共查询到20条相似文献,搜索用时 15 毫秒
1.
Internalization of mammalian fluorescent cellular prion protein and N-terminal deletion mutants in living cells 总被引:3,自引:0,他引:3
Lee KS Magalhães AC Zanata SM Brentani RR Martins VR Prado MA 《Journal of neurochemistry》2001,79(1):79-87
The cellular prion protein (PrP(c)) is a glycosylphosphatidylinositol (GPI)-anchored plasma membrane protein whose conformational altered forms (PrP(sc)) are known to cause neurodegenerative diseases in mammals. In order to investigate the intracellular traffic of mammalian PrP(c) in living cells, we have generated a green fluorescent protein (GFP) tagged version of PrP(c). The recombinant protein was properly anchored at the cell surface and its distribution pattern was similar to that of the endogenous PrP(c), with labeling at the plasma membrane and in an intracellular perinuclear compartment. Comparison of the steady-state distribution of GFP-PrP(c) and two N-terminal deletion mutants (Delta32-121 and Delta32-134), that cause neurological symptoms when expressed in PrP knockout mice, was carried out. The mutant proteins accumulated in the plasma membrane at the expense of decreased labeling in the perinuclear region when compared with GFP-PrP(c). In addition, GFP-PrP(c), but not the two mutants, internalized from the plasma membrane in response to Cu2+ treatment and accumulated at a perinuclear region in SN56 cells. Our data suggest that GFP-PrP(c) can be used to follow constitutive and induced PrP(c) traffic in living cells. 相似文献
2.
The physiological functions of cellular prion protein (PrP(C)) remain unclear. It has been demonstrated that PrP(C) is a copper binding protein and proposed that its functions could be strictly linked to copper metabolism and neuroprotection. The aim of this study was to clarify how extracellular copper modifies PrP(C) expression and metabolism in cultured neurones. We reported here that copper delivered at physiological concentrations significantly decreases PrP(C) mRNA expression in GN11 neurones. Moreover, copper increases the release of PrP(C) into the culture medium. These results indicate that extracellular copper strongly affects the amount of cellular PrP and might represent an interesting strategy to decrease the expression of PrP(C) in neurones and its conversion in the pathological isoform PrP(Sc). 相似文献
3.
Amino terminal interaction in the prion protein identified using fusion to green fluorescent protein
In contrast to the well-characterized carboxyl domain, the amino terminal half of the mature cellular prion protein has no defined structure. Here, following fusion of mouse prion protein fragments to green fluorescence protein as a reporter of protein stability, we report extreme variability in fluorescence level that is dependent on the prion fragment expressed. In particular, exposure of the extreme amino terminus in the context of a truncated prion protein molecule led to rapid degradation, whereas the loss of only six amino terminal residues rescued high level fluorescence. Study of the precise endpoints and residue identity associated with high fluorescence suggested a domain within the amino terminal half of the molecule defined by a long-range intramolecular interaction between 23KKRPKP28 and 143DWED146 and dependent upon the anti-parallel beta-sheet ending at residue 169 and normally associated with the structurally defined carboxyl terminal domain. This previously unreported interaction may be significant for understanding prion bioactivity and for structural studies aimed at the complete prion structure. 相似文献
4.
Prado MA Alves-Silva J Magalhães AC Prado VF Linden R Martins VR Brentani RR 《Journal of neurochemistry》2004,88(4):769-781
The glycosylphosphatidylinositol (GPI)-anchored cellular prion protein (PrPc) has a fundamental role in prion diseases. Intracellular trafficking of PrPc is important in the generation of protease resistant PrP species but little is known of how endocytosis affects PrPc function. Here, we discuss recent experiments that have illuminated how PrPc is internalized and what are the possible destinations taken by the protein. Contrary to what would be expected for a GPI-anchored protein there is increasing evidence that clathrin-mediated endocytosis and classical endocytic organelles participate in PrPc trafficking. Moreover, the N-terminal domain of PrPc may be involved in sorting events that can direct the protein during its intracellular journey. Indeed, the concept that the GPI-anchor determines PrPc trafficking has been challenged. Cellular signaling can be triggered or be regulated by PrPc and we suggest that endocytosis of PrPc may influence signaling in several ways. Definition of the processes that participate in PrPc endocytosis and intracellular trafficking can have a major impact on our understanding of the mechanisms involved in PrPc function and conversion to protease resistant conformations. 相似文献
5.
