首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DNA deposition on carbon electrodes under controlled dc potentials   总被引:4,自引:0,他引:4  
The native calf-thymus DNA molecule fully dispersed in solution was deposited onto highly oriented pyrolytic graphite, carbon fiber column and disk electrodes under controlled dc potentials. X-ray photoelectron spectroscopy, atomic force microscopy and electrochemical investigations indicated that network structures of DNA could be formed on various carbon electrode surfaces resulting in significant surface enlargement. The conformation, conductivity and stability of the deposited DNA layer largely depended on the concentration of the DNA deposition solution, the applied dc potential and the mode of electric field. The optimal condition for deposition of the DNA on carbon fiber disk electrode was determined as a deposition potential of 1.8 +/- 0.3 V versus 50 mM NaCl-Ag/AgCl and a deposition DNA solution of 0.1 mg ml(-1). Under this condition, the DNA was covalently bonded on the electrode surface forming a three-dimensional modified layer, generating a 500-fold enlarged effective electrode surface area and similarly enlarged current sensitivity for redox species, such as Co(phen)3(3+). A possible mechanism for the formation of DNA networks is proposed.  相似文献   

2.
Fast-scan cyclic voltammetry (FSCV) is a powerful technique for measuring sub-second changes in neurotransmitter levels. A great time-limiting factor in the use of FSCV is the production of high-quality recording electrodes; common recording electrodes consist of cylindrical carbon fiber encased in borosilicate glass. When the borosilicate is heated and pulled, the molten glass ideally forms a tight seal around the carbon fiber cylinder. It is often difficult, however, to guarantee a perfect seal between the glass and carbon. Indeed, much of the time spent creating electrodes is in an effort to find a good seal. Even though epoxy resins can be useful in this regard, they are irreversible (seals are permanent), wasteful (epoxy cannot be reused once hardener is added), hazardous (hardeners are often caustic), and require curing. Herein we characterize paraffin as an electrode sealant for FSCV microelectrodes. Paraffin boasts the advantages of near-immediate curing times, simplicity in use, long shelf-life and stable waterproof seals capable of withstanding extended cycling. Borosilicate electrode tips were left intact or broken and dipped in paraffin embedding wax. Excess wax was removed from the carbon surface with xyelenes or by repeated cycling at an extended waveform (-0.4 to 1.4V, 400 V/s, 60 Hz). Then, the waveform was switched to a standard waveform (-0.4 to 1.3V, 400 V/s, 10 Hz) and cycled until stable. Wax-sealing does not inhibit electrode sensitivity, as electrodes detected linear changes in dopamine before and after wax (then xylenes) exposure. Paraffin seals are intact after 11 days of implantation in the mouse, and still capable of measuring transient changes in in vivo dopamine. From this it is clear that paraffin wax is an effective sealant for FSCV electrodes that provides a convenient substitute to epoxy sealants.  相似文献   

3.
4.
Microbial fuel cell (MFC) and its cathode performances were compared with use of carbon fiber brush and plain carbon paper cathode electrodes in algae aeration. The MFC having carbon fiber brush cathode exhibited a voltage of 0.21 ± 0.01 V (1,000 Ω) with a cathode potential of around ?0.14 ± 0.01 V in algal aeration, whereas MFC with plain carbon paper cathode resulted in a voltage of 0.06 ± 0.005 V with a cathode potential of ?0.39 ± 0.01 V. During polarizations, MFC equipped with carbon fiber brush cathode showed a maximum power density of 30 mW/m2, whereas the MFC equipped with plain carbon paper showed a power density of 4.6 mW/m2. In algae aeration, the internal resistance with carbon fiber brush cathode was 804 Ω and with plain carbon paper it was 1,210 Ω. The peak currents of MFC operation with carbon fiber brush and plain carbon paper cathodes were ?31 mA and ?850 µA, respectively.  相似文献   

