首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
R Levis  B G Weiss  M Tsiang  H Huang  S Schlesinger 《Cell》1986,44(1):137-145
Defective-interfering (DI) genomes of a virus contain sequence information essential for their replication and packaging. They need not contain any coding information and therefore are a valuable tool for identifying cis-acting, regulatory sequences in a viral genome. To identify these sequences in a DI genome of Sindbis virus, we cloned a cDNA copy of a complete DI genome directly downstream of the promoter for the SP6 bacteriophage DNA dependent RNA polymerase. The cDNA was transcribed into RNA, which was transfected into chicken embryo fibroblasts in the presence of helper Sindbis virus. After one to two passages the DI RNA became the major viral RNA species in infected cells. Data from a series of deletions covering the entire DI genome show that only sequences in the 162 nucleotide region at the 5' terminus and in the 19 nucleotide region at the 3' terminus are specifically required for replication and packaging of these genomes.  相似文献   

2.
The deletions in RNAs of three defective interfering (DI) particles of poliovirus type 1 have been located and their approximate extent determined by three methods. (1) Digestion with RNase III of DI RNAs yields the same 3′-terminal fragments as digestion with RNase III of standard virus RNA. The longest 3′-terminal fragment has a molecular weight of 1.55 × 106. This suggests that the deletions are located in the 5′-terminal half of the polio genome. (2) Fingerprints of RNase T1-resistant oligonucleotides of all three DI RNAs are identical and lack four large oligonucleotides as compared to the fingerprints of standard virus, an observation suggesting that the deletions in all three DI RNAs are located in the same region of the viral genome. The deletion-specific oligonucleotides have also been shown to be within the 5′-terminal half of the viral genome by alkali fragmentation of the RNA and fingerprinting poly (A)-linked (3′-terminal) fragments of decreasing size. (3) Virion RNA of DI(2) particles was annealed with denatured double-stranded RNA (RF) of standard virus and the hybrid heteroduplex molecules examined in the electron microscope. A single loop, approximately 900 nucleotides long and 20% from one end of the molecules, was observed. Both the size and extent of individual deletions is somewhat variable in different heteroduplex molecules, an observation suggesting heterogeneity in the size of the deletion in RNA of the DI(2) population. Our data show that the DI RNAs of poliovirus contain an internal deletion in that region of the viral genome known to specify the capsid polypeptides. This result provides an explanation as to why poliovirus DI particles are unable to synthesize viral coat proteins.  相似文献   

3.
In vitro construction of poliovirus defective interfering particles.   总被引:26,自引:21,他引:5       下载免费PDF全文
To construct poliovirus defective interfering (DI) particles in vitro, we synthesized an RNA from a cloned poliovirus cDNA, pSM1(T7)1, which carried a deletion in the genome region corresponding to nucleotide positions 1663 to 2478 encoding viral capsid proteins, by using bacteriophage T7 RNA polymerase. The RNA was designed to retain the correct reading frame in nucleotide sequence downstream of the deletion. HeLa S3 monolayer cells were transfected with the deletion RNA and then superinfected with standard virus as a helper. The DI RNA was observed in the infected cells after three passages at high multiplicity of infection. The sequence analysis of RNA extracted from the purified DI particle clearly showed that this DI RNA had the same deletion in size and location as that in the RNA used for the transfection. Thus, we succeeded in construction of a poliovirus DI particle in vitro. To gain insight into the mechanism for DI generation, we constructed poliovirus cDNAs pSM1(T7)1a and pSM1(T7)1b that, in addition to the same deletion as that in pSM1(T7)1, had insertion sequences of 4 bases and 12 bases, respectively, at the corresponding nucleotide position, 2978. The RNA transcribed from pSM1(T7)1a was not a template for synthesis of poliovirus nonstructural proteins and therefore was inactive as an RNA replicon. On the other hand, the RNA from pSM1(T7)1b replicated properly in the transfected cells. Superinfection of the transfected cells with standard virus resulted in production of DI particles derived from pSM1(T7)1b and not from pSM1(T7)1a. These observations indicate that deletion RNAs that are inactive replicons have little or no possibility of being genomes of DI particles suggesting the existence of a nonstructural protein(s) that has an inclination to function as a cis-acting protein(s). The method described here will provide a useful technique to investigate genetic information essential for poliovirus replication.  相似文献   

