首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schoeman MC  Jacobs DS 《Oecologia》2003,134(1):154-162
The allotonic frequency hypothesis proposes that certain insectivorous bat species can prey upon moths that can hear bat echolocation calls by using echolocation frequencies outside the sensitivity range of moth ears. The hypothesis predicts that the peak frequencies of bat echolocation calls are correlated with the incidence of moths in the diets of these bats. The aim of this study was to test this prediction on a bat community dominated by bats using low duty cycle echolocation calls, i.e. aerial foraging, insectivorous species using frequency modulated calls. The community consisted of nine species, two molossids, Sauromys petrophillus and Tadarida aegyptiaca, five vespertilionids, Eptesicus capensis, Eptesicus hottentotus, Miniopteris schreibersii, Myotis tricolor, and Myotis lesueuri, one rhinolophid, Rhinolophus clivosus, and one nycterid, Nycteris thebaica. The insect fauna in the habitat used by the bat community was suited to the testing of the allotonic frequency hypothesis because more than 90% of the moths comprising the insect fauna were tympanate. These included Pyralidae (3.8%), Geometridae (44.9%), Notodontidae (3.8%), Arctiidae (4.6%), Lymantriidae (0.8%) and Noctuidae (32.4%). As predicted, peak echolocation frequency was correlated with the incidence of moths in the diets of these nine species (r=0.98, df=7, P<0.01). Furthermore, multivariate analysis revealed that echolocation frequency (t=9.91, n=129, P<0.001) was a better predictor of diet than forearm length (t=5.51, n=129, P<0.001) or wing area (t=-3.41, n=129, P<0.001). This suggests that the selection pressure exerted by moth hearing might have acted directly on call frequency and secondarily on body size and wing morphology, as part of the same adaptive complex. It is unlikely that dietary differences were due to temporal and spatial differences in the availability of prey because the pattern of differences in skull morphology of the nine species supported our dietary analyses. The skull morphology of a bat represents a historical record of the kind of diet it has become adapted to over its evolutionary history. These results suggest that prey defences may mediate other factors structuring bat communities, e.g. competition. Competition may be reduced for those species of bats that can circumvent prey defences.  相似文献   

2.
1.  Most studies examining interactions between insectivorous bats and tympanate prey use the echolocation calls of aerially-feeding bats in their analyses. We examined the auditory responses of noctuid (Eurois astricta) and notodontid (Pheosia rimosa) moth to the echolocation call characteristics of a gleaning insectivorous bat, Myotis evotis.
2.  While gleaning, M. Evotis used short duration (mean ± SD = 0.66 ± 0.28 ms, Table 2), high frequency, FM calls (FM sweep = 80 – 37 kHz) of relatively low intensity (77.3 + 2.9, –4.2 dB SPL). Call peak frequency was 52.2 kHz with most of the energy above 50 kHz (Fig. 1).
3.  Echolocation was not required for prey detection or capture as calls were emitted during only 50% of hovers and 59% of attacks. When echolocation was used, bats ceased calling 324.7 (±200.4) ms before attacking (Fig. 2), probably using prey-generated sounds to locate fluttering moths. Mean call repetition rate during gleaning attacks was 21.7 (±15.5) calls/s and feeding buzzes were never recorded.
4.  Eurois astricta and P. rimosa are typical of most tympanate moths having ears with BFs between 20 and 40 kHz (Fig. 3); apparently tuned to the echolocation calls of aerially-feeding bats. The ears of both species respond poorly to the high frequency, short duration, faint stimuli representing the echolocation calls of gleaning M. evotis (Figs. 4–6).
5.  Our results demonstrate that tympanate moths, and potentially other nocturnal insects, are unable to detect the echolocation calls typical of gleaning bats and thus are particularly susceptible to predation.
  相似文献   

3.
The islands of Hawai'i offer a unique opportunity for studying the auditory ecology of moths and bats since this habitat has a single species of bat, the Hawaiian hoary bat (Lasiurus cinereus semotus), which exerts the entire predatory selection pressure on the ears of sympatric moths. I compared the moth wings discarded by foraging bats with the number of surviving moths on the island of Kaua'i and concluded that the endemic noctuid Haliophyle euclidias is more heavily preyed upon than similar-sized endemic (e.g. Agrotis diplosticta) and adventive (Agrotis ipsilon and Pseudaletia unipuncta) species. Electrophysiological examinations indicated that, compared with species less preyed upon, H. euclidias has lower auditory sensitivities to the bat's social and echolocation calls, which will result in shorter detection distances of the bat. The poor ears of H. euclidias suggest that this moth coevolved with the bat using non-auditory defences that resulted in auditory degeneration. This moth now suffers higher predation because it is drawn away from its normal habitat by the man-made lights that are exploited by the bat.  相似文献   

