首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We have examined the ability of six aggregateless mutants to express the biochemical parameters involved in the production of the chemotactic signal, cAMP pulses. The mutants are representative of the three groups which have been defined previously in terms of the ability of applied cAMP pulses to induce all, or part, of the developmental cycle of nonaggregating strains [Darmon, M., Brachet, P., and Pereira da Silva, L. (1975). Proc. Nat. Acad. Sci. USA72, 3163–3166; Darmon et al., 1977]. Strains were monitored for adenylate cyclase, cellular and extracellular phosphodiesterase activities, the levels of cAMP binding sites, and the extracellular phosphodiesterase inhibitor. The ability of applied cAMP pulses to alter any of these parameters was also examined. The results indicate that adenylate cyclase can exist in active and inactive forms and that applied cAMP pulses effect the transition of the enzyme to its active state. Applied cAMP pulses are also shown to induce the adenylate cyclase activity of two strains and inhibit the production of the phosphodiesterase inhibitor. The data are discussed in terms of the possible sequence of events involved in the differentiation of cells to aggregation competence.  相似文献   

2.
Trehalose-6-phosphate (T-6-P) synthetase activity in extracts of Dictyostelium discoideum has been reexamined in an effort to resolve discrepancies between the results of previous studies (R. Roth and M. Sussman (1966). Biochim. Biophys. Acta, 122, 225; K. A. Killick and B. E. Wright (1972). J. Biol. Chem., 247, 2967). We find that T-6-P synthetase is not cold sensitive as reported by Killick and Wright (1972), is not present in bacterial-grown vegetative cells (though subject to some modulation by other nutritional conditions), and is not in our hands unmasked or activated by ammonium sulfate fractionation. We conclude that the pattern of T-6-P synthetase accumulation and disappearance during fruiting body construction in D. discoideum is as originally described by R. Roth and M. Sussman (1968). J. Biol. Chem., 243, 5081) and confirmed elsewhere (P. C. Newell et al. (1972). J. Mol. Biol., 63, 373; R. W. Brackenbury et al. (1974). J. Mol. Biol., 90, 529; B. D. Hames and J. M. Ashworth (1974). Biochem. J., 142, 301).  相似文献   

3.
In the accompanying paper (J. D. David, W. M. See, and C.-A. Higginbotham, 1981, Develop. Biol.82, 297–307) we demonstrated that a net calcium influx into fusion-competent myoblasts is a requisite step in membrane fusion. Zalin and Montague, 1974, Zalin, 1977 has shown that a prostaglandin E1 (PGE1)-dependent transient rise in cAMP occurs 5–6 hr prior to myoblast fusion. In this communication we show that (1) the increase in intracellular cAMP precedes, and/or is independent of, the calcium influx; (2) the calcium influx is either directly or indirectly dependent on PGE1 activity as well as PGE1 synthesis; and (3) although the cAMP increase may be essential for fusion, it is not sufficient in the absence of calcium influx. Our experiments define fusion competency, at a minimum, as (1) the accumulation of extracellular PGE1 receptors; (2) the accumulation of intracellular cAMP receptors; and (3) the ability to respond to a calcium influx.  相似文献   

4.
Using nine different l-aminoacyl-4-nitroanilides and four different dipeptidyl-4-nitroanilides, aminopeptidases and dipeptidyl aminopeptidases active at pH 7.5 and (or) pH 5.5 in logarithmically growing and stationary-phase cells of Saccharomyces cerevisiae were searched for. Ion-exchange chromatography was used to separate the proteins of the soluble cell extract. Besides the three already-characterized aminopeptidases—aminopeptidase I (P. Matile, A. Wiemken, and W. Guyer (1971) Planta (Berlin)96, 43–53; J. Frey and K. H. Röhm (1978) Biochim. Biophys. Acta527, 31–41), aminopeptidase II (J. Frey and K. H. Röhm (1978) Biochim. Biophys. Acta527, 31–41; J. Knüver (1982) Thesis, Fachbereich Chemie, Marburg, FRG), and aminopeptidase Co (T. Achstetter, C. Ehmann, and D. H. Wolf (1982) Biochem. Biophys. Res. Commun.109, 341–347)—12 additional aminopeptidase activities are found in soluble cell extracts eluting from the ion-exchange column. These activities differ from the characterized aminopeptidases in one or more of the parameters such as charge, size, substrate specificity, inhibition pattern, pH optimum for activity and regulation. Also, a particulate aminopeptidase, called aminopeptidase P, is found in the nonsoluble fraction of disintegrated cells. Besides the described particulate X-prolyl-dipeptidyl aminopeptidase (M. P. Suarez Rendueles, J. Schwencke, N. Garcia-Alvarez and S. Gascon (1981) FEBS Lett.131, 296–300), three additional dipeptidyl aminopeptidase activities of different substrate specificities are found in the soluble extract.  相似文献   

