首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Adaptive evolution after duplication of penaeidin antimicrobial peptides   总被引:3,自引:1,他引:2  
Penaeidin antimicrobial peptides in penaeid shrimps are an important component of their innate immune system that provides immunity against infection caused by several gram-positive bacteria and filamentous fungal species. Despite the knowledge on the identification and characterization of these peptides in penaeid shrimps, little is known about the evolutionary pattern of these peptides and the underlying genetic mechanisms that maintain high sequence diversities in the penaeidin gene family. Based on the phylogenetic analyses and maximum likelihood-based codon substitution analyses, here we present the convincing evidence that multiple copies of penaeidins have evolved by gene duplication, and positive Darwinian selection (adaptive evolution) is the likely cause of accelerated rate of amino acid substitutions among these duplicated genes. While the average ratio of non-synonymous to synonymous substitutions (omega) for the entire coding region of both active domains is 0.9805, few codon sites showed significantly higher omega (3.73). The likelihood ratio tests that compare models incorporating positive selection (omega>1) at certain codon sites with models not incorporating positive selection (omega<1), failed to reject (p=0) the evidence of positive Darwinian selection. The rapid adaptive evolution of this gene family might be directed by the pathogens and the faster rate of amino acid substitutions in the N-terminal proline-rich and C-terminal cysteine-rich domains could be due to their direct involvement in the protection against pathogens. When the host expose to different habitats/environment an accelerated rate of amino acid substitutions in both the active domains may also be expected.  相似文献   

2.
Conant GC  Wolfe KH 《Genetics》2008,179(3):1681-1692
Identification of orthologous genes across species becomes challenging in the presence of a whole-genome duplication (WGD). We present a probabilistic method for identifying orthologs that considers all possible orthology/paralogy assignments for a set of genomes with a shared WGD (here five yeast species). This approach allows us to estimate how confident we can be in the orthology assignments in each genomic region. Two inferences produced by this model are indicative of purifying selection acting to prevent duplicate gene loss. First, our model suggests that there are significant differences (up to a factor of seven) in duplicate gene half-life. Second, we observe differences between the genes that the model infers to have been lost soon after WGD and those lost more recently. Gene losses soon after WGD appear uncorrelated with gene expression level and knockout fitness defect. However, later losses are biased toward genes whose paralogs have high expression and large knockout fitness defects, as well as showing biases toward certain functional groups such as ribosomal proteins. We suggest that while duplicate copies of some genes may be lost neutrally after WGD, another set of genes may be initially preserved in duplicate by natural selection for reasons including dosage.  相似文献   

3.
4.
Gene duplication provides the opportunity for subsequent refinement of distinct functions of the duplicated copies. Either through changes in coding sequence or changes in regulatory regions, duplicate copies appear to obtain new or tissue-specific functions. If this divergence were driven by natural selection, we would expect duplicated copies to have differentiated patterns of substitutions. We tested this hypothesis using genes that duplicated before the human/mouse split and whose orthologous relations were clear. The null hypothesis is that the number of amino acid changes between humans and mice was distributed similarly across different paralogs. We used a method modified from Tang and Lewontin to detect heterogeneity in the amino acid substitution pattern between those different paralogs. Our results show that many of the paralogous gene pairs appear to be under differential selection in the human/mouse comparison. The properties that led to diversification appear to have arisen before the split of the human and mouse lineages. Further study of the diverged genes revealed insights regarding the patterns of amino acid substitution that resulted in differences in function and/or expression of these genes. This approach has utility in the study of newly identified members of gene families in genomewide data mining and for contrasting the merits of alternative hypotheses for the evolutionary divergence of function of duplicated genes.  相似文献   

5.
We have developed a formalism and a computational method for analyzing the potential functional consequences of non-synonymous single nucleotide polymorphisms. Our approach uses a structural model and phylogenetic information to derive a selection of structure and sequence-based features serving as indicators of an amino acid polymorphim's effect on function. The feature values can be integrated into a probabilistic assessment of whether an amino acid polymorphism will affect the function or stability of a target protein. The method has been validated with data sets of unbiased mutations in the lac repressor and lysoyzyme. Applying our methodology to recent surveys of genetic variation in the coding regions of clinically important genes, we estimate that approximately 26-32 % of the natural non-synonymous single nucleotide polymorphisms have effects on function. This estimate suggests that a typical person will have about 6240-12,800 heterozygous loci that encode proteins with functional variation due to natural amino acid polymorphism.  相似文献   

