首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The degradation of municipal solid waste (MSW) under mesophilic conditions can be enhanced by exchanging leachate between fresh waste and stabilised waste. The optimum point in time when leachate from an anaerobically digesting waste bed can be used to initiate degradation of another waste bed might occur when the leachate of the digesting waste bed is highly active with cellulolytic and methanogenic bacteria. In this study, the cellulolytic activity of the leachate was measured using the cellulose-azure assay. As products of hydrolysis are soluble compounds, the rate of generation of these compounds was estimated based on a soluble chemical oxygen demand (SCOD) balance around the fresh waste bed. It was found that once the readily soluble material present in MSW was washed out there was very little generation of SCOD without the production of methane, indicating that flushing leachate from a stabilised waste bed resulted in a balanced inoculation of the fresh waste bed. With the onset of sustained methanogenesis, the rate of SCOD generation equalled the SCOD released from the digester as methane. The experimental findings also showed that cellulolytic activities of the leachate samples closely followed the trend of SCOD generation.  相似文献   

2.
The environmental hazard was studied of eight soil and solid waste samples originating from a region of Estonia heavily polluted by the oil shale industry. The samples were contaminated mainly with oil products (up to 7231mg/kg) and polycyclic aromatic hydrocarbons (PAHs; up to 434mg/kg). Concentrations of heavy metals and water-extractable phenols were low. The toxicities of the aqueous extracts of solid-phase samples were evaluated by using a battery of Toxkit tests (involving crustaceans, protozoa, rotifers and algae). Waste rock and fresh semi-coke were classified as of "high acute toxic hazard", whereas aged semi-coke and most of the polluted soils were classified as of "acute toxic hazard". Analysis of the soil slurries by using the photobacterial solid-phase flash assay showed the presence of particle-bound toxicity in most samples. In the case of four samples out of the eight, chemical and toxicological evaluations both showed that the levels of PAHs, oil products or both exceeded their respective permitted limit values for the living zone (20mg PAHs/kg and 500mg oil products/kg); the toxicity tests showed a toxic hazard. However, in the case of three samples, the chemical and toxicological hazard predictions differed markedly: polluted soil from the Erra River bank contained 2334mg oil/kg, but did not show any water-extractable toxicity. In contrast, spent rock and aged semi-coke that contained none of the pollutants in hazardous concentrations, showed adverse effects in toxicity tests. The environmental hazard of solid waste deposits from the oil shale industry needs further assessment.  相似文献   

3.
In laboratory scale municipal solid waste lysimeters containing simulated refuse, and seeded with either laboratory or field strains of poliovirus type 1 and echovirus type 7, viruses were not detected in the lysimeter leachate produced over a 4-month period. In addition, viruses were detected in the lysimeter refuse contents after termination of lysimeter operation. These results appeared to be due to virus retention in the lysimeter caused by virus adsorption and virus inactivation. Evidence for virus inactivation was provided by the results of experiments on virus inactivation in composite leachate samples. Evidence for virus adsorption was supported by the rapid adsorption of viruses to various municipal solid waste components in the presence of a salt similar in composition to the major inorganic salts of leachates.  相似文献   

4.
Abstract

Environmental pollution from solid waste landfillings (SWLs) is of major concern to both the environmentalists and to individual citizens. The necessity for studying on contaminant generation and control is becoming more urgent in view of the risks associated with such sites.

An oil shale tailing at Maoming, South China, was chosen as our study case. Soil samples, water samples and oil shale tailings were collected from the site and analyzed for their compositions. The analytical results revealed that the soil and groundwater were contaminated to various degrees by several chemicals or pollutants from the oil shale tailings. The major environmental problems associated with the site were acidification of soil and groundwater, high content of heavy metals and sulfate in soil and groundwater and organic contamination of soil, in particular, finding of carcinogenous benzo[a] pyrene other PAHs.