5.
《IRBM》2008,29(2-3):202-207
This paper deals with the development of a disposable electrochemical sensor for the detection of hydrogen peroxide, using screen-printed carbon-based electrodes (SPCEs) modified with multi-wall carbon nanotubes (MWCNs) dispersed in a polyethylenimine (PEI) mixture. The modified sensors showed an excellent electrocatalytic activity towards the analyte, respect to the high overvoltage characterising unmodified screen-printed sensors. The composition of the PEI/MWCNT dispersion was optimised in order to improve the sensitivity and reproducibility. The optimised sensor showed good reproducibility (10% RSD calculated on three experiments repeated on the same electrode), whereas a reproducibility of 15% as RSD was calculated on electrodes from different preparations. Preliminary experiments carried out using glucose oxidase (GOD) as biorecognition element gave rise to promising results indicating that these new devices may represent interesting components for biosensor construction.  相似文献   

6.
The micropipette aspiration test has been used extensively in recent years as a means of quantifying cellular mechanics and molecular interactions at the microscopic scale. However, previous studies have generally modeled the cell as an infinite half-space in order to develop an analytical solution for a viscoelastic solid cell. In this study, an axisymmetric boundary integral formulation of the governing equations of incompressible linear viscoelasticity is presented and used to simulate the micropipette aspiration contact problem. The cell is idealized as a homogeneous and isotropic continuum with constitutive equation given by three-parameter (E, tau 1, tau 2) standard linear viscoelasticity. The formulation is used to develop a computational model via a "correspondence principle" in which the solution is written as the sum of a homogeneous (elastic) part and a nonhomogeneous part, which depends only on past values of the solution. Via a time-marching scheme, the solution of the viscoelastic problem is obtained by employing an elastic boundary element method with modified boundary conditions. The accuracy and convergence of the time-marching scheme are verified using an analytical solution. An incremental reformulation of the scheme is presented to facilitate the simulation of micropipette aspiration, a nonlinear contact problem. In contrast to the halfspace model (Sato et al., 1990), this computational model accounts for nonlinearities in the cell response that result from a consideration of geometric factors including the finite cell dimension (radius R), curvature of the cell boundary, evolution of the cell-micropipette contact region, and curvature of the edges of the micropipette (inner radius a, edge curvature radius epsilon). Using 60 quadratic boundary elements, a micropipette aspiration creep test with ramp time t* = 0.1 s and ramp pressure p*/E = 0.8 is simulated for the cases a/R = 0.3, 0.4, 0.5 using mean parameter values for primary chondrocytes. Comparisons to the half-space model indicate that the computational model predicts an aspiration length that is less stiff during the initial ramp response (t = 0-1 s) but more stiff at equilibrium (t = 200 s). Overall, the ramp and equilibrium predictions of aspiration length by the computational model are fairly insensitive to aspect ratio a/R but can differ from the half-space model by up to 20 percent. This computational approach may be readily extended to account for more complex geometries or inhomogeneities in cellular properties.  相似文献   

7.
In vivo electrochemistry was used to investigate the mechanisms contributing to the clearance of locally applied dopamine in the dorsal striatum and nucleus accumbens of urethane-anesthetized rats. Chronoamperometric recordings were continuously made at 5 Hz using Nafion-coated carbon fiber electrodes. When a finite amount of dopamine was pressure-ejected at 5-min intervals from a micropipette adjacent to the electrode, transient and reproducible dopamine signals were detected. Substitution of L-a-methyldopamine, a substrate for the dopamine transporter but not for monoamine oxidase, for dopamine in the micropipette did not substantially alter the time course of the resulting signals. This indicates that metabolism of locally applied dopamine to 3,4-dihydroxyphenylacetic acid is not responsible for the decline in the dopamine signal. Similarly, changing the applied oxidation potential from ±0.45 to ±0.80 V, which allows for detection of 3-methoxytyramine formed from dopamine via catechol-O-methyltransferase, had little effect on signal amplitude or time course. In contrast, lesioning the dopamine terminals with 6-hydroxydopamine, or locally applying the dopamine uptake inhibitors cocaine or nomifensine before pressure ejection of dopamine, significantly increased the amplitude and time course of the dopamine signals in both regions. The effects of cocaine and nomifensine were greater in the nucleus accumbens than in the dorsal striatum. Local application of lidocaine and procaine had no effect on the dopamine signals. Initial attempts at modeling resulted in curves that were in qualitative agreement with our experimental findings. Taken together, these data indicate that (1) uptake of dopamine by the neuronal dopamine transporter, rather than metabolism or diffusion, is the major mechanism for clearing locally applied dopamine from the extracellular milieu of the dorsal striatum and nucleus accumbens, and (2) the nucleus accumbens is more sensitive to the effects of inhibitors of dopamine uptake than is the dorsal striatum.  相似文献   