6.
Gene duplication is important in evolution, because it provides new raw material for evolutionary adaptations. Several existing hypotheses about the causes of duplicate retention and diversification differ in their emphasis on gene dosage, subfunctionalization, and neofunctionalization. Little experimental data exist on the relative importance of gene expression changes and changes in coding regions for the evolution of duplicate genes. Furthermore, we do not know how strongly the environment could affect this importance. To address these questions, we performed evolution experiments with the TEM‐1 beta lactamase gene in Escherichia coli to study the initial stages of duplicate gene evolution in the laboratory. We mimicked tandem duplication by inserting two copies of the TEM‐1 gene on the same plasmid. We then subjected these copies to repeated cycles of mutagenesis and selection in various environments that contained antibiotics in different combinations and concentrations. Our experiments showed that gene dosage is the most important factor in the initial stages of duplicate gene evolution, and overshadows the importance of point mutations in the coding region.  相似文献   

7.
Evolution of duplicate genes in a tetraploid animal, Xenopus laevis   总被引:6,自引:1,他引:5  
To understand the evolution of duplicate genes, we compared rates of nucleotide substitution between 17 pairs of nonallelic duplicated genes in the tetraploid frog Xenopus laevis with rates between the orthologous loci of human and rodent. For all duplicated X. laevis genes, the number of synonymous substitutions per site (dS) was greater than the number of nonsynonymous substitutions per site (dN), indicating that these genes are subject to purifying selection. There was also a significant positive correlation (r = 0.915) between dN for the X. laevis genes and dN for the mammalian genes, suggesting that, at the amino acid level, the X. laevis genes and the mammalian genes are under similar constraints. Results of relative-rate tests showed nearly equal rates of nonsynonymous substitution in each copy of the X. laevis genes; apparently there are similar constraints on both copies. No correlation was found between dS for the X. laevis genes and dS for the mammalian genes. There was a significant positive correlation both between members of pairs of duplicated X. laevis genes (r = 0.951) and between human and rodent orthologues (r = 0.854) with respect to third- position G+C content but no such relationship between the X. laevis genes and either of their mammalian orthologues. The results indicate that both copies of a duplicate gene can be subject to purifying selection and thus support the hypothesis of selection against all genotypes containing a null allele at either of two duplicate loci.   相似文献   

8.
O'Connell MJ  McInerney JO 《Gene》2005,360(2):151-159
Cancer may act as the etiological agent for natural selection in some genes. This selective pressure would act to reduce the success of neoplastic lineages over normal cell lineages in individuals of reproductive age. In addition, human's relatively larger brain and longer lifespan may have also acted as a selective force requiring new genotypes. One of the most important proteins in both processes is the fatty acid synthase (FAS) gene involved in fatty acid biosynthesis. A variety of other proteins, including PTEN, MAPK1, SREBP1, SREBP2 and PI are also involved in the regulation of fatty acid biosynthesis. We have specifically analysed variability in selective pressure across all these genes in human, mouse and other vertebrates. We have found that the FAS gene alone has signatures indicative of adaptive evolution. We did not find any signatures of adaptive evolution in any of the other proteins. In the FAS gene, we have detected an excess of non-synonymous over synonymous substitutions in approximately 6% of sites in the human lineage. Contrastingly, the substitution process at these sites in other available vertebrates and mammals indicates strong purifying selection. This is likely to reflect a functional shift in human FAS and correlates well with previously observed changes in FAS biochemical activities. We speculate that the role played by FAS either in cancer development or in human brain development has created this selective pressure, although we cannot rule out the various other functions of FAS.  相似文献   

9.
This article provides evidence that selection has been a significant force during the evolution of the human mitochondrial genome. Both gene-by-gene and whole-genome approaches were used here to assess selection in the 560 mitochondrial DNA (mtDNA) coding-region sequences that were used previously for reduced-median-network analysis. The results of the present analyses were complex, in that the action of selection was not indicated by all tests, but this is not surprising, in view of the characteristics and limitations of the different analytical methods. Despite these limitations, there is evidence for both gene-specific and lineage-specific variation in selection. Whole-genome sliding-window approaches indicated a lack of selection in large-scale segments of the coding region. In other tests, we analyzed the ratio of nonsynonymous-to-synonymous substitutions in the 13 protein-encoding mtDNA genes. The most straightforward interpretation of those results is that negative selection has acted on the mtDNA during evolution. Single-gene analyses indicated significant departures from neutrality in the CO1, ND4, and ND6 genes, although the data also suggested the possible operation of positive selection on the AT6 gene. Finally, our results and those of other investigators do not support a simple model in which climatic adaptation has been a major force during human mtDNA evolution.  相似文献   

10.