Statistical and geochemical methods were applied to reveal the sources of contaminants. Soil and groundwater contamination were correlated obviously with the oil shale waste disposal. The nearer the sampling sites to the tailing, the heavier the soil and groundwater were contaminated. The different water samples composition had same chemical characteristics. The soil and water samples were analyzed for 16 PAHs (USEPA priority pollutants). It indicated that PAHs were retained mostly in the soil, which consisted of mainly naphthalene, fluorene, phenanthrene and anthracene. Analysis for PAHs source revealed that they were also from the oil shale tailing.  相似文献   

5.
Controlled landfilling remains a commonly applied method for municipal solid waste disposal with leachate generation being an inevitable consequence of the decomposition of the waste and the percolation of water through decomposing waste. The membrane bioreactor (MBR) technology has evolved into an effective process in treating such high strength wastewater streams because of its ability to retain high biomass concentration through membrane separation. This paper presents a critical review of the application of the MBR technology for the treatment of leachate and evaluates its performance in this context while highlighting factors affecting MBR operation. The paper concludes with outlining existing gaps and future research needs to improve the understanding and performance of the MBR technology for leachate treatment.  相似文献   

6.
Sanitary landfilling is a proven way for disposal of municipal solid waste (MSW) in developed countries in general and in developing countries in particular, owing to its low immediate costs. On the other hand, landfilling is a matter of concern due to its generation of heavily polluted leachate. Landfill leachate becomes more refractory with time and is very difficult to treat using conventional biological processes. The aged refuse-based bioreactor/biofilter (ARB) has been shown to be a promising technology for the removal of various pollutants from landfill leachate and validates the principle of waste control by waste. Based on different environmental and operational factors, many researchers have reported remarkable pollutant removal efficiencies using ARB. This paper gives an overview of various types of ARBs used; their efficiencies; and certain factors like temperatures, loading rates, and aerobic/anaerobic conditions which affect the performance of ARBs in eliminating pollutants from leachate. Treating leachate by ARBs has been proved to be more cost-efficient, environment friendly, and simple to operate than other traditional biological techniques. Finally, future research and developments are also discussed.  相似文献   

7.
The present study involved the assessment of potential generation of acid drainage and also metal leaching from an abandoned large (175 m) low sulfur waste rock pile—the dominant mine waste at the site—at the Haizhou coal mine. Laboratory-based static and column leaching tests on waste rock samples were conducted. The static tests were done for 8 composite samples collected from different parts of pile. A column study was performed using mixture of waste rock soil samples to assess metals attenuation process of background soils in vicinity of pile when rainwater reacts with low-sulfide waste rocks. Total concentration of major elements in solid samples was determined using dispersive X-ray fluorescence spectrometry (XRF) and chemical analysis of leachate were measured by inductively coupled plasma optical emission spectrometry (ICP-OES), ion chromatography and titration methods. The inverse geochemical modeling using PHREEQC was applied to explain possible mass transfer processes between column leachates of waste pile and background soils. Static tests (including acid–base accounting (ABA) and net acid generation (NAG)) and mineralogical information suggest that the waste rock is non-acid generating. The large amount of aluminosilicate minerals and probably trace amounts of carbonates with respect to low sulfur content of waste rock pile represents a potentially large source of neutralization potential according to static test results. It was also found that presence of inherent neutralizing materials in waste rock and also in surrounding background soils provide sufficient neutrality and possibly immobilize the trace and heavy metal contents of waste rocks and potentially protects water resources.  相似文献   

8.
In ecotoxicology, in vitro assays with fish cells are currently applied for mechanistic studies, bioanalytical purposes and toxicity screening. This paper discusses the potential of cytotoxicity assays with fish cells to reduce, refine or replace acute lethality tests using fish. Basal cytotoxicity data obtained with fish cell lines or fish primary cell cultures show a reasonable to good correlation with lethality data from acute toxicity tests, with the exception of compounds that exert a specific mode of toxic action. Basal cytotoxicity data from fish cell lines also correlate well with cytotoxicity data from mammalian cell lines. However, both the piscine and mammalian in vitro assays are clearly less sensitive than the fish test. Therefore, in vivo LC50 values (concentrations of the test compounds that are lethal to 50% of the fish in the experiment within 96 hours) currently cannot be predicted from in vitro values. This in vitro-in vivo difference in sensitivity appears to be true for both fish cell lines and mammalian cell lines. Given the good in vitro-in vivo correlation in toxicity ranking, together with the clear-cut difference in sensitivity, the role of cytotoxicity assays in a tiered alternative testing strategy could be in priority setting in relation to toxic hazard and in the toxicity classification of chemicals and environmental samples.  相似文献   