8.
An electrochemical method has been successfully demonstrated for sensitive determination of homocysteine (HcySH) with carbon nanotube (CNT)-modified glassy carbon (GC) electrodes. Cyclic voltammetric results clearly show that carbon nanotubes, especially those pretreated with nitric acid, possess an excellent electrocatalytic activity toward the oxidation of HcySH at a low potential (0.0 V versus Ag/AgCl). The remarkable catalytic property of the acid-pretreated CNTs, which is essentially associated with oxygen-containing moieties introduced on the tube surface, has been further exploited as a sensitive determination scheme for HcySH. Continuous-flow amperometric results suggest that the CNT-based electrodes (p-CNT/Nafion/GC), which were prepared by using Nafion to solubilize and further immobilize CNTs on GC electrodes, show striking analytical properties of good stability and reproducibility and strong ability against electrode fouling. Such analytical properties, along with the low operation potential, substantially enable a reliable and sensitive determination of HcySH with a good dynamic linearity up to 60 microM and a detection limit of 0.06 microM (S/N = 3). The catalytic mechanism and the possible application of the as-prepared p-CNT/Nafion/GC electrodes for the study of the auto-oxidation of HcySH are also demonstrated and discussed.  相似文献   

9.
To determine the criteria for the selection of an electrode suitable for a bio-fuel cell (BFC), five electrodes, i.e. silver, aluminum, nickel, stainless steel and carbon fiber cloth were investigated. The performance of the BFC according to the electrode material, including the generated voltage, current density and power density was observed. These results show that the materials used for constructing the electrodes affect the performance of the BFC. An impedance analysis was used to describe the characteristics of the electrodes in the solution. Equivalent circuits of each component such as solution, electrodes-solution interface and electrode were determined from the impedance data. The constant-phase element (CPE) model was applied for data analyzing. It was found that stainless steel, nickel and aluminum behaved like a polarized electrode which has a high electrode-solution interfacial impedance, while carbon fiber cloth and silver had a low impedance like a non-polarized electrode. The impedance data indicated that a higher interfacial impedance will result in a higher loading effect. The results can be summarized that the carbon fiber cloth electrode offers a good electron transfer in the system and thus supplies higher power to the external load.  相似文献   

10.
Disposable hydrogen peroxide biosensor was developed based on the direct electron transfer of horseradish peroxidase (HRP) on porous screen-printed carbon electrodes. Conventional screen-printing process was manually performed to fabricate the planar carbon electrodes, which were endowed with porous surfaces especially after anodizing pretreatment. The cyclic voltammetry experiment indicated a pair of stable and well-defined redox peaks with a formal potential of -0.33 V. And the formal potential was pH-dependent, having a slope of -55.2 mV/pH which indicated one electron transfer. The heterogeneous electron transfer rate constant k(s) was estimated to be 13.28+/-4.80s(-1). Additionally, the sensitivity was 143.3 mAM(-1)cm(-2) and the linear range was from 5.98 to 35.36 microM. In conclusion, the present work achieved the direct electron transfer of HRP on screen-printed electrodes without any promoters. The porous structure of screen-printed carbon electrodes facilitated the direct electron transfer between the active sites of HRP and the electrodes due to large amounts of conductive sites available on the surface for contacting with enzyme molecules. Moreover, the proposed biosensor could be mass-produced at low price, promising for commercial application.  相似文献   