Background  

There is accumulating evidence that polymorphism in Toll-like receptor (TLR) genes might be associated with disease resistance or susceptibility traits in livestock. Polymorphic sites affecting TLR function should exhibit signatures of positive selection, identified as a high ratio of non-synonymous to synonymous nucleotide substitutions (ω). Phylogeny based models of codon substitution based on estimates of ω for each amino acid position can therefore offer a valuable tool to predict sites of functional relevance. We have used this approach to identify such polymorphic sites within the bovine TLR2 genes from ten Bos indicus and Bos taurus cattle breeds. By analysing TLR2 gene phylogeny in a set of mammalian species and a subset of ruminant species we have estimated the selective pressure on individual sites and domains and identified polymorphisms at sites of putative functional importance.  相似文献   

11.
The chaperonins, GroEL and GroES, are present ubiquitously and provide a paradigm in the understanding of assisted protein folding. Due to its essentiality of function, GroEL exhibits high sequence conservation across species. Complete genome sequencing has shown the occurrence of duplicate or multiple copies of groEL genes in bacteria such as Mycobacterium tuberculosis and Corynebacterium glutamicum. Monophyly of each bacterial clade in the phylogenetic tree generated for the GroEL protein suggests a lineage-specific duplication. The duplicated groEL gene in Actinobacteria is not accompanied by the operonic groES despite the presence of upstream regulatory elements. Our analysis suggests that in these bacteria the duplicated groEL genes have undergone rapid evolution and divergence to function in a GroES-independent manner. Evaluation of multiple sequence alignment demonstrates that the duplicated genes have acquired mutations at functionally significant positions including those involved in substrate binding, ATP binding, and GroES binding and those involved in inter-ring and intra-ring interactions. We propose that the duplicate groEL genes in different bacterial clades have evolved independently to meet specific requirements of each clade. We also propose that the groEL gene, although essential and conserved, accumulates nonconservative substitutions to exhibit structural and functional variations. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Debashish Bhattacharya]  相似文献   

12.
The alpha-Amylase locus in Drosophila pseudoobscura is a multigene family of one, two or three copies on the third chromosome. The nucleotide sequences of the three Amylase genes from a single chromosome of D. pseudoobscura are presented. The three Amylase genes differ at about 0.5% of their nucleotides. Each gene has a putative intron of 71 (Amy1) or 81 (Amy2 and Amy3) bp. In contrast, Drosophila melanogaster Amylase genes do not have an intron. The functional Amy1 gene of D. pseudoobscura differs from the Amy-p1 gene of D. melanogaster at an estimated 13.3% of the 1482 nucleotides in the coding region. The estimated rate of synonymous substitutions is 0.398 +/- 0.043, and the estimated rate of nonsynonymous substitutions is 0.068 +/- 0.008. From the sequence data we infer that Amy2 and Amy3 are more closely related to each other than either is to Amy1. From the pattern of nucleotide substitutions we reason that there is selection against synonymous substitutions within the Amy1 sequence; that there is selection against nonsynonymous substitutions within the Amy2 sequence, or that Amy2 has recently undergone a gene conversion with Amy1; and that Amy3 is nonfunctional and subject to random genetic drift.  相似文献   

13.
Raquel Assis 《Fly》2014,8(2):91-94
Gene duplication is thought to play a key role in phenotypic innovation. While several processes have been hypothesized to drive the retention and functional evolution of duplicate genes, their genomic contributions have never been determined. We recently developed the first genome-wide method to classify these processes by comparing distances between expression profiles of duplicate genes and their ancestral single-copy orthologs. Application of our approach to spatial gene expression profiles in two Drosophila species revealed that a majority of young duplicate genes possess new functions, and that new functions are acquired rapidly—often within a few million years. Surprisingly, new functions tend to arise in younger copies of duplicate gene pairs. Moreover, we found that young duplicates are often specifically expressed in testes, whereas old duplicates are broadly expressed across several tissues, providing strong support for the hypothetical “out-of-testes” origin of new genes. In this Extra View, I discuss our findings in the context of theoretical predictions about gene duplication, with a particular emphasis on the importance of natural selection in the evolution of novel phenotypes.  相似文献   