5.
The recent assertion of J. Diguiseppi and I. Fridovich (1980, Arch. Biochem. Biophys., 203, 145–150) that Fe-EDTA does not catalyze superoxide dismutation is disputed. By directly observing superoxide generated during pulse radiolysis, we have confirmed the results of a previous study (G. J. McClune, J. A. Fee, G. A. McClusky, and J. T. Groves, 1977, J. Amer. Chem. Soc., 99, 5220–5222) which concluded that Fe-EDTA catalyzed superoxide dismutation. We also demonstrate that the reaction of Fe(II)-EDTA, formed during catalyzed superoxide dismutation, with cytochrome c, the probe molecule in the cytochrome c/xanthine oxidase/xanthine assay system for superoxide dismutase activity, is sufficiently rapid (H. L. Hodges, R. A. Holwerda, and H. B. Gray, 1974, J. Amer. Chem. Soc., 96, 3132–3137) to obscure the weak catalysis of superoxide dismutation by Fe-EDTA.  相似文献   

6.
Migrating cells possess surface glycosyltransferase activity toward extracellular substrates, and the appearance of enzyme activity coincides with the onset of cellular migration (Shur, 1977a, Shur, 1977b, Develop. Biol.58, 23–39, 40–55; E. A. Turley and S. Roth, 1979, Cell17, 109–115). In this paper, surface glycosyltransferases were examined during normal and TT mutant mesenchyme migration. Of six glycosyltransferases that were assayed, only galactosyltransferase was present at significant levels on the cell surface, despite the presence of a variety of intracellular glycosyltransferases. All controls have been performed to show clearly the enzyme activity was cell surface localized. In both normal and TT embryos, surface galactosyltransferase activity was localized, by autoradiography, primarily to migrating mesenchymal cells, and to a lesser degree, to presumptive neural epithelium. During primitive streak formation, putative TT embryos were devoid of surface galactosyltransferase activity. However, as development progressed, the TT level of activity eventually exceeded wild-type levels by two- to sixfold and was evident in TT tissues prior to the onset of microscopic pathology. Other surface enzymes assayed did not show any TT-dependent increase in activity. The extracellular galactosyl acceptors were not chloroform:methanol soluble, and glycopeptides prepared by exhaustive Pronase digestion were excluded from Sephadex G-50. This large galactosylated glycoconjugate was readily digestable with endo-β-galactosidase, and, therefore, is similar to the poly-N-acetyllactosamine chains previously identified on early embryonic tissues (A. Kapadia, T. Feizi, and M. J. Evans, 1981, Exp. Cell. Res.131, 185–195; T. Muramatsu, G. Gachelin, M. Damonneville, C. Delarbre, and F. Jacob, 1979, Cell18, 183–191; A. Heifetz, W. J. Lennarz, B. Libbus, and Y. -C. Hsu, 1980, Develop. Biol.80, 398–408). These results support an involvement of surface galactosyltransferases in mesenchyme formation and during migration on poly-N-acetyllactosamine substrates.  相似文献   