4.
We have constructed a series of deletion mutants spanning the genome of duck hepatitis B virus in order to determine which regions of the viral genome are required in cis for packaging of the pregenome into capsid particles. Deletion of sequences within either of two nonadjacent regions prevented replication of the mutant viral genomes expressed in a permissive avian hepatoma cell line in the presence of functionally active viral core and P proteins. Extraction of RNA from cells transfected with these replication-defective mutants showed that the mutants retained the capacity to be transcribed into a pregenomic-size viral RNA, but that these RNA species were not packaged into viral capsids. The two regions defined by these deletions are located 36 to 126 (region I) and 1046 to 1214 (region II) nucleotides downstream of the 5' end of the pregenome and contain sequences which are required in cis for encapsidation of the duck hepatitis B virus pregenome.  相似文献   

5.
In a previous study, we documented that serial passage of a biological clone of foot-and-mouth disease virus (FMDV) at high multiplicity of infection (moi) in cell culture resulted in viral populations dominated by defective genomes that included internal in-frame deletions, affecting the L and capsid-coding regions, and were infectious by complementation. In the present study, analyses of the defective genomes present in individual viral plaques, and of consensus nucleotide sequences determined for the entire genomes of sequential samples, have revealed a continuous dynamics of mutation and recombination. At some points of high genetic instability, multiple minority genomes with different internal deletions co-existed in the population. At later passages, a new defective RNA arose and displaced a related, previously dominant RNA. Nucleotide sequences of the different genomic forms found in sequential isolates have revealed an accumulation of mutations at an average rate of 0.12 substitutions per genome per passage. At the regions around the deletion sites, substantial, minor or no nucleotide sequence identity is found, suggesting relaxed sequence requirements for the occurrence of internal deletions. Competition experiments indicate a selective advantage of late phase defective genomes over their precursor forms. The defective genome-based FMDV retained an expansion of host cell tropism, undergone by the standard virus at a previous stage of the same evolutionary lineage. Thus, despite a complex dynamics of mutation and recombination, and phases of high genetic instability, a biologically relevant phenotypic trait was stably maintained after the evolutionary transition towards a primitive genome segmentation. The results extend the concept of a complex spectrum of mutant genomes to a complex spectrum of defective genomes in some evolutionary transitions of RNA viruses.  相似文献   

6.
S Kuge  N Kawamura    A Nomoto 《Journal of virology》1989,63(3):1069-1075
An insertion sequence of 72 nucleotides prepared from a polylinker sequence of plasmid pUC18 was introduced at nucleotide position 702 of the 5' noncoding sequence (742 nucleotides long) of the genome of the Sabin strain of poliovirus type 1 by using an infectious cDNA clone of the virus strain. The insertion mutant thus obtained showed a small-plaque phenotype compared with that of the parent virus. Apparent revertants (large-plaque variants) were easily generated from the insertion mutant. Nucleotide sequence analysis was performed on the revertant genomes to determine the mutation(s) by which the plaque size of the parent virus was regained. Some large-plaque variants lacked genomic sequences including all or a part of the insertion sequence. A computer-aided search for secondary structures with respect to the deletion sites detected possible supporting sequences which provided fairly stable secondary structures at the deletion sites. This result was consistent with our supporting sequence-loop model which had been proposed as a new copy-choice model for the generation of genetic rearrangements occurring on single-stranded RNA genomes (S. Kuge, I. Saito, and A. Nomoto, J. Mol. Biol. 192:473-487, 1986). The other large-plaque variants had point mutations at any one of three positions of an AUG existing in the insertion sequence. A small-plaque phenotype was observed when an AUG codon was inserted in frame or out of frame with regard to the initiation site of viral polyprotein synthesis. Our data strongly suggest that an AUG sequence in this genome region is deleterious for efficient poliovirus replication.  相似文献   