9.
This article presents the results of an experimental activity aimed at investigating the technical feasibility and the environmental performance of using municipal solid waste incineration bottom ash to produce glass frit for ceramic glaze (glaze frit). The process includes an industrial pretreatment of bottom ash that renders the material suitable for use in glaze frit production and allows recovery of aluminum and iron. The environmental performance of this treatment option is assessed with the life cycle assessment (LCA) methodology. The goal of the LCA study is to assess and compare the environmental impacts of two scenarios of end of life of bottom ash from municipal solid waste incineration (MSWI): landfill disposal (conventional scenario) and bottom ash recovery for glaze frit production (innovative scenario). The main results of the laboratory tests, industrial simulations, and LCA study are presented and discussed, and the environmental advantages of recycling versus landfill disposal are highlighted.  相似文献   

10.
Background This article describes two projects conducted recently by Sound Resource Management (SRMG) – one for the San Luis Obispo County Integrated Waste Management Authority (SLO IWMA) and the other for the Washington State Department of Ecology (WA Ecology). For both projects we used life cycle assessment (LCA) techniques to evaluate the environmental burdens associated with collection and management of municipal solid waste. Both projects compared environmental burdens from curbside collection for recycling, processing, and market shipment of recyclable materials picked up from households and/or businesses against environmental burdens from curbside collection and disposal of mixed solid waste. Method logy. The SLO IWMA project compared curbside recycling for households and businesses against curbside collection of mixed refuse for deposition in a landfill where landfill gas is collected and used for energy generation. The WA Ecology project compared residential curbside recycling in three regions of Washington State against the collection and deposition of those same materials in landfills where landfill gas is collected and flared. In the fourth Washington region (the urban east encompassing Spokane) the WA Ecology project compared curbside recycling against collection and deposition in a wasteto- energy (WTE) combustion facility used to generate electricity for sale on the regional energy grid. During the time period covered by the SLO study, households and businesses used either one or two containers, depending on the collection company, to separate and set out materials for recycling in San Luis Obispo County. During the time of the WA study households used either two or three containers for the residential curbside recycling programs surveyed for that study. Typically participants in collection programs requiring separation of materials into more than one container used one of the containers to separate at least glass bottles and jars from other recyclable materials. For the WA Ecology project SRMG used life cycle inventory (LCI) techniques to estimate atmospheric emissions of ten pollutants, waterborne emissions of seventeen pollutants, and emissions of industrial solid waste, as well as total energy consumption, associated with curbside recycling and disposal methods for managing municipal solid waste. Emissions estimates came from the Decision Support Tool (DST) developed for assessing the cost and environmental burdens of integrated solid waste management strategies by North Carolina State University (NCSU) in conjunction with Research Triangle Institute (RTI) and the US Environmental Protection Agency (US EPA)1. RTI used the DST to estimate environmental emissions during the life cycle of products. RTI provided those estimates to SRMG for analysis in the WA Ecology project2. For the SLO IWMA project SRMG also used LCI techniques and data from the Municipal Solid Waste Life- Cycle Database (Database), prepared by RTI with the support of US EPA during DST model development, to estimate environmental emissions from solid waste management practices3. Once we developed the LCI data for each project, SRMG then prepared a life cycle environmental impacts assessment of the environmental burdens associated with these emissions using the Environmental Problems approach discussed in the methodology section of this article. Finally, for the WA study we also developed estimates of the economic costs of certain environmental impacts in order to assess whether recycling was cost effective from a societal point of view. Conclusions Recycling of newspaper, cardboard, mixed paper, glass bottles and jars, aluminum cans, tin-plated steel cans, plastic bottles, and other conventionally recoverable materials found in household and business municipal solid wastes consumes less energy and imposes lower environmental burdens than disposal of solid waste materials via landfilling or incineration, even after accounting for energy that may be recovered from waste materials at either type disposal facility. This result holds for a variety of environmental impacts, including global warming, acidification, eutrophication, disability adjusted life year (DALY) losses from emission of criteria air pollutants, human toxicity and ecological toxicity. The basic reason for this conclusion is that energy conservation and pollution prevention engendered by using recycled rather than virgin materials as feedstocks for manufacturing new products tends to be an order of magnitude greater than the additional energy and environmental burdens imposed by curbside collection trucks, recycled material processing facilities, and transportation of processed recyclables to end-use markets. Furthermore, the energy grid offsets and associated reductions in environmental burdens yielded by generation of energy from landfill gas or from waste combustion are substantially smaller then the upstream energy and pollution offsets attained by manufacturing products with processed recyclables, even after accounting for energy usage and pollutant emissions during collection, processing and transportation to end-use markets for recycled materials. The analysis that leads to this conclusion included a direct comparison of the collection for recycling versus collection for disposal of the same quantity and composition of materials handled through existing curbside recycling programs in Washington State. This comparison provides a better approximation to marginal energy usage and environmental burdens of recycling versus disposal for recyclable materials in solid waste than does a comparison of the energy and environmental impacts of recycling versus management methods for handling typical mixed refuse, where that refuse includes organics and non-recyclables in addition to whatever recyclable materials may remain in the garbage. Finally, the analysis also suggests that, under reasonable assumptions regarding the economic cost of impacts from pollutant emissions, the societal benefits of recycling outweigh its costs.  相似文献   