14.
MOTIVATION: Two important questions for the analysis of gene expression measurements from different sample classes are (1) how to classify samples and (2) how to identify meaningful gene signatures (ranked gene lists) exhibiting the differences between classes and sample subsets. Solutions to both questions have immediate biological and biomedical applications. To achieve optimal classification performance, a suitable combination of classifier and gene selection method needs to be specifically selected for a given dataset. The selected gene signatures can be unstable and the resulting classification accuracy unreliable, particularly when considering different subsets of samples. Both unstable gene signatures and overestimated classification accuracy can impair biological conclusions. METHODS: We address these two issues by repeatedly evaluating the classification performance of all models, i.e. pairwise combinations of various gene selection and classification methods, for random subsets of arrays (sampling). A model score is used to select the most appropriate model for the given dataset. Consensus gene signatures are constructed by extracting those genes frequently selected over many samplings. Sampling additionally permits measurement of the stability of the classification performance for each model, which serves as a measure of model reliability. RESULTS: We analyzed a large gene expression dataset with 78 measurements of four different cartilage sample classes. Classifiers trained on subsets of measurements frequently produce models with highly variable performance. Our approach provides reliable classification performance estimates via sampling. In addition to reliable classification performance, we determined stable consensus signatures (i.e. gene lists) for sample classes. Manual literature screening showed that these genes are highly relevant to our gene expression experiment with osteoarthritic cartilage. We compared our approach to others based on a publicly available dataset on breast cancer. AVAILABILITY: R package at http://www.bio.ifi.lmu.de/~davis/edaprakt  相似文献   

15.
Wagner A 《Genetics》2007,176(4):2451-2463
Positive selection in genes and genomes can point to the evolutionary basis for differences among species and among races within a species. The detection of positive selection can also help identify functionally important protein regions and thus guide protein engineering. Many existing tests for positive selection are excessively conservative, vulnerable to artifacts caused by demographic population history, or computationally very intensive. I here propose a simple and rapid test that is complementary to existing tests and that overcomes some of these problems. It relies on the null hypothesis that neutrally evolving DNA regions should show a Poisson distribution of nucleotide substitutions. The test detects significant deviations from this expectation in the form of variation clusters, highly localized groups of amino acid changes in a coding region. In applying this test to several thousand human-chimpanzee gene orthologs, I show that such variation clusters are not generally caused by relaxed selection. They occur in well-defined domains of a protein's tertiary structure and show a large excess of amino acid replacement over silent substitutions. I also identify multiple new human-chimpanzee orthologs subject to positive selection, among them genes that are involved in reproductive functions, immune defense, and the nervous system.  相似文献   

16.
In this paper, we propose a new method (uninode coding) for coding duplicate (paralogous) genes to infer species trees. Uninode coding incorporates data from duplicated and unduplicated gene copies in phylogenetic analyses of taxa. Uninode coding utilizes global parsimony through the inclusion of both duplicated and unduplicated gene copies, allows one to code all data sources from a taxon into a single terminal, and overcomes problems of character dependence among duplicated and unduplicated gene copies. We present an example of uninode coding using the phytochrome A and phytochrome C data from a study by Donoghue and Mathews.  相似文献   

17.
Despite its importance in harboring genes critical for spermatogenesis and male-specific functions, the Y chromosome has been largely excluded as a priority in recent mammalian genome sequencing projects. Only the human and chimpanzee Y chromosomes have been well characterized at the sequence level. This is primarily due to the presumed low overall gene content and highly repetitive nature of the Y chromosome and the ensuing difficulties using a shotgun sequence approach for assembly. Here we used direct cDNA selection to isolate and evaluate the extent of novel Y chromosome gene acquisition in the genome of the domestic cat, a species from a different mammalian superorder than human, chimpanzee, and mouse (currently being sequenced). We discovered four novel Y chromosome genes that do not have functional copies in the finished human male-specific region of the Y or on other mammalian Y chromosomes explored thus far. Two genes are derived from putative autosomal progenitors, and the other two have X chromosome homologs from different evolutionary strata. All four genes were shown to be multicopy and expressed predominantly or exclusively in testes, suggesting that their duplication and specialization for testis function were selected for because they enhance spermatogenesis. Two of these genes have testis-expressed, Y-borne copies in the dog genome as well. The absence of the four newly described genes on other characterized mammalian Y chromosomes demonstrates the gene novelty on this chromosome between mammalian orders, suggesting it harbors many lineage-specific genes that may go undetected by traditional comparative genomic approaches. Specific plans to identify the male-specific genes encoded in the Y chromosome of mammals should be a priority.  相似文献   