4.
An evolutionary war is being played out between the bat, which uses ultrasonic calls to locate insect prey, and the moth, which uses microscale ears to listen for the approaching bat. While the highest known frequency of bat echolocation calls is 212 kHz, the upper limit of moth hearing is considered much lower. Here, we show that the greater wax moth, Galleria mellonella, is capable of hearing ultrasonic frequencies approaching 300 kHz; the highest frequency sensitivity of any animal. With auditory frequency sensitivity that is unprecedented in the animal kingdom, the greater wax moth is ready and armed for any echolocation call adaptations made by the bat in the on-going bat–moth evolutionary war.  相似文献   

5.
Coloured rings are often used for marking bats so that specific individuals can be recognized. We noticed that the rings of mouse-eared bats, Myotis myotis and Myotis blythii, in a combination of one plastic-split and one metallic ring on the same forearm, emitted sounds that were largely ultrasonic each time the rings met in flight. We recorded the ring sounds and the echolocation calls produced by the bats, and played them back to neural preparations of lesser yellow underwing moths, Noctua comes, while making extracellular recordings from the moths' A1 auditory receptors. The peak energy of the ring sounds occurred much closer in frequency to the moth's best auditory frequency (the frequency at which the moth has the lowest auditory threshold) than the peak energy of the calls, for both bat species, and the ring sounds were detected at a threshold 5-6 dB peSPL lower than the calls. Moths performed evasive manoeuvres to playbacks of ring sounds more frequently than they did to control (tape noise) sequences. These neural and behavioural responses imply that certain bats should not be marked with two rings on one wing, as this may make the bat more apparent to tympanate insects, and may therefore reduce its foraging success. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

6.
Bat-and-moth is a good model system for understanding predator–prey interactions resulting from interspecific coevolution. Night-flying insects have been under predation pressure from echolocating bats for 65 Myr, pressuring vulnerable moths to evolve ultrasound detection and evasive maneuvers as counter tactics. Past studies of defensive behaviors against attacking bats have been biased toward noctuoid moth responses to short duration pulses of low-duty-cycle (LDC) bat calls. Depending on the region, however, moths have been exposed to predation pressure from high-duty-cycle (HDC) bats as well. Here, we reveal that long duration pulse of the sympatric HDC bat (e.g., greater horseshoe bat) is easily detected by the auditory nerve of Japanese crambid moths (yellow peach moth and Asian corn borer) and suppress both mate-finding flights of virgin males and host-finding flights of mated females. The hearing sensitivities for the duration of pulse stimuli significantly dropped non-linearly in both the two moth species as the pulse duration shortened. These hearing properties support the energy integrator model; however, the threshold reduction per doubling the duration has slightly larger than those of other moth species hitherto reported. And also, Asian corn borer showed a lower auditory sensitivity and a lower flight suppression to short duration pulse than yellow peach moth did. Therefore, flight disruption of moth might be more frequently achieved by the pulse structure of HDC calls. The combination of long pulses and inter-pulse intervals, which moths can readily continue detecting, will be useful for repelling moth pests.  相似文献   

7.
Echolocating bats and eared moths are a model system of predator–prey interaction within an almost exclusively auditory world. Through selective pressures from aerial-hawking bats, noctuoid moths have evolved simple ears that contain one to two auditory neurons and function to detect bat echolocation calls and initiate defensive flight behaviours. Among these moths, some chemically defended and mimetic tiger moths also produce ultrasonic clicks in response to bat echolocation calls; these defensive signals are effective warning signals and may interfere with bats'' ability to process echoic information. Here, we demonstrate that the activity of a single auditory neuron (the A1 cell) provides sufficient information for the toxic dogbane tiger moth, Cycnia tenera, to decide when to initiate defensive sound production in the face of bats. Thus, despite previous suggestions to the contrary, these moths'' only other auditory neuron, the less sensitive A2 cell, is not necessary for initiating sound production. However, we found a positive linear relationship between combined A1 and A2 activity and the number of clicks the dogbane tiger moth produces.  相似文献   