11.
A distributed model of solid waste digestion in a 1-D bioreactor with leachate recirculation and pH adjustment was developed to analyze the balance between the rates of polymer hydrolysis/acidogenesis and methanogenesis during the anaerobic digestion of municipal solid waste (MSW). The model was calibrated on previously published experimental data generated in 2-L reactors filled with shredded refuse and operated with leachate recirculation and neutralization. Based on model simulations, both waste degradation and methane production were stimulated when inhibition was prevented rapidly from the start, throughout the reactor volume, by leachate recirculation and neutralization. An optimal strategy to reduce the time needed for solid waste digestion is discussed.  相似文献   

12.
Utilization of bottom ash in road construction may lead to a release of contaminants that can affect the soil of the swales constructed along these roads. Column tests were performed to evaluate the retention behavior of Cu, Cr, Zn, and Pb, originating from municipal solid waste incineration (MSWI) bottom ash leachate, in two substrates: peat and mould (a cultural soil). A chemical sequential extraction method was used to predict the risk associated with the release of the retained elements with modifications of environmental conditions. Apart from the dissolution of organic matter (OM), ash leachate properties hindered the metal transport from peat. Mould was efficient only in removing Zn, making it a less favorable substrate for the leachate control along the roads. Readily soluble forms made up a minor fraction of the retained metals in peat, reducing the risk of metal release due to ion exchange and pH drop. Changes in redox potential might be the main cause of Zn desorption from peat as the Fe-Mn oxides were the main scavengers for this metal. Oxidation of OM would be the primary reason of Cu and Cr release, while for Pb both fractions (Fe-Mn oxides and OM) might equally contribute to the metal discharge.  相似文献   

13.
Municipal solid waste landfills are responsible for odors affecting the environment and human health. Dimethyl sulfide (DMS) is one of the major odorous compounds known for its low odor threshold and wide distribution. This study examined the generation, migration and emission of DMS in four artificial landfill-simulating reactors: Reactor 1 and Reactor 2, running under anaerobic and semi-aerobic conditions, respectively, without leachate recirculation; and Reactor 3 and Reactor 4, running under anaerobic and semi-aerobic conditions, respectively, with leachate recirculation. From the odor control perspective, aeration can efficiently inhibit maximum DMS headspace concentration by 31.7–93.7%, especially with the functioning of leachate recirculation. However, leachate recirculation in anaerobic conditions may double the DMS emission concentration but may also shorten the period over which DMS is effective because of the upward migration of liquid DMS in the recirculated leachate. The DMS generation was active in the acidification and methane fermentation phase of the simulated landfill and was possibly affected by the volatile fatty acid concentration, chemical oxygen demand, total organic carbon concentration and pH of the leachate, as well as total organic carbon in the refuse. Most significantly, DMS emission can be effectually dealt with by aeration along with leachate recirculation.  相似文献   

14.