7.
Murine plasmacytoma endoplasmic reticulum which has been freed of ribosomes by EDTA treatment is capable of the cotranslational proteolytic processing of representative λ12, and k immunoglobulin light chain precursors. Messenger RNA fractions from the MOPC-104E, MOPC-315, and MOPC-46B tumor lines were used to direct the synthesis of the light chain precursors in a cell-free system derived from Krebs II ascites cells. The precursor cleavage activity of the plasmacytoma membranes is comparable in activity and in characteristics to that of two well-defined membrane preparations: Krebs II ascites intracellular membranes (E. Szczesna and I. Boime, 1976, Proc. Nat. Acad. Sci. USA73, 1179–1183) and EDTA-treated rough endoplasmic reticulum from canine pancreas (34., 35., J. Cell Biol.67, 852–862). The efficiency of the cleavage reaction appears to be dependent upon the precursor being utilized as a substrate. An assay suitable for a preliminary characterization of the plasmacytoma membrane preparations is described.  相似文献   

8.
Further characterization and thiophosphorylation of smooth muscle myosin   总被引:2,自引:0,他引:2  
(i) Myosin from chicken gizzards was purified by a modification of an earlier procedure (M. N. Malik, 1978,Biochemistry17, 27–32). When this myosin, as well as that prepared by the method of A. Sobieszek and R. D. Bremel (1975,Eur. J. Biochem.55, 49–60), was analyzed by gradient slab gel using the discontinuous buffer system of Neville (1971,J. Biol. Chem.246, 6328–6334), a closely spaced doublet in the heavy chain and four light chains were observed as opposed to one heavy chain and two light chains with the method of Weber and Osborn (1969, J. Biol. Chem.244, 4406–4412). These findings raise the possibility of the existence of myosin isoenzymes in smooth muscle. (ii) The purified gizzard myosin was found to be free of kinase and phosphatase. Phosphorylation or thiophosphorylation of myosin was observed only by exogenously adding kinase. A maximum of 1.2 mol of 32P/mol of myosin and 2.3 mol of 35S/mol of myosin were obtained. The actin-activated ATPase activity depended upon the extent of thiophosphorylation of myosin; a four- to fivefold increase in the activity was observed when myosin was fully thiophosphorylated. Thiophosphorylated myosin was found to be more stable than phosphorylated myosin.  相似文献   

9.
Treatment of malic enzyme with arginine-specific reagents phenylglyoxal or 2,3-butanedione results in pseudo-first-order loss of oxidative decarboxylase activity. Inactivation by phenylglyoxal is completely prevented by saturating concentrations of NADP+, Mn2+, and substrate analog hydroxymalonate. Double log plots of pseudo-first-order rate constant versus concentration yield straight lines with identical slopes of unity for both reagents, suggesting that reaction of one molecule of reagent per active site is associated with activity loss. In parallel experiments, complete inactivation is accompanied by the incorporation of four [14C]phenylglyoxal molecules, and the loss of two arginyl residues per enzyme subunit, as determined by the colorimetric method of Yamasaki et al (R. B. Yamasaki, D. A. Shimer, and R. E. Feeney (1981) Anal. Biochem., 14, 220–226). These results confirm a 2:1 ratio for the reaction between phenylglyoxal and arginine (K. Takahashi (1968) J. Biol. Chem., 243, 6171–6179) and yield a stoichiometry of two arginine residues reacted per subunit for complete inactivation, of which one is essential for enzyme activity as determined by the statistical method of Tsou (C. L. Tsou (1962) Acta Biochim. Biophys. Sinica, 2, 203–211) and the Ray and Koshland analysis (W. J. Ray and D. E. Koshland (1961) J. Biol. Chem., 236, 1973–1979). Amino acid analysis of butanedione-modified enzyme also shows loss of arginyl residues, without significant decrease in other amino acids. Modification by phenylglyoxal does not significantly affect the affinity of this enzyme for NADPH. Binding of l-malate and its dicarboxylic acid analogs oxalate and tartronate is abolished upon modification, as is binding of the monocarboxylic acid α-hydroxybutyrate. The latter result indicates binding of the C-1 carboxyl group of the substrate to an arginyl residue on the enzyme.  相似文献   