8.
While the evasive responses of many flying acoustic insects to aerial‐hawking bats are duly recognized and studied, the responses of non‐aerial insects to gleaning bats are generally overlooked. It has been assumed that acoustic insects are deaf to these predators because gleaning bat echolocation calls are typically low in amplitude, brief (1–3 ms) and very high in frequency (>60 kHz). We tested this assumption in a series of playback experiments with a moth (Achroia grisella) that uses hearing in both predator evasion and mating. We report that ultrasound pulses ≥78 dB peSPL (peak equivalent sound pressure level) and ≥1 ms in duration inhibit stationary males from broadcasting their own ultrasonic advertisement calls, provided that the pulsed stimuli are delivered at a repetition rate ≤30/s. Further analyses suggest that inhibition by pulsed ultrasound comprises two processes performed serially. First, a startle response with a latency <50 ms is elicited by a single pulse ≥1 ms duration. Here, a male misses broadcasting several calls over a 50–100 ms interval. Secondly, the startle may be extended as a silence response lasting several to many seconds if subsequent pulses occur at a rate ≤30/s. Call inhibition cannot represent a simple response to acoustic power because of the inverse interaction between pulse duration and rate. On the other hand, the temporal and energy characteristics of inhibitory stimuli match those of gleaning bat echolocation calls, and we infer that inhibition is a specialized defensive behavior by which calling males may avoid detection by eavesdropping bats.  相似文献   

9.
Auditory feedback from the animal''s own voice is essential during bat echolocation: to optimize signal detection, bats continuously adjust various call parameters in response to changing echo signals. Auditory feedback seems also necessary for controlling many bat communication calls, although it remains unclear how auditory feedback control differs in echolocation and communication. We tackled this question by analyzing echolocation and communication in greater horseshoe bats, whose echolocation pulses are dominated by a constant frequency component that matches the frequency range they hear best. To maintain echoes within this “auditory fovea”, horseshoe bats constantly adjust their echolocation call frequency depending on the frequency of the returning echo signal. This Doppler-shift compensation (DSC) behavior represents one of the most precise forms of sensory-motor feedback known. We examined the variability of echolocation pulses emitted at rest (resting frequencies, RFs) and one type of communication signal which resembles an echolocation pulse but is much shorter (short constant frequency communication calls, SCFs) and produced only during social interactions. We found that while RFs varied from day to day, corroborating earlier studies in other constant frequency bats, SCF-frequencies remained unchanged. In addition, RFs overlapped for some bats whereas SCF-frequencies were always distinctly different. This indicates that auditory feedback during echolocation changed with varying RFs but remained constant or may have been absent during emission of SCF calls for communication. This fundamentally different feedback mechanism for echolocation and communication may have enabled these bats to use SCF calls for individual recognition whereas they adjusted RF calls to accommodate the daily shifts of their auditory fovea.  相似文献   

10.
Size, peripheral auditory tuning and target strength in noctuid moths   总被引:1,自引:0,他引:1  
We investigated relationships among body size, the frequency of peak auditory sensitivity (best frequency) and acoustic conspicuousness (measured as target strength) to simulated bat echolocation calls in a range of tympanate moths (Lepidoptera: Noctuidae). Audiograms of Amphipyra pyramidea Linnaeus, Agrotis exclamationis Linnaeus, Omphaloscelis lunosa Haworth and Xestia xanthographa Denis and Schiffermüller are described for the first time. Best frequency was inversely related to forewing length, an index of body size. Models predict that target strength falls off rapidly once wavelength (1/frequency) exceeds some defined feature of target size (e.g. circumference for spheres). We investigated how target strength varies in relation to target size and emitted frequency for simple targets (paper discs) and for moths. Target strength fell rapidly when target radius/wavelength < 2 for paper discs of similar size to many noctuid moths. Target strength fell rapidly below wing‐length/wavelength ratios of 2 in relatively small (O. lunosa, wing‐length = 15.2 ± 0.4 mm, best frequency = 45 kHz) and large (N. pronuba, wing‐length = 24.6 ± 0.8 mm, best frequency = 15 kHz) noctuid species, and decreased rapidly at frequencies below 25 kHz in both species. These target strengths were used to predict the detection distance of the moths by bat sonar between 10 and 55 kHz. Predicted detection distances of both species were maximal for fictive call frequencies of 20 kHz, and were reduced at lower frequencies due to decreased target strength and at higher frequencies by excess atmospheric attenuation. Both relatively large and small noctuid moths are therefore strong acoustic targets to bats that echolocate at relatively low frequencies. Bats may emit allotonic calls at low frequency because the costs of reduced detection range are smaller than the benefits of reduced audibility to moths. Because best frequency scales with body size and maximum detection distance is not very sensitive to body size, noctuid moths in the size range examined do not necessarily have best frequencies that would match the call frequencies of bats that may detect the moths at greatest distance precisely. Hence, best frequency may be constrained in part by body size.  相似文献   