11.
目的:建立实用的小鼠活体脑组织基因转染技术。方法:将EGFP质粒(CAGS启动子)注射到胎龄16 d(E16d)的胎鼠侧脑室,用镊形电极隔着子宫壁夹住胎鼠头部,在45 V电压下给予5次电脉冲刺激,每次刺激50ms,间隔1 s;转染后不同天数将胎鼠脑组织完整取出,以4%PFA固定后冰冻切片,进行激光共聚焦照相。结果:EGFP质粒被转入小鼠活体脑组织细胞中并获得表达,动物存活率为90%,GFP阳性率高于80%。结论:通过对麻醉剂、电脉冲刺激、质粒浓度、术中术后处理等多种实验条件的摸索,建立了实用的小鼠胎脑组织活体转基因技术。  相似文献   

12.
The process by which spiders make their mechanically superior fiber involves removal of solvent (water) from a concentrated protein solution while the solution flows through a progressively narrowing spinning canal. Our aim was to determine a possible mechanism of spider water removal by using a computational model. To develop appropriate computational techniques for modeling of solvent removal during fiber spinning, a study was first performed using a synthetic solution. In particular, the effect of solvent removal during elongational flow (also exhibited in the spinning canal of the spider) on fiber mechanical properties was examined. The study establishes a model for solvent removal during dry spinning of synthetic fibers, assuming that internal diffusion governs solvent removal and that convective resistance is small. A variable internal solvent diffusion coefficient, dependent on solvent concentration, is also taken into account in the model. An experimental setup for dry (air) spinning was used to make fibers whose diameter was on the order of those made by spiders (approximately 1 microm). Two fibers of different thickness, corresponding to different spinning conditions, were numerically modeled for solvent removal and then mechanically tested. These tests showed that the thinner fiber, which lost more solvent under elongational flow, had 5-fold better mechanical properties (elastic modulus of 100 MPa and toughness of 15 MJ/m3) than the thicker fiber. Even though the mechanical properties were far from those of dragline spider silk (modulus of 10 GPa and toughness of 150 MJ/m3), the experimental methodology and numerical principles developed for the synthetic case proved to be valuable when establishing a model for the Nephila spinning process. In this model, an assumption of rapid convective water removal at the spinning canal wall was made, with internal diffusion of water through the fiber as the governing process. Then the diffusion coefficient of water through the initial spinning solution, obtained ex vivo from the Nephila clavipes major ampullate gland, was determined and incorporated into the numerical procedure, along with the wall boundary conditions and canal geometry. Also, a typical fiber reeling speed during web making, as well as the assumption of a dry exiting fiber, were included in the model. The results show that a cross-section of spinning solution (dope), which is initially 70% water, spends 19 s in the spinning canal in order to emerge dry. While the dope cross-section traverses the canal, its velocity increases from 0.37 mm/s at the entrance to 12.5 mm/s at the canal exit. The obtained results thus indicate that simple diffusion, along with the dry wall boundary condition, is a viable mechanism for water removal during typical Nephila fiber spinning.  相似文献   

13.
A novel electrochemical reactor employing activated carbon fiber (ACF) electrodes was constructed for disinfecting bacteria in drinking water. Escherichia coli adsorbed preferentially onto ACF rather than to carbon-cloth or granular-activated carbon. E. coli cells, which adsorbed onto the ACF, were killed electrochemically when a potential of 0.8 V vs. a saturated calomel electrode (SCE) was applied. Drinking water was passed through the reactor in stop-flow mode: 2mL/min for 12 h, o L/min for 24 h, and 1 mL/min for 6 h. At an applied potential of 0.8 V vs, SCE, viable cell concentration reamined below 30 cells/mL. In the absence of an applied potential, bacteria grew to a maximum concentration of 9.5 x 10(3) cells/mL. After continuous operation at 0.8 V vs. SCE, cells adsorbed onto the ACF could not be observed by scanning electron microscopy. In addition, chlorine in drinking water was completely removed by the reactor. Therefore, clean and efficient inactivation of bacteria in drinking water was successfully performed. (c) 1994 John Wiley & Sons, Inc.  相似文献   