10.
Exact and approximate expressions are obtained for the probability that the most frequent allele is oldest, in neutral allele models in which all mutations produce new alleles. The higher the mutation rate, the less likely is it that the most frequent allele would be oldest. The results are in agreement with simulation studies by Ewens and Gillespie (1974) (Theor. Popul. Biol.6, 35–57), and limit the range of validity of a suggestion made by Crow (1972) (J. Hered.63, 306–316) with respect to the statistical testing of the neutral allele hypothesis.  相似文献   

11.
The pH dependence of proton uptake upon binding of NADH to porcine heart mitochondrial malate dehydrogenase (l-malate: NAD+ oxidoreductase, EC 1.1.1.37) has been investigated. The enzyme has been shown to exhibit a pH-dependent uptake of protons upon binding NADH at pH values from 6.0 to 8.5. Enzyme in which one histidine residue has been modified per subunit by the reagent iodoacetamide (E. M. Gregory, M. S. Rohrbach, and J. H. Harrison, 1971, Biochim. Biophys. Acta253, 489–497) was used to establish that this specific histidine residue was responsible for the uptake of a proton upon binding of NADH to the native enzyme. It has also been established that while there is no enhancement of the nucleotide fluorescence upon addition of NADH to the iodoacetamide-modified enzyme, NADH is nevertheless binding to the modified enzyme with the same stoichiometry as with native enzyme. The data are discussed in relation to the involvement of the essential histidine residue in the catalytic mechanism of “histidine dehydrogenases” recently proposed by Lodola et al. (A. Lodola, D. M. Parker, R. Jeck, and J. J. Holbrook, 1978, Biochem. J.173, 597–605) and the catalytic mechanism of “malate dehydrogenases” recently proposed by L. H. Bernstein and J. Everse (1978, J. Biol. Chem.253, 8702–8707).  相似文献   

12.
Negative chemotaxis has been proposed to direct dispersion of amphibian neural crest cells away from the neural tube (V. C. Twitty, 1949, Growth13(Suppl. 9), 133–161). We have reexamined this hypothesis using quail neural crest and do not find evidence for it. When pigmented or freshly isolated neural crest cells are covered by glass shards to prevent diffusion of a “putative” chemotactic agent away from the cells and into the medium, we find a decrease in density of cells beneath the coverslip as did Twitty and Niu (1948, J. Exp. Zool.108, 405–437). Unlike those investigators, however, we find the covered cells move slower than uncovered cells and that the decrease in density can be attributed to cessation of cell division and increased cell death in older cultures, rather than directed migration away from each other. In cell systems where negative chemotaxis has been demonstrated, a “no man's land” forms between two confronted explants (Oldfield, 1963, Exp. Cell Res.30, 125–138). No such cell-free space forms between confronted neural crest explants, even if the explants are closely covered to prevent diffusion of the negative chemotactic material. If crest cell aggregates are drawn into capillary tubes to allow accumulation of the putative material, the cells disperse farther, the wider the capillary tube bore. This is contrary to what would be expected if dispersion depended on accumulation of this material. Also, no difference in dispersion is noted between cells in the center of the tubes versus cells near the mouth of the tubes where the tube medium is freely exchanging with external fresh medium. Alternative hypotheses for directionality of crest migration in vivo are discussed.  相似文献   

13.
This note considers sampling theory for a selectively neutral locus where it is supposed that the data provide nucleotide sequences for the genes sampled. It thus anticipates that technical advances will soon provide data of this form in volume approaching that currently obtained from electrophoresis. The assumption made on the nature of the data will require us to use, in the terminology ofKimura (Theor. Pop. Biol.2, 174–208 (1971)), the “infinite sites” model of Karlin and McGregor (Proc. Fifth Berkeley Symp. Math. Statist. Prob.4, 415–438 (1967)) rather that the “infinite alleles” model of Kimura and Crow (Genetics49, 174–738 (1964)). We emphasize that these two models refer not to two different real-world circumstances, but rather to two different assumptions concerning our capacity to investigate the real world. We compare our results where appropriate with corresponding sampling theory of Ewens (Theor. Pop. Biol.3, 87–112 (1972)) for the “infinite alleles” model. Note finally that some of our results depend on an assumption of independence of behavior at individual sites; a parallel paper byWatterson (submitted for publication (1974)) assumes no recombination between sites. Real-world behavior will lie between these two assumptions, closer to the situation assumed by Watterson than in this note. Our analysis provides upper bounds for increased efficiency in using complete nucleotide sequences.  相似文献   