7.
8.
Y J Lin  M M Lai 《Journal of virology》1993,67(10):6110-6118
All of the defective interfering (DI) RNAs of mouse hepatitis virus (MHV) contain both the 5' and 3' ends of the viral genomic RNA, which presumably include the cis sequences required for RNA replication. To define the replication signal of MHV RNA, we have used a vaccinia virus-T7 polymerase-transcribed MHV DI RNA to study the effects of sequence deletion on DI RNA replication. Following infection of susceptible cells with a recombinant vaccinia virus expressing T7 RNA polymerase, various cDNA clones derived from a DI RNA (DIssF) of the JHM strain of MHV, which is a 3.5-kb naturally occurring DI RNA, behind a T7 promoter were transfected. On superinfection with a helper MHV, the ability of various DI RNAs to replicate was determined. Serial deletions from the middle of the RNA toward both the 5' and 3' ends demonstrated that 859 nucleotides from the 5' end and 436 nucleotides from the 3' end of the MHV RNA genome were necessary for RNA replication. Surprisingly, an additional stretch of 135 nucleotides located at 3.1 to 3.3 kb from the 5' end of the genome was also required. This stretch is discontiguous from the 5'-end cis replication signal and is present in all of the naturally occurring DI RNAs studied so far. The requirement for a long stretch of 5'- and 3'-end sequences predicts that the subgenomic MHV mRNAs cannot replicate. The efficiency of RNA replication varied with different cDNA constructs, suggesting possible interaction between different regions of DI RNA. The identification of MHV RNA replication signals allowed the construction of an MHV DI-based expression vector, which can express foreign genes, such as the chloramphenicol acetyltransferase gene.  相似文献   

9.
The RNA genome of tobacco rattle virus (TRV) is bipartite. RNA 2 of the nematode-transmissible TRV isolate PPK20 encodes the viral coat protein (cp) and proteins with molecular weights of 29,400 and 32,800 (29.4K and 32.8K proteins). When this isolate was serially passaged in tobacco by using phenol-extracted RNA as the inoculum in each transfer, defective interfering (DI) RNAs rapidly accumulated. A number of these DI RNAs were cloned. Six DI RNAs had single internal deletions in RNA 2 that removed most of the cp gene, the 29.4K gene, and the 5' half of the 32.8K gene. The borders of the deletions in these DI RNAs were found to be flanked in the genomic RNA 2 by short nucleotide repeats or sequences resembling the 5' end of TRV genomic and subgenomic RNAs. Two DI RNAs were found to be recombinants containing a 5' sequence derived from RNA 2 and a 3' sequence derived from RNA 1. When serial passage of TRV isolate PPK20 was carried out by using leaf homogenates as inocula in each transfer, accumulation of a DI RNA (designated D7) with a functional cp gene was observed. The deletion in D7 covered the 3' end of the cp gene, the 29.4K gene, and the 5' half of the 32.8K gene. An infectious cDNA clone of D7 RNA was made. In mixed infections, D7 RNA rapidly outcompeted RNA 2 but did not compete with RNA 1. The deletion in D7 RNA abolished the nematode transmissibility of the PPK20 isolate. These results may explain the observation that many laboratory isolates of tobraviruses have lost their nematode transmissibility and contain RNA 2 molecules of widely different lengths.  相似文献   