11.
ABSTRACT. The dogbane tiger moth ( Cycnia tenera Hübner; Arctiidae) responds to ultrasonic, artificial bat echolocation signals by emitting stereotyped trains of high-frequency, rapidly repeated clicks. By comparing this response in intact and headless moths, the role of protocerebral auditory inter-neurones suggested by other studies was examined. Individual moths were tested intact and decapitated, and their response differences analysed. Response latency and threshold (dB) did not alter with the removal of the head but response duration and responsiveness to stimulus trains were significantly reduced in headless moths. These data are interpreted as suggesting the existence of a reflex arc connecting the moth's tympanic organ (ear) with its sound-producing structure (tymbal), and as providing preliminary evidence that the role of higher-order interneurones is primarily that of response reinforcement.  相似文献   

12.
皮氏菊头蝠回声定位声波与年龄的关系   总被引:2,自引:0,他引:2  
皮氏菊头蝠 (Rhinolophuspearsoni)雌性成体 5只和幼体 2只采自贵州省贞丰县珉谷镇。采用超声波探测仪 (D980 ,ULTRASOUNDDETECTOR)接收皮氏菊头蝠的回声定位声波 ,转换到原频率的 1 / 1 0后导入计算机 ,然后用专业声谱分析软件 (Batsound 3 1 0 )进行分析。成蝠在飞行和悬挂状态下的声波结构相似 ,只是声波各项参数值略有不同 :它们发射FM CF FM型声波 ,具有 2~ 3个谐波 ,主频率在飞行时为 5 6 80± 0 6 2kHz ,悬挂时为 5 8 0 5± 0 2 4kHz ;声脉冲时间和间隔在飞行时分别为 3 4 6 2± 5 2 9ms和 86 5 0± 1 9 72ms ,悬挂时分别为 4 1 0 8± 5 87ms和 1 1 7 2 9± 6 6 4 4ms ;能率环飞行时为 ( 4 4 0 6± 1 2 5 8) % ,悬挂时为 ( 4 6 0 0±2 4 2 5 ) %。幼蝠声波为CF FM型 ,谐波数为 5~ 8个 ,主频率明显低于成体 ,FM带宽窄于成体 ,声脉冲时间和间隔短于成体 ,能率环低于成体。皮氏菊头蝠回声定位声波与年龄有关 ,这可能因成体的声波主要是探测食物和周围环境的详细信息 ,而幼体主要是与母蝠进行交流。  相似文献   

13.
Bats and moths: what is there left to learn?   总被引:3,自引:0,他引:3  
Abstract.  Over 14 families of moths have ears that are adapted to detect the ultrasonic echolocation calls of bats. On hearing a bat, these moths respond with an escape response that reduces their chances of being caught. As an evolutionary response, bats may then have evolved behavioural strategies or changes in call design to overcome the moth's hearing. The nature of this interaction is reviewed. In particular, the role of the echolocation calls of bats in the shaping of the structure, neurophysiology and behavioural responses of moths is discussed. Unresolved issues, such as the structural complexity of the moth's auditory system, the nature of temporal integration and the role of the non-auditory B cell, are described. Issues in which the interactions between bats and moths may be of more general interest to biologists, such as noise filtering within the central nervous system, protean behaviours and coevolution between predator and prey, are also discussed. The interaction between bats and moths has much to interest general biologists, and may provide a useful model in understanding the neurophysiological basis of behaviour, including protean escape behaviours. The validity of the term coevolution as applied to this system is discussed, as there is no doubt that the auditory system of moths is a response to the echolocation calls of bats, although the evolutionary response of bats to moths is more ambiguous.  相似文献   