Settlement of cultured Balanus amphitrite cyprid larvae was tested on different non-solid hydrogel surfaces. Gels consisting of alginate (highly anionic), chitosan (highly cationic), polyvinyl alcohol substituted with light-sensitive stilbazolium groups (PVA-SbQ; very low cationic) and agarose (neutral) were applied in cell culture multi-well plates. Polystyrene served as a solid surface reference. Preliminary experiments were performed to determine whether any substances leaching out of the gels could inhibit barnacle settlement. Whilst leachate from the gels revealed no toxicity towards Artemia salina nauplius larvae, PVA-SbQ in solution at and above a concentration of 0.4 ppm inhibited B. amphitrite cyprid settlement. Gels were therefore washed to avoid such effects during further testing, and toxicity and settlement tests with B. amphitrite nauplii and cyprids, respectively, applied to verify that washing was effective. Settlement was tested directly on the different test materials, followed by a quality test of non-settled larvae. All gels inhibited barnacle settlement compared to the polystyrene controls. Gels consisting of 2.5% PVA-SbQ or 0.5% agarose showed promising antifouling properties. Although some settlement occurred on 2.5% PVA-SbQ gels, metamorphosis was clearly inhibited. Only 10% of the larvae had settled on 0.5% agarose gels after 8 d. Less than 40% settlement occurred on alginate gels, as well as on 2% chitosan gels. Quality testing showed that the majority of remaining non-settled larvae in all gel experiments were able to settle when offered a suitable solid substratum.  相似文献   

15.
Methods were developed for detecting and concentrating enteric viruses in municipal solid waste landfill leachates. Poliovirus added to a leachate was not readily detectable, possibly because the virus was adsorbed to the leachate particulates. The masking effects associated with suspended solids in the leachate were overcome by adding a final 0.1 M sodium (tetra)ethylenediaminetetraacetate concentration to the leachate. A sodium (tetra)ethylenediaminetetraacetate-treated leachate could be clarified by filtration at pH 8.0 without a loss of virus. The clarified and sodium (tetra)ethylenediaminetetraacetate-treated leachate contained interfering materials of an anionic nature which prevented virus adsorption to epoxy-fiber glass filters. This interfering effect was overcome by treating the leachate with an anion-exchange resin. Viruses in the resin-treated leachate were concentrated by adjusting the leachate to pH 3.5, adding AlCl(3) to a final 0.005 M concentration, adsorbing the viruses to an epoxy-fiber glass virus adsorbent, and eluting the adsorbed viruses in a small volume. When this method was used to concentrate poliovirus 100-fold in a variety of leachates, the average virus recovery efficiency was 37%. With the methods described in this study, it should be possible to efficiently monitor solid waste disposal site leachates for enteric viruses.  相似文献   

16.
In this research, the effects of a solidification/stabilization (S/S) technique on the remediation of cresol-contaminated soil were investigated. The soil samples were collected from the Tehran Oil Refinery (TOR) in Ray District, Iran. Cresols are hazardous chemicals whose exposure at high dosage results in irreparable damage to animal and human health. S/S process progresses through physicochemical reactions, reducing the leachability of a waste as well as changing its physical properties in order to encapsulate the contaminants and form a solid material. The samples were spiked by certain concentrations of cresols including meta-, ortho-, and para-isomers. The treatment process was conducted using Portland cement as the binder and modified bentonite as a stabilizer. The efficiency of the S/S technique was assessed by the unconfined compressive strength (UCS) test and toxicity characteristic leaching procedure (TCLP) test. The results of the tests showed that adding 20% and 30% Portland cement in combination with 15% and 30% modified bentonite to contaminated samples increased the 28-day compressive strength of S/S blocks to a range of 2.44 to 3.08 MPa. In fact, increasing the proportion of cement in the mix design resulted in enhanced compressive strength, while modified bentonite inversely affected samples’ strength. Regarding leaching behavior, adding organophilic clay to polluted samples noticeably declined cresol's concentrations in leachate. Overall efficiency of S/S in terms of leaching was about 70%, which was obtained by adding 20% cement and 30% modified clay. A logarithmic relationship between leaching percent and modified clay ratio was also detected with high logarithmic and linear correlation coefficients of 0.96 and 0.9, respectively, hence presenting the efficiency of S/S in stabilizing the cresols in the samples.  相似文献   