10.
Defective interfering (DI) RNA genomes of poliovirus which contain in-frame deletions in the P1 capsid protein-encoding region have been described. DI genomes are capable of replication and can be encapsidated by capsid proteins provided in trans from wild-type poliovirus. In this report, we demonstrate that a previously described poliovirus DI genome (K. Hagino-Yamagishi and A. Nomoto, J. Virol. 63:5386-5392, 1989) can be complemented by a recombinant vaccinia virus, VVP1 (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 65:2088-2092, 1991), which expresses the poliovirus capsid precursor polyprotein, P1. Stocks of defective polioviruses were generated by transfecting in vitro-transcribed defective genome RNA derived from plasmid pSM1(T7)1 into HeLa cells infected with VVP1 and were maintained by serial passage in the presence of VVP1. Encapsidation of the defective poliovirus genome was demonstrated by characterizing poliovirus-specific protein expression in cells infected with preparations of defective poliovirus and by Northern (RNA) blot analysis of poliovirus-specific RNA incorporated into defective poliovirus particles. Cells infected with preparations of defective poliovirus expressed poliovirus protein 3CD but did not express capsid proteins derived from a full-length P1 precursor. Poliovirus-specific RNA encapsidated in viral particles generated in cells coinfected with VVP1 and defective poliovirus migrated slightly faster on formaldehyde-agarose gels than wild-type poliovirus RNA, demonstrating maintenance of the genomic deletion. By metabolic radiolabeling with [35S]methionine-cysteine, the defective poliovirus particles were shown to contain appropriate mature-virion proteins. This is the first report of the generation of a pure population of defective polioviruses free of contaminating wild-type poliovirus. We demonstrate the use of this recombinant vaccinia virus-defective poliovirus genome complementation system for studying the effects of a defined mutation in the P1 capsid precursor on virus assembly. Following removal of residual VVP1 from defective poliovirus preparations, processing and assembly of poliovirus capsid proteins derived from a nonmyristylated P1 precursor expressed by a recombinant vaccinia virus, VVP1 myr- (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 66:4556-4563, 1992), in cells coinfected with defective poliovirus were analyzed. Capsid proteins generated from nonmyristylated P1 did not assemble detectable levels of mature virions but did assemble, at low levels, into empty capsids.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
12.
13.
Zhao WD  Wimmer E 《Journal of virology》2001,75(8):3719-3730
Internal ribosomal entry sites (IRESs) of certain plus-strand RNA viruses direct cap-independent initiation of protein synthesis both in vitro and in vivo, as can be shown with artificial dicistronic mRNAs or with chimeric viral genomes in which IRES elements were exchanged from one virus to another. Whereas IRESs of picornaviruses can be readily analyzed in the context of their cognate genome by genetics, the IRES of hepatitis C virus (HCV), a Hepacivirus belonging to Flaviviridae, cannot as yet be subjected to such analyses because of difficulties in propagating HCV in tissue culture or in experimental animals. This enigma has been overcome by constructing a poliovirus (PV) whose translation is controled by the HCV IRES. Within the PV/HCV chimera, the HCV IRES has been subjected to systematic 5' deletion analyses to yield a virus (P/H710-d40) whose replication kinetics match that of the parental poliovirus type 1 (Mahoney). Genetic analyses of the HCV IRES in P/H710-d40 have confirmed that the 5' border maps to domain II, thereby supporting the validity of the experimental approach applied here. Additional genetic experiments have provided evidence for a novel structural region within domain II. Arguments that the phenotypes observed with the mutant chimera relate solely to impaired genome replication rather than deficiencies in translation have been dispelled by constructing novel dicistronic poliovirus replicons with the gene order [PV]cloverleaf-[HCV]IRES-Deltacore-R-Luc-[PV]IRES-F-Luc-P2,3-3'NTR, which have allowed the measurement of HCV IRES-dependent translation independently from the replication of the replicon RNA.  相似文献   

14.
Molecular characterization of bovine viral diarrhea virus pair 13 revealed that isolate CP13 is composed of a cytopathogenic (cp) defective interfering particle (DI13) and a noncytopathogenic (noncp) helper virus. The DI13 genome possesses two internal deletions of 1,611 and 3,102 nucleotides. Except for a small fragment of the gene coding for glycoprotein E1, all structural protein genes are deleted together with most of the Npro gene, the region coding for nonstructural proteins p7 and NS2. While the amino terminus of NS3 seems to be strictly conserved for all other cp bovine viral diarrhea viruses, NS3 of DI13 is amino-terminally truncated and fused to 23 amino acids derived from Npro and E1. Characterization of the DI-helper virus system revealed a striking discrepancy between RNA production and generation of infectious viruses.  相似文献   

15.
Y Li  L A Ball 《Journal of virology》1993,67(7):3854-3860
During sequential replicative passages of viral RNA from the nodavirus flock house virus, spontaneous deletion of RNA sequences occurred frequently. Families of deleted RNA molecules were derived from both segments of the bipartite viral genome and found to contain single, double, or triple deletions. These deletions were attributed to template switching by the flock house virus RNA replicase, resulting in recombination between distant sequences and excision of the intervening nucleotides. From sequence analysis of the recombination junctions, we concluded that the process of template switching was influenced by both the primary sequence and the secondary structure of the RNA and that it occurred predominantly during synthesis of RNA negative strands.  相似文献   

