thus, protein L28 is required for ribosome assembly in strain BM108 while protein L33 has no significant effect on ribosome synthesis or function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号