14.
Female greater wax moths Galleria mellonella display by wing fanning in response to bursts of ultrasonic calls produced bymales. The temporal and spectral characteristics of these callsshow some similarities with the echolocation calls of batsthat emit frequency-modulated (FM) signals. Female G. mellonellatherefore need to distinguish between the attractive signalsof male conspecifics, which may lead to mating opportunities,and similar sounds made by predatory bats. We therefore predictedthat (1) females would display in response to playbacks of male calls; (2) females would not display in response to playbacksof the calls of echolocating bats (we used the calls of Daubenton'sbat Myotis daubentonii as representative of a typical FM echolocatingbat); and (3) when presented with male calls and bat callsduring the same time block, females would display more whenperceived predation risk was lower. We manipulated predationrisk in two ways. First, we varied the intensity of bat callsto represent a nearby (high risk) or distant (low risk) bat.Second, we played back calls of bats searching for prey (lowrisk) and attacking prey (high risk). All predictions weresupported, suggesting that female G. mellonella are able todistinguish conspecific male mating calls from bat calls, andthat they modify display rate in relation to predation risk.The mechanism (s) by which the moths separate the calls ofbat and moth must involve temporal cues. Bat and moth signalsdiffer considerably in duration, and differences in durationcould be encoded by the moth's nervous system and used in discrimination.  相似文献   

15.
While searching for prey in open spaces, Epteisicus fuscus emits long-duration, downward frequency-modulated calls which cover a frequency band of about 28-22 kHz. In the ascending auditory pathways of E. fuscus, neurons tuned to these search call frequencies are characterised by a remarkably high frequency selectivity and very sensitive absolute thresholds. We investigated whether this narrow tuning is reflected in an exceptional psychoacoustic frequency discrimination ability. The average frequency difference limen of E. fuscus at search call frequencies determined in a two-alternative, forced-choice experiment amounted to about 420 Hz, corresponding to a Weber ratio of 0.017. This value is similar to those found in non-echolocating mammals, and an order of magnitude larger than the frequency difference limens of bats emitting constant-frequency call components. We discuss these differences in frequency difference limen, and relate them to different echolocation strategies.  相似文献   

16.
环境噪声影响动物的活动及其叫声特性,已成为动物面对的一种重要选择压力。为应对噪声的干扰,多数动物类群会远离噪声区域和改变其叫声的频谱时间结构,如延长叫声持续时间、提高叫声频率等,但有些动物的活动和叫声频谱时间结构并不受环境噪声的影响。本研究在自然条件下,研究不同环境噪声强度对蝙蝠活动和回声定位声波的影响。选取噪声强度有差异的12个样点,分别录制各样点大卫鼠耳蝠、西南鼠耳蝠、亚洲长翼蝠及未知蝙蝠的回声定位声波,分析其持续时间、起始频率、峰频、终止频率和带宽,统计蝙蝠通过次数。回归分析结果显示:环境噪声强度与大卫鼠耳蝠、西南鼠耳蝠、亚洲长翼蝠及未知蝙蝠的活动无显著相关性P > 0.05),与回声定位声波的脉冲持续时间、起始频率、峰频、终止频率及带宽均不显著相关(P > 0.05)。暗示低频低强度(< 20 kHz, < 67.5 dB)的环境噪声可能对高频回声定位蝙蝠的叫声及活动没有显著影响。  相似文献   

17.
Summary Auditory response properties were studied in the superior colliculus (SC) of the echolocating horseshoe bat Rhinolophus rouxi, a long CF-FM bat, by the use of stationary, dichotic stimuli.The most striking finding in the horseshoe bat was an enormous overrepresentation of neurons with best frequencies in the range of the constant frequency component of the species specific echolocation call (72% of the auditory neurons). These neurons had response thresholds as low as 0 dB SPL and were narrowly tuned with Q10 dB — values up to 400, just as in the nuclei of the primary auditory pathway in this species. This overrepresentation may suggest the importance of the superior colliculus in the context of echolocation behavior.While noise stimuli were not particularly effective, other auditory response properties were similar to those described in other mammals. 65% of the SC neurons in the horseshoe bat responded only to monaural stimulation of one ear, primarily the contralateral one. 32% of the neurons received monaural input from both ears. The proportion of neurons responsive to ipsilateral stimulation (41%) was rather high. Mean response latency was 8.9 ms for contralateral stimulation.A tonotopic organization is lacking, but high-frequency neurons are less frequent in rostral SC.Abbreviations CF constant frequency component of echolocation call; - >CF frequencies above range of CF-component - FM frequency modulated component of echolocation call - <FM frequencies below range of FM-component - RF resting frequency of an individual bat - Rh.r. Rhinolophus rouxi - SC superior colliculus  相似文献   