Hachiya NS Watanabe K Sakasegawa Y Kaneko K 《Biochemical and biophysical research communications》2004,313(3):818-823
By utilizing double-labeled fluorescent cellular prion protein (PrPC), we revealed that the NH2-terminal and COOH-terminal PrPC fragments exhibit distinct distribution patterns in mouse neuroblastoma neuro2a (N2a) cells and HpL3-4, a hippocampal cell line established from prnp gene-ablated mice [Nature 400 (1999) 225]. Of note, the NH2-terminal PrPC fragment, which predominantly localized in the intracellular compartments, congregated in the cytosol after the treatment with a microtubule depolymerizer (nocodazole). Truncated PrPC with the amino acid residues 1-121, 1-111, and 1-91 in mouse (Mo) PrP exhibited a proper distribution profile, whereas those with amino acid residues 1-52 and 1-33 did not. These data indicate the microtubules-associated intracellular localization of the NH2-terminal PrPC fragment containing at least the 1-91 amino acid residues. 相似文献
6.
Endocytic intermediates involved with the intracellular trafficking of a fluorescent cellular prion protein 总被引:1,自引:0,他引:1
Magalhães AC Silva JA Lee KS Martins VR Prado VF Ferguson SS Gomez MV Brentani RR Prado MA 《The Journal of biological chemistry》2002,277(36):33311-33318
We have investigated the intracellular traffic of PrP(c), a glycosylphosphatidylinositol (GPI)-anchored protein implicated in spongiform encephalopathies. A fluorescent functional green fluorescent protein (GFP)-tagged version of PrP(c) is found at the cell surface and in intracellular compartments in SN56 cells. Confocal microscopy and organelle-specific markers suggest that the protein is found in both the Golgi and the recycling endosomal compartment. Perturbation of endocytosis with a dynamin I-K44A dominant-negative mutant altered the steady-state distribution of the GFP-PrP(c), leading to the accumulation of fluorescence in unfissioned endocytic intermediates. These pre-endocytic intermediates did not seem to accumulate GFP-GPI, a minimum GPI-anchored protein, suggesting that PrP(c) trafficking does not depend solely on the GPI anchor. We found that internalized GFP-PrP(c) accumulates in Rab5-positive endosomes and that a Rab5 mutant alters the steady-state distribution of GFP-PrP(c) but not that of GFP-GPI between the plasma membrane and early endosomes. Therefore, we conclude that PrP(c) internalizes via a dynamin-dependent endocytic pathway and that the protein is targeted to the recycling endosomal compartment via Rab5-positive early endosomes. These observations indicate that traffic of GFP-PrP(c) is not determined predominantly by the GPI anchor and that, different from other GPI-anchored proteins, PrP(c) is delivered to classic endosomes after internalization. 相似文献
7.
Transmissible spongiform encephalopathies (TSEs) are progressive neurodegenerative diseases that affect the central nervous system of many animals, including humans. Research suggests that TSEs are caused by conversion of the cellular prion protein (PrPC), which is encoded in many tissues, especially brain, to the pathological form (PrPSc). This conversion affects PrPSc structure, conferring different biochemical properties, such as the increased resistance to proteinase K, that have been widely used for its purification. By contrast, PrPC is less resistant and its isolation is more challenging. Here, we propose a purification strategy to efficiently recover PrPC from healthy bovine brain using conventional non-immunoaffinity methods. The applicability of extraction using detergents, size exclusion chromatography, diafiltration with molecular weight cutoff (MWCO) filters, and immobilized metal affinity chromatography (IMAC) using Western blot (WB) analysis to detect the presence of PrPC is discussed in detail. 相似文献
8.