14.
The general amino acid transport system of Saccharomyces cerevisiae functions in the uptake of neutral, basic, and acidic amino acids (M. Grenson, C. Hou, and M. Crabeel, 1970,J. Bacteriol. 103, 770–777; J. Rytka, 1975,J. Bacteriol.121, 562–570; C. Darte and M. Grenson, 1975,Biochem. Biophys. Res. Commun.67, 1028–1033). We have previously demonstrated that this transport system can be inhibited by the amino acid, N-δ-chloroacetyl-l-ornithine (NCAO) (F. S., Larimore and R.J. Roon, 1978,Biochemistry17, 431–436). In the present study radiolabeled NCAO was synthesized and its transport and metabolism studied. Under initial rate conditions: (a) NCAO was transported by the general amino acid transport system with a Km of 52 μm, a V of 32 nmol/min/mg cells, and a pH optimum of 5.0; (b) the V for NCAO transport in gap mutants, which lack the general amino acid transport system, was approximately 1% of that observed with wild-type cells; (c) the V for NCAO in cells deprived of glucose was less than 5% of that observed when glucose was present. NCAO was transiently concentrated more than 1000-fold by yeast cells when glucose served as an energy source. The internal pool of NCAO was metabolized by the yeast cells and the products were excreted. When 100 μm [14C]NCAO was incubated with a yeast cell suspension for 8 h, more than 95% of the compound was converted into two ninhydrin-negative excretory products. The effect of NCAO on the growth of yeast cells was determined. Wild-type strains did not grow when 1 mm NCAO was present in the medium. The growth of gap mutants was not inhibited by 1 mm NCAO.  相似文献   

15.
During recent years, numerous attempts have been made to correlate both quantitative (Davies &; Taylor, 1959; Engen, 1962; Beck, 1964; Engen, Cain &; Rovee, 1968; Cain, 1969; Dravnieks &; Laffoit, 1970; Laffort, 1969a,b) and qualitative (Davies, 1965; Amoore &; Venstrom, 1965; Döving, 1966a,b; Wright &; Michels, 1964; Leveteau &; MacLeod, 1969) odorous properties of single compounds to their molecular properties. These attempts have been only partially successful.In the present paper we will try to explain the several odorous properties of single compounds on the basis of the non-specific properties of odorants involved in solubility.This model is a first approach, and although it gives statistically highly significant relations, it is not as accurate as those advanced with respect to the physical and sensory dimensions of stimuli in the fields of vision and audition.We will first give the present definitions of the most suitable physicochemical parameters, and then advance quantitative and qualitative models for single compounds. Quantitative odorous properties are: odour threshold, rate of change of odour intensity with odorant concentration in the suprathreshold region, and the somewhat controversial upper odour intensity. Qualitative properties refer to odour character.  相似文献   

16.
Price's (1970) covariance theorem can be used to derive an expression for gene frequency change in kin selection models in which the fitness effect of an act is independent of the genotype of the recipient. This expression defines a coefficient of relatedness which subsumes r(Wright, 1922), b(Hamilton, 1972), ρ (Orlove &; Wood, 1978), and R(Michod &; Hamilton, 1980). The new coefficient extends the domain of Hamilton's rule to models in which the average gene frequency of actors differs from that of recipients.  相似文献   