16.
Viral pathogenesis depends on a suitable milieu in target host cells permitting viral gene expression, propagation, and spread. In many instances, viral genomes can be manipulated to select for propagation in certain tissues or cell types. This has been achieved for the neurotropic poliovirus (PV) by exchange of the internal ribosomal entry site (IRES), which is responsible for translation of the uncapped plus-strand RNA genome. The IRES of human rhinovirus type 2 (HRV2) confers neuron-specific replication deficits to PV but has no effect on viral propagation in malignant glioma cells. We report here that placing the critical gamma(1)34.5 virulence genes of herpes simplex virus type 1 (HSV) under translation control of the HRV2 IRES results in neuroattenuation in mice. In contrast, IRES insertion permits HSV propagation in malignant glioma cell lines that do not support replication of HSV recombinants carrying gamma(1)34.5 deletions. Our observations indicate that the conditions for alternative translation initiation at the HRV2 IRES in malignant glioma cells differ from those in normal central nervous system (CNS) cells. Picornavirus regulatory sequences mediating cell type-specific gene expression in the CNS can be utilized to target cancerous cells at the level of translation regulation outside their natural context.  相似文献   

17.
18.
The ability of transformation-defective deletion mutants of Schmidt-Ruppin Rous sarcoma virus to induce tumors and generate recovered sarcoma viruses (rASVs) was correlated with the partial src sequences retained in the transformation-defective viral genomes. Since all the transformation-defective viruses that were capable of generating rASVs retained a portion of the 3' src sequence, regardless of the extent of the 5' src deletion, and those lacking the 3' src were unable to generate rASVs, it appears that the 3', but most likely not the 5', src sequence retained in the transformation-defective viral genome is essential for rASV formation. However, rASVs derived from a particular mutant, td109, which retained a portion of the 3' src sequence, but lacked most (if not all) of the 5' src sequence, were all found to be defective in replication. Analyses of the genomic sequences of 13 isolates of td109-derived rASVs revealed that they contained various deletions in viral envelope (env), polymerase (pol), and structural protein (gag) genes. Ten isolates of rASVs contained env deletions. One isolate (rASV3812) contained a deletion of env and the 3' half of pol, and one isolate (rASV398) contained a deletion of env and pol. The one with the most extensive deletion (rASV374) had a deletion from the p12-coding sequence through pol and env. In addition, the 5' src region of td109-derived rASVs were heterogeneous. Among the 7 isolates analyzed in detail, one isolate of rASV had a small deletion of the 5' src sequence, whereas three other isolates contained extra new sequences upstream from src. Both env- and env- pol- rASVs were capable of directing the synthesis of precursor and mature gag proteins in the infected nonproducer cells. We attribute the deletions in the replication-defective rASVs to the possibility that the 5' recombination site between the td109 and c-src sequence, involved regions of only partial homology due to lack of sufficient 5' src sequence in the td109 genome for homologous recombination. A model of recombination between the viral genome and the c-src sequence is proposed to account for the requirement of the 3' src sequence and the basis for the generation of deletions in td109-derived rASVs.  相似文献   

19.
The genome structure and terminal sequences of a 'copyback' defective interfering (DI) particle ST1, and a novel complexly rearranged 'snapback' DI particle ST2 of vesicular stomatitis virus have been determined. The ST1 DI genome RNA possesses 54 base long inverted complementary termini, the 5' end of which is homologous to the standard virus genome 5' end. Following this region of inverted complementarity the DI RNA 5' end continues to be homologous to standard virus RNA 5' sequences, whereas the 3' end diverges into sequences within the virus L gene internal sequences. ST2 DI genome RNA does not contain colinear covalently linked plus and minus sense RNA copies of the standard infectious virus RNA 5' terminus as predicted from the prototype snapback DI structure, but instead appears to be a hairpin copy of the ST1 DI RNA genome. This is the first evidence suggesting that DI particles may be generated from RNA templates other than the standard virus RNA. Generation models and the implications of these findings for RNA virus evolution are discussed.  相似文献   

20.
During replication, RNA viruses accumulate genome alterations, such as mutations and deletions. The interactions between individual variants can determine the fitness of the virus population and, thus, the outcome of infection. To investigate the effects of defective interfering genomes (DI) on wild-type (WT) poliovirus replication, we developed an ordinary differential equation model, which enables exploring the parameter space of the WT and DI competition. We also experimentally examined virus and DI replication kinetics during co-infection, and used these data to infer model parameters. Our model identifies, and our experimental measurements confirm, that the efficiencies of DI genome replication and encapsidation are two most critical parameters determining the outcome of WT replication. However, an equilibrium can be established which enables WT to replicate, albeit to reduced levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号