18.
One hundred and thirty-eight echolocation calls of 63 free-flying individuals of five bat species (Rhinolophus ferrumequinum,Myotis formosus,Myotis ikonnikovi,Myotis daubentoni and Murina leucogaster)were recorded (by ultrasonic bat detector (D980)) in Zhi'an village of Jilin Province,China.According to the frequency-time spectra,these calls were categorized into two types:FM/CF (constant frequency) / FM (R.ferrumequinum) and FM (frequency modulated)(M.formosus,M.ikonnikovi,M.daubentoni and M.leucogaster).Sonograms of the calls of R.ferrumequinum could easily be distinguished from those of the other four species.For the calls of the remaining four species,six echolocation call parameters,including starting frequency,ending frequency,peak frequency duration,longest inter-pulse interval and shortest inter-pulse interval,were examined by stepwise discriminant analysis.The results show that 84.1% of calls were correctly classified,which indicates that these parameters of echolocation calls play an important role in identifying bat species.These parameters can be used to test the accuracy of general predictions based on bats' morphology in the same forest and can provide essential information for assessing patterns of bat habitat use.  相似文献   

19.
Echolocating bats are regularly studied to investigate auditory‐guided behaviors and as important bioindicators. Bioacoustic monitoring methods based on echolocation calls are increasingly used for risk assessment and to ultimately inform conservation strategies for bats. As echolocation calls transmit through the air at the speed of sound, they undergo changes due to atmospheric and geometric attenuation. Both the speed of sound and atmospheric attenuation, however, are variable and determined by weather conditions, particularly temperature and relative humidity. Changing weather conditions thus cause variation in analyzed call parameters, limiting our ability to detect, and correctly analyze bat calls. Here, I use real‐world weather data to exemplify the effect of varying weather conditions on the acoustic properties of air. I then present atmospheric attenuation and speed of sound for the global range of weather conditions and bat call frequencies to show their relative effects. Atmospheric attenuation is a nonlinear function of call frequency, temperature, relative humidity, and atmospheric pressure. While atmospheric attenuation is strongly positively correlated with call frequency, it is also significantly influenced by temperature and relative humidity in a complex nonlinear fashion. Variable weather conditions thus result in variable and unknown effects on the recorded call, affecting estimates of call frequency and intensity, particularly for high frequencies. Weather‐induced variation in speed of sound reaches up to about ±3%, but is generally much smaller and only relevant for acoustic localization methods of bats. The frequency‐ and weather‐dependent variation in atmospheric attenuation has a threefold effect on bioacoustic monitoring of bats: It limits our capability (1) to monitor bats equally across time, space, and species, (2) to correctly measure frequency parameters of bat echolocation calls, particularly for high frequencies, and (3) to correctly identify bat species in species‐rich assemblies or for sympatric species with similar call designs.  相似文献   

20.
许多动物的叫声频率呈现性二态现象。蝙蝠夜间活动,主要利用声音信号导航空间、追踪猎物、传递交流信息。本研究选择成体菲菊头蝠作为研究对象,检验回声定位声波频率性二态是否有利于性别识别。研究发现,菲菊头蝠回声定位声波频率参数具有显著性别差异。播放白噪音、雄性回声定位声波及雌性回声定位声波期间,实验个体的反应叫声数量依次递减。播放白噪音、雌性回声定位声波及雄性回声定位声波后,实验个体的反应叫声数量依次递增。白噪音诱导反应叫声强度高于回声定位声波诱导反应叫声强度。研究结果表明,菲菊头蝠回声定位声波的频率参数编码发声者性别信息,有利于种群内部的性别识别。本研究暗示,回声定位声波可能在蝙蝠配偶选择中扮演一定作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号