17.
The study was aimed to investigate the effect of leachates of solid waste from a flashlight battery factory and a pigment plant on 70 kDa heat shock protein (Hsp70) expression, generation of reactive oxygen species (ROS), antioxidant enzymes activities and apoptosis in Drosophila. Third instar larvae of Drosophila melanogaster transgenic for hsp70 (hsp70-lacZ) were fed on diet mixed with leachates of solid wastes (0.05-2.0%, v/v) released from two industrial plants at three different pHs (7.00, 4.93 and 2.88) for 2-48 h. A concentration- and time-dependent significant change in Hsp70 expression, ROS generation, antioxidant enzymes activities and MDA content was observed in the exposed larvae preceding the antioxidant enzymes activities. Mitochondria-mediated, caspase-dependent apoptotic cell death in the larvae exposed to 1.0 and 2.0% leachates of flashlight battery factory was concurrent with a significant regression in Hsp70 expression and a higher ROS generation. A positive correlation drawn between ROS generation and apoptotic markers and a negative correlation between apoptotic markers and Hsp70 expression in these groups indicated the important role of ROS in the leachate-induced cellular damage. Hsp70 along with antioxidant enzymes offered protection to the organisms exposed to all the tested concentrations of the leachates of pigment plant waste and 0.5% leachate of flashlight battery factory in a cooperative manner when ROS generation was less induced. Conversely, higher levels of ROS generation in the organisms treated with 1.0 and 2.0% leachate of flashlight battery factory after 24 and 48 h resulted in regression of Hsp70 expression in them leading to cell death. The study suggests that (1) leachates of flashlight battery factory waste more adversely affected the organisms in comparison to the leachates of pigment plant waste. (2) Hsp70 may be used as a biomarker of cellular damage in organisms exposed to leachates. (3) Cell based assays using D. melanogaster as an in vivo model may provide important mechanistic information about the adverse effect of xenobiotics.  相似文献   

18.
Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization. Populus selections are ideal for such systems given their fast growth, extensive root systems, and high water usage rates. Maintaining ecological sustainability (i.e., the capacity for an ecosystem to maintain its function and retain its biodiversity over time) during tree establishment and development is an important component of plantation success, especially for belowground faunal populations. To determine the impact of solid waste leachate on soil micro- and meso-fauna, we compared soilfrom eight different Populus clones receiving municipal solid waste landfill leachate irrigation with clones receiving fertilized (N, P K) well water irrigation. Microfauna (i.e., nematodes) communities were more diverse in control soils. Mesofauna (i.e., insects) were associated with all clones; however, they were four times more abundant around trees found within the control plot than those that received leachate treatments. Nematode and insect abundance varied among Populus clones yet insect diversity was greater in the leachate-treated soils. Phytotechnologies must allow for soil faunal sustainability, as upsetting this balance could lead to great reductions in phytotechnology efficacy.  相似文献   

19.
The behavior of dimethyl phthalate (DMP) from municipal solid waste (MSW) in the leachate and refuse of two simulated landfill bioreactors was compared. In one reactor, the leachate was circulated between a landfill and a methanogenic reactor, while the other reactor was operated using direct recirculation of the leachate. The results revealed that the original concentration of DMP in the refuse was approximately 3.3 μg g−1, and the concentration decreased greatly during decomposition of the waste in both reactors. The major loss of DMP from the landfill occurred in an active methanogenic environment in the later period, while the environment was acidic due to a high concentration of chemical oxygen demand (COD), volatile fatty acids (VFA), and contained a large volume of biologically degradable material (BDM) during the early stage. In addition, a high correlation was found between the residual DMP concentrations and the BDM of the refuse in both systems. Circulating the leachate between the landfill and a methanogenic reactor resulted in an increase in the biodegradability of MSW and the degree of waste stabilization. Furthermore, the removal of DMP was enhanced 14% in the landfill that was operated in conjunction with the methanogenic reactor when compared to the landfill in which there was direct leachate recirculation.  相似文献   

20.
Developing a statistical support system for environmental hazard evaluation   总被引:1,自引:1,他引:0  
Estimating the hazard or risk to both human health and the environment has been based almost exclusively on single species toxicity tests low in environmental realism and without validation of their accuracy in more complex systems. While this may be quite appropriate for humans in a large variety of circumstances, there is no substantive body of direct experimental evidence indicating that precise predictions of harm from hazardous materials can be extrapolated from single species laboratory tests (or even multispecies laboratory tests) to the more complex highly variable natural systems. Now added to the hazardous chemical assessment problem is the accidental or deliberate release of genetically engineered microorganisms into the environment that have the additional capability of multiplying and expanding their numbers and also transferring genetic information to other organisms. This paper focuses entirely on hazard evaluation for organisms other than humans, namely predicting the potential risk or probability of harm to natural systems based on laboratory toxicity testing using single species. Not only will the basic risk assessment strategy itself be examined but also the question of determining the statistical reliability of various extrapolations from one level of biological organization to another. ‘For every complex problem, there is a simple, direct solution ... and it is invariably wrong!’ H. L. Mencken  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号