14.
Solid‐state cooling fibers comprising an electrocaloric polymer, poly(vinylidene fluoride‐trifluoroethylene‐chlorofluoroethylene) terpolymer, spray‐coated on a conductive fiber core electrode, and a coaxially coated single‐walled carbon nanotubes outer electrode are reported. The fiber coolers can be less than 160 µm thin and more than 8 cm long. Measured cooling ΔT of the EC fibers is 0.7 °C at an electric field of 100 V µm?1 applied between the electrodes. The fiber coolers are flexible; 2000 cycles of repeated bending to a 2.5 mm curvature radius do not significantly degrade the cooling ΔT. Self‐actuated bending of the fibers is observed during the EC operation, which allows the EC fibers to move heat from one location to another without any additional driving mechanisms such as electromagnetic motors, pumps, or electrostatic actuation that are commonly used in conventional coolers. The self‐actuating EC fibers represent the first ever active cooler in a thin fiber form factor.  相似文献   

15.
The ability to rapidly detect neurotransmitter release has broad implications in the study of a variety of neurodegenerative diseases. Electrochemical detection methods using carbon nanofiber nanoelectrodes integrated into the Wireless Instantaneous Neurotransmitter Concentration Sensing System (WINCS) offer many important advantages including biocompatibility, selectivity, sensitivity, and rapid adsorption kinetics. Carbon nanofiber nanoelectrodes exhibit greater selectivity and sensitivity in the electrochemical detection of neurotransmitters compared to macroelectrodes and are able to resolve a ternary mixture of dopamine (DA), serotonin (5-HT), and ascorbic acid as well as to detect individual neurotransmitters in concentrations as low as 50 nM for DA and 100 nM for 5-HT using differential pulse voltammetry. Adsorption kinetics studies and isopropyl alcohol treatments modeled on previous studies on carbon fiber microelectrodes were conducted to investigate the analogous properties on carbon nanofiber electrodes using fast-scan cyclic voltammetry with WINCS and showed analogous results in carbon nanofiber electrodes compared with carbon fiber microelectrodes.  相似文献   

16.
Potentiometric sensors are typically unable to carry out on-site monitoring of environmental drug contaminants because of their high limits of detection (LODs). Designing a novel ligand material for the target analyte and managing the composition of the internal reference solution have been the strategies employed here to produce for the first time a potentiometric-based direct reading method for an environmental drug contaminant. This concept has been applied to sulfamethoxazole (SMX), one of the many antibiotics used in aquaculture practices that may occur in environmental waters. The novel ligand has been produced by imprinting SMX on the surface of graphitic carbon nanostructures (CN)<500 nm. The imprinted carbon nanostructures (ICN) were dispersed in plasticizer and entrapped in a PVC matrix that included (or not) a small amount of a lipophilic additive. The membrane composition was optimized on solid-contact electrodes, allowing near-Nernstian responses down to 5.2 μg/mL and detecting 1.6 μg/mL. The membranes offered good selectivity against most of the ionic compounds in environmental water. The best membrane cocktail was applied on the smaller end of a 1000 μL micropipette tip made of polypropylene. The tip was then filled with inner reference solution containing SMX and chlorate (as interfering compound). The corresponding concentrations were studied for 1 × 10(-5) to 1 × 10(-10) and 1 × 10(-3) to 1 × 10(-8)mol/L. The best condition allowed the detection of 5.92 ng/L (or 2.3 × 10(-8)mol/L) SMX for a sub-Nernstian slope of -40.3 mV/decade from 5.0 × 10(-8) to 2.4 × 10(-5)mol/L. The described sensors were found promising devices for field applications. The good selectivity of the sensory materials together with a carefully selected composition for the inner reference solution allowed LODs near the nanomolar range. Both solid-contact and "pipette tip"-based sensors were successfully applied to the analysis of aquaculture waters.  相似文献   