Prion diseases or transmissible spongiform encephalopathies (TSEs) are infectious and fatal neurodegenerative disorders in humans and animals. Pathological features of TSEs include the conversion of cellular prion protein (PrP(C)) into an altered disease-associated conformation generally designated PrP(Sc), abnormal deposition of PrP(Sc) aggregates, and spongiform degeneration of the brain. The molecular steps leading to PrP(C) aggregation are unknown. Here, we have utilized an inducible oligomerization strategy to test if, in the absence of any infectious prion particles, the encounter between PrP(C) molecules may trigger its aggregation in neuronal cells. A chimeric PrP(C) composed of one (Fv1) or two (Fv2) modified FK506-binding protein (Fv) fused with PrP(C) were created, and transfected in N2a cells. Similar to PrP(C), Fv1-PrP and Fv2-PrP were glycosylated, displayed normal localization, and anti-apoptotic function. When cells were treated with the dimeric Fv ligand AP20187, to induce dimerization (Fv1) or oligomerization (Fv2) of PrP(C), both dimerization and oligomerization of PrP(C) resulted in the de novo production, release and deposition of extracellular PrP aggregates. Aggregates were insoluble in non-ionic detergents and partially resistant to proteinase K. These findings demonstrate that homologous interactions between PrP(C) molecules may constitute a minimal and sufficient molecular event leading to PrP(C) aggregation and extracellular deposition. 相似文献
9.
Prions and Amyloid beta (Aβ) peptides induce synaptic damage via complex mechanisms that include the pathological alteration of intracellular signaling cascades. The host-encoded cellular prion protein (PrPC) acts as a high-affinity cell surface receptor for both toxic species and it can modulate the endocytic trafficking of the N-methyl D-aspartate (NMDA) receptor and E-cadherin adhesive complexes via Src family kinases (SFKs). Interestingly, SFK-mediated control of endocytosis is a widespread mechanism used to regulate the activity of important transmembrane proteins, including neuroreceptors for major excitatory and inhibitory neurotransmitters. Here we discuss our recent work in zebrafish and accumulating evidence suggesting that subversion of this pleiotropic regulatory mechanism by Aβ oligomers and prions explains diverse neurotransmission deficits observed in human patients and mouse models of prion and Alzheimer's neurodegeneration. While Aβ, PrPC and SFKs constitute potential therapeutic targets on their own, drug discovery efforts might benefit significantly from aiming at protein-protein interactions that modulate the endocytosis of specific SFK targets. 相似文献
10.
Miele G Jeffrey M Turnbull D Manson J Clinton M 《Biochemical and biophysical research communications》2002,291(2):372-377
The cellular prion protein (PrP(C)), predominantly expressed in the central nervous system, is required for pathogenesis of prion neurodegenerative diseases and its conversion into a pathogenic isoform (PrP(Sc)) is a common feature of disease. While the physiological function of PrP(C) remains unclear, accumulating evidence indicates a role for PrP(C) in oxidative homeostasis in vivo and suggests that PrP(C) may be involved in the cellular response to oxidative stress. Mice in which PrP(C) expression has been ablated are viable and develop normally. Here we show that in an inbred line of mice, in tissues that normally express PrP at moderate to high levels, ablation of PrP(C) results in reduced mitochondrial numbers, unusual mitochondrial morphology, and elevated levels of mitochondrial manganese-dependent superoxide dismutase antioxidant enzyme. These observations may have relevance to the pathogenic mechanism for this group of fatal neurodegenerative conditions. 相似文献
11.
将丙肝病毒C E1区基因插入绿色荧光报告基因pEGFP-N1中,构建真核表达重组质粒pEGFP-N1-HCV/C E1。转染小鼠骨髓瘤细胞SP2/0,在荧光显微镜下观察绿色荧光融合蛋白的表达情况。结果在细胞浆中出现了绿色荧光,表明目的基因得到表达,再通过G418筛选后大量培养用作细胞毒实验的靶细胞,结果表明以EGFP报告基因作筛选标记制备的靶细胞完全可以满足细胞毒实验要求。 相似文献
12.