18.
Pairwise comparison of whole plastid and draft nuclear genomic sequences of Arabidopsis thaliana and Oryza sativa L. ssp. indica shows that rice nuclear genomic sequences contain homologs of plastid DNA covering about 94 kb (83%) of plastid genome and including one or more full-length intact (without mutations resulting in premature stop codons) homologues of 26 known protein-coding (KPC) plastid genes. By contrast, only about 20 kb (16%) of chloroplast DNA, including a single intact plastid-derived KPC gene, is presented in the nucleus of A. thaliana. Sixteen rice plastid genes have at least one nuclear copy without any mutation or with only synonymous substitutions. Nuclear copies for other ten plastid genes contain both synonymous and non-synonymous substitutions. Multiple ESTs for 25 out of 26 KPC genes were also found, as well as putative promoters for some of them. The study of substitutions pattern shows that some of nuclear homologues of plastid genes may be functional and/or are under the pressure of the positive natural selection. The similar comparative analysis performed on rice chromosome 1 revealed 27 contigs containing plastid-derived sequences, totalling about 84 kb and covering two thirds of chloroplast DNA, with the intact nuclear copies of 26 different KPC genes. One of these contigs, AP003280, includes almost 57 kb (45%) of chloroplast genome with the intact copies of 22 KPC genes. At the same time, we observed that relative locations of homologues in plastid DNA and the nuclear genome are significantly different.  相似文献   

19.

Background

The recent increase in human polymorphism data, together with the availability of genome sequences from several primate species, provides an unprecedented opportunity to investigate how natural selection has shaped human evolution.

Results

We compared human branch-specific substitutions with variation data in the current human population to measure the impact of adaptive evolution on human protein coding genes. The use of single nucleotide polymorphisms (SNPs) with high derived allele frequencies (DAFs) minimized the influence of segregating slightly deleterious mutations and improved the estimation of the number of adaptive sites. Using DAF ≥ 60% we showed that the proportion of adaptive substitutions is 0.2% in the complete gene set. However, the percentage rose to 40% when we focused on genes that are specifically accelerated in the human branch with respect to the chimpanzee branch, or on genes that show signatures of adaptive selection at the codon level by the maximum likelihood based branch-site test. In general, neural genes are enriched in positive selection signatures. Genes with multiple lines of evidence of positive selection include taxilin beta, which is involved in motor nerve regeneration and syntabulin, and is required for the formation of new presynaptic boutons.

Conclusions

We combined several methods to detect adaptive evolution in human coding sequences at a genome-wide level. The use of variation data, in addition to sequence divergence information, uncovered previously undetected positive selection signatures in neural genes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-599) contains supplementary material, which is available to authorized users.  相似文献   

20.
Human mitochondrial DNA (mtDNA) is a nonrecombining genome that codes for 13 subunits of the mitochondrial oxidative phosphorylation system, 2 rRNAs, and 22 tRNAs. Mutations have accumulated sequentially in mtDNA lineages that diverged tens of thousands of years ago. The genes in mtDNA are subject to different functional constraints and are therefore expected to evolve at different rates, but the rank order of these rates should be the same in all lineages of a phylogeny. Previous studies have indicated, however, that specific regions of mtDNA may have experienced different histories of selection in different lineages, possibly because of lineage-specific interactions or environmental factors such as climate. We report here on a survey for lineage-specific patterns of nucleotide polymorphism in human mtDNA. We calculated molecular polymorphism indices and neutrality tests for classes of functional sites and genes in 837 human mtDNA sequences, compared the results between continent-specific mtDNA lineages, and used two sliding window methods to identify differences in the patterns of polymorphism between haplogroups. A general correlation between nucleotide position and the level of nucleotide polymorphism was identified in the coding region of the mitochondrial genome. Nucleotide diversity in the protein-coding sequence of mtDNA was generally not much higher than that found for many genes in nuclear DNA. A comparison of nonsynonymous/synonymous rate ratios in the 13 protein-coding genes suggested differences in the relative levels of selection between haplogroups, including the European haplogroup clusters. Interestingly, a segment of the MTND5 gene was found to be almost void of segregating sites and nonsynonymous mutations in haplogroup J, which has been associated with susceptibility to certain complex diseases. Our results suggest that there are haplogroup-specific differences in the intensity of selection against particular regions of the mitochondrial genome, indicating that some mutations may be non-neutral within specific phylogenetic lineages but neutral within others.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号