17.
18.
A method similar to the sucrose-gap technique introduced be Stäpfli is described for measuring membrane potential and current in singly lobster giant axons (diameter about 100 micra). The isotonic sucrose solution used to perfuse the gaps raises the external leakage resistance so that the recorded potential is only about 5 per cent less than the actual membrane potential. However, the resting potential of an axon in the sucrose-gap arrangement is increased 20 to 60 mv over that recorded by a conventional micropipette electrode when the entire axon is bathed in sea water. A complete explanation for this effect has not been discovered. The relation between resting potential and external potassium and sodium ion concentrations shows that potassium carries most of the current in a depolarized axon in the sucrose-gap arrangement, but that near the resting potential other ions make significant contributions. Lowering the external chloride concentration decreases the resting potential. Varying the concentration of the sucrose solution has little effect. A study of the impedance changes associated with the action potential shows that the membrane resistance decreases to a minimum at the peak of the spike and returns to near its initial value before repolarization is complete (a normal lobster giant axon action potential does not have an undershoot). Action potentials recorded simultaneously by the sucrose-gap technique and by micropipette electrodes are practically superposable.  相似文献   

19.
This study investigated roles of the variation of extracellular voltage gradient (VG) over space and cardiac fibers in production of transmembrane voltage changes (DeltaV(m)) during shocks. Eleven isolated rabbit hearts were arterially perfused with solution containing V(m)-sensitive fluorescent dye (di-4-ANEPPS). The epicardium received shocks from symmetrical or asymmetrical electrodes to produce nominally uniform or nonuniform VGs. Extracellular electric field and DeltaV(m) produced by shocks in the absolute refractory period were measured with electrodes and a laser scanner and were simulated with a bidomain computer model that incorporated the anterior left ventricular epicardial fiber field. Measurements and simulations showed that fibers distorted extracellular voltages and influenced the DeltaV(m). For both uniform and nonuniform shocks, DeltaV(m) depended primarily on second spatial derivatives of extracellular voltages, whereas the VGs played a smaller role. Thus, 1) fiber structure influences the extracellular electric field and the distribution of DeltaV(m); 2) the DeltaV(m) depend on second spatial derivatives of extracellular voltage.  相似文献   

20.
M E Trulson 《Life sciences》1985,37(23):2199-2204
Simultaneous recordings of unit activity in the dorsal raphe nucleus (RD) and serotonin (5HT) release in the striatum were made in the cat. Unit recordings were made using Formvar-coated 32 microns diameter nichrome wires. 5HT release was measured using linear sweep voltammetry with semi-differentiation using electrodes prepared from Teflon-coated 32-gauge stainless steel wire filled with carbon paste and Ag/AgCl electrodes and 27-gauge stainless steel needles as reference and auxiliary electrodes, respectively. The working electrodes were scanned at a rate of 10 mV/s over the range of -0.1 to +0.5 V every 5 minutes using a BAS CV37 voltammograph. During REM sleep RD unit activity was decreased 94% from quiet waking (QW) baseline, while the voltammetric response was decreased by only 57%. Chloral hydrate anesthesia decreased RD unit activity by 18% from QW while the voltammetric response was decreased by 39%. LSD decreased RD unit activity by 50% from QW, but the voltammetric response was decreased by 88%. P-chlorophenylalanine produced no significant change in RD unit activity but decreased the voltammetric response by 82%. These data suggest that RD unit activity and 5HT release often differed dramatically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号