13.
Didier A Gebert R Dietrich R Schweiger M Gareis M Märtlbauer E Amselgruber WM 《Biochemical and biophysical research communications》2008,369(3):841-844
The present study shows that PrPc is expressed in the mammary gland and milk fractions of domestic ruminants in a species-specific manner. By applying immunohistochemistry, Western blot and ELISA, clear expression differences between bovine, ovine and caprine mammary gland, skimmed milk, acid whey and cream could be demonstrated, the highest relative PrPc levels being associated with the cream fraction. In the bovine gland PrPc was preferentially detectable at the basolateral surface of mammary gland epithelial cells, whereas in ovine and caprine samples the prion protein was more homogeneously distributed. Moreover, in ovine and caprine bovine mammary gland epithelial cells, apocrine secretory vesicles were strongly stained. Ovine and caprine milk proved to contain PrPc in all fractions with an additional truncated form at 12 kDa in Western blot. This truncated isoform is the predominate one in caprine acid whey. These results support the hypothesis that the apocrine secretion mode of milk fat globules is a major way of PrPc transport into the milk. 相似文献
14.
15.
16.
Hachiya NS Watanabe K Kawabata MY Jozuka A Kozuka Y Sakasegawa Y Kaneko K 《Biochemical and biophysical research communications》2005,327(3):894-899
A pathogenic truncation of an amber mutation at codon 145 (Y145STOP) in Gerstmann-Straussler-Scheinker disease (GSS) was investigated through the real-time imaging in living cells, by utilizing GFP-PrP constructs. GFP-PrP(1-144) exhibited an aberrant localization to mitochondria in mouse neuroblastoma neuro2a (N2a) and HpL3-4 cells, a hippocampal cell line established from prnp gene-ablated mice, whereas full-length GFP-PrP did not. The aberrant mitochondrial localization was also confirmed by Western blot analysis. Since GFP-PrP(1-121), as previously reported, and full-length GFP-PrP do not exhibit such mitochondrial localization, the mitochondrial localization of GFP-PrP(1-144) requires not only PrP residues 121-144 (in human sequence) but also COOH-terminal truncation in the current experimental condition. Subsequently, the GFP-PrP(1-144) induced a change in the mitochondrial innermembrane potential (DeltaPsi(m)), release of cytochrome c from the intermembrane space into the cytosol, and DNA fragmentation in these cells. Non-fluorescent PrP(1-144) also induced the DNA fragmentation in N2a and HpL3-4 cells after the proteasomal inhibition. These data may provide clues as to the molecular mechanism of the neurotoxic property of Y145STOP mutation. Furthermore, immunoelectron microscopy revealed numerous electron-dense deposits in mitochondria clusters of GFP-PrP(1-144)-transfected N2a cells, whereas no deposit was detected in the cells transfected with full-length GFP-PrP. Co-localization of GFP/PrP-immunogold particles with porin-immunogold particles as a mitochondrial marker was observed in such electron-dense vesicular foci, resembling those found in autophagic vacuoles forming secondary lysosomes. Whether such electron-dense deposits may serve as a seed for the growth of amyloid plaques, a characteristic feature of GSS with Y145STOP, awaits further investigations. 相似文献
17.