17.
In disagreement with reported observation by Suhara and her colleagues (K. Suhara, S. Takemori, M. Katagiri, K. Wada, H. Kobayashi, and H. Matsubara, 1975, Anal. Biochem.68, 632–636) we found that more than 90% of labile sulfur was liberated from adrenodoxin within 5 min at 22°C. This rate was faster than those of spinach and clostridial ferredoxins, a result also at variance with Suhara's observation. At low temperature, the reaction was clearly biphasic, and spinach ferredoxin showed a similar profile. In the absence of zinc acetate, activation energies of the decomposition reaction of iron-sulfur center of OH? were obtained as 39, 26, and 11 kcal/mol for adrenal, spinach, and clostridial ferredoxins, respectively. The adrenal reaction became faster as the dipole moment of the solvent increased. In the presence of 4 m urea and 1 m KCl, the rate was enhanced by approximately 26-fold, relative to the reaction without the addition of urea. In conclusion, the liberation reaction of adrenal labile sulfur with alkaline zinc reagent is fast at 22°C, indicating no need for modification of the original method (T. Kimura and K. Suzuki, 1967, J. Biol. Chem.242, 485–491; P. E. Brumly, R. W. Miller, and V. Massey, 1965, J. Biol. Chem.240, 2222–2228).  相似文献   

18.
Utilizing a temperature-sensitive mutant of Escherichia coli K-12 defective in the coupling of metabolic energy to active transport, we have demonstrated that the uptake systems for arabinose, galactose, valine, histidine, and glutamine, which are sensitive to the osmotic shock treatment of L. A. Heppel (1965) (J. Biol. Chem.240, 3685), are all totally defective at the nonpermissive temperature (42 °C) whereas the intracellular ATP levels increase twofold. Phosphate bond energy alone is therefore not sufficient to energize the transport of these substrates. We have confirmed the findings of E. A., Berger and L. A. Heppel (1974) (J. Biol. Chem. 249, 7747) regarding a severe arsenate I inhibition of the uptake of substrates belonging to osmotic shock-sensitive transport systems and therefore conclude that both ATP and a functional ecf gene product are required for the coupling of energy to the transport of these solutes.  相似文献   

19.
Protein methylase II (S-adenosyl-methionine:protein-carboxyl methyltransferase) from calf thymus was purified approximately 2400-fold with a yield of 7% by incorporating the pH 5.1 treatment and QAE (triethylaminoethyl)-Sephadex column chromatography to the published purification steps (Kim and Paik (1970) J. Biol. Chem., 245, 1806). The enzyme is found stable at pH 10.2, but loses 50% of its activity in 60 min at pH 5. The enzyme activity disappeared in 8 m urea 2.5 m guanidine hydrochloride at pH 8.0. However, about 80% of the activity returned upon dialysis of the mixture. The highly purified enzyme is stable for at least 2 yr in the presence of 50% glycerol at pH 8.0 or in the form of lyophilized powder. Protein methylase II from different tissues exhibits different pI values, determined by isoelectrofocusing; 4.85 with the enzyme preparation isolated from calf thymus, 5.8 from calf spleen, and 5.08 from rat testis. Reinvestigation of the methanol-forming enzyme system from calf posterior pituitary gland by Axelrod and Daly [Science 150, 892 (1965)] indicated that this enzyme is identical with protein methylase II.  相似文献   

20.
The adenylate cyclase system in the plasma membrane of fat cells contains regulatory components that either stimulate or inhibit activity in response to ligands acting at the cell surface. GTP is required for both the stimulation by various hormones (catecholamines and peptide hormones) and the inhibition by adenosine. We have analyzed the effects of high-energy radiation on the stimulatory and inhibitory processes and conclude that these processes are mediated by structures of different functional size. Moreover, the fat cell cyclase system, when analyzed under conditions in which the inhibitory action of GTP is minimally expressed, displays targets of the same size as those previously observed for those involved in the activation of the hepatic enzyme by glucagon and guanine nucleotides (W. Schlegel, E. S. Kempner, and M. Rodbell, 1979, J. Biol. Chem.254, 5168–5176). These findings extend our recent evidence for the nonidentity of the two GTP-mediated processes (D. M. F. Cooper, W. Schlegel, M. C. Lin, and M. Rodbell, 1979, J. Biol. Chem.254, 8927–8931).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号