Electron microscopic visualization of fluorescent signals in cellular compartments and organelles by means of DAB-photoconversion 总被引:3,自引:1,他引:2
Meiblitzer-Ruppitsch C Vetterlein M Stangl H Maier S Neumüller J Freissmuth M Pavelka M Ellinger A 《Histochemistry and cell biology》2008,130(2):407-419
In this work, we show the photoconversion of the fluorochromes enhanced green fluorescent protein (EGFP), yellow fluorescent
protein (YFP), and BODIPY into electron dense diaminobenzidine (DAB)-deposits using the examples of five different target
proteins, and the lipid ceramide. High spatial resolution and specificity in the localization of the converted protein-fluorochrome
complexes and the fluorochrome-labelled lipid were achieved by methodical adaptations around the DAB-photooxidation step,
such as fixation, illumination, controlled DAB-precipitation, and osmium postfixation. The DAB-deposits at the plasma membrane
and membranous compartments, such as endoplasmic reticulum and Golgi apparatus in combination with the fine structural preservation
and high membrane contrast enabled differential topographical analyses, and allowed three-dimensional reconstructions of complex
cellular architectures, such as trans-Golgi–ER junctions. On semithin sections the quality, distribution and patterns of the signals were evaluated; defined areas
of interest were used for electron microscopic analyses and correlative microscopy of consecutive ultrathin sections. The
results obtained with the proteins golgin 84 (G-84), protein disulfide isomerase (PDI), scavenger receptor classB type1 (SR-BI),
and γ-aminobutyric acid (GABA) transporter 1 (GAT1), on one hand closely matched with earlier immunocytochemical data and,
on the other hand, led to new information about their subcellular localizations as exemplified by a completely novel sight
on the subcellular distribution and kinetics of the SR-BI, and provided a major base for the forthcoming research. 相似文献
18.
Prions are infectious proteins and over the past few decades, some prions have become renowned for their causative role in several neurodegenerative diseases in animals and humans. Since their discovery, the mechanisms and mode of transmission and molecular structure of prions have begun to be established. There is, however, still much to be elucidated about prion diseases, including the development of potential therapeutic strategies for treatment. The significance of prion disease is discussed here, including the categories of human and animal prion diseases, disease transmission, disease progression and the development of symptoms and potential future strategies for treatment. Furthermore, the structure and function of the normal cellular prion protein (PrPC) and its importance in not only in prion disease development, but also in diseases such as cancer and Alzheimer's disease will also be discussed. 相似文献
19.
Wang YH Chen CP Chan MH Chang M Hou YW Chen HH Hsu HR Liu K Lee HJ 《Biochemical and biophysical research communications》2006,346(3):758-767
Plasma membranes of plant or animal cells are generally impermeable to peptides or proteins. Many basic peptides have previously been investigated and covalently cross-linked with cargoes for cellular internalization. In the current study, we demonstrate that arginine-rich intracellular delivery (AID) peptides are able to deliver fluorescent proteins or beta-galactosidase enzyme into animal and plant cells, as well as animal tissue. Cellular internalization and transdermal delivery of protein could be mediated by effective and nontoxic AID peptides in a neither fusion protein nor conjugation fashion. Therefore, noncovalent AID peptides may provide a useful strategy to have active proteins function in living cells and tissues in vivo. 相似文献
20.
Monitoring of conformational change in maltose binding protein using split green fluorescent protein
Jeong J Kim SK Ahn J Park K Jeong EJ Kim M Chung BH 《Biochemical and biophysical research communications》2006,339(2):647-651
In this study, we describe a novel method for the detection of conformational changes in proteins, which is predicated on the reconstitution of split green fluorescent protein (GFP). We employed fluorescence complementation assays for the monitoring of the conformationally altered proteins. In particular, we used maltose binding protein (MBP) as a model protein, as MBP undergoes a characteristic hinge-twist movement upon substrate binding. The common feature of this approach is that GFP, as a reporter protein, splits into two non-fluorescent fragments, which are genetically fused to the N- and C-termini of MBP. Upon binding to maltose, the chromophores move closer together, resulting in the generation of fluorescence. This split GFP method also involves the reconstitution of GFP, which is determined via observations of the degree to which fluorescence intensity is restored. As a result, reconstituted GFP has been observed to generate fluorescence upon maltose binding in vitro, thereby allowing for the direct detection of changes in fluorescence intensity in response to maltose, in a concentration- and time-dependent fashion. Our findings showed that the fluorescence complementation assay can be used to monitor the conformational alterations of a target protein, and this ability may prove useful in a number of scientific and medical applications. 相似文献