首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chen HW  Pan CH  Liau MY  Jou R  Tsai CJ  Wu HJ  Lin YL  Tao MH 《Journal of virology》1999,73(12):10137-10145
In this study, we evaluated the relative role of the structural and nonstructural proteins of the Japanese encephalitis virus (JEV) in inducing protective immunities and compared the results with those induced by the inactivated JEV vaccine. Several inbred and outbred mouse strains immunized with a plasmid (pE) encoding the JEV envelope protein elicited a high level of protection against a lethal JEV challenge similar to that achieved by the inactivated vaccine, whereas all the other genes tested, including those encoding the capsid protein and the nonstructural proteins NS1-2A, NS3, and NS5, were ineffective. Moreover, plasmid pE delivered by intramuscular or gene gun injections produced much stronger and longer-lasting JEV envelope-specific antibody responses than immunization of mice with the inactivated JEV vaccine did. Interestingly, intramuscular immunization of plasmid pE generated high-avidity antienvelope antibodies predominated by the immunoglobulin G2a (IgG2a) isotype similar to a sublethal live virus immunization, while gene gun DNA immunization and inactivated JEV vaccination produced antienvelope antibodies of significantly lower avidity accompanied by a higher IgG1-to-IgG2a ratio. Taken together, these results demonstrate that the JEV envelope protein represents the most critical antigen in providing protective immunity.  相似文献   

2.
We have previously shown that a plasmid (pE) encoding the Japanese encephalitis virus (JEV) envelope (E) protein conferred a high level of protection against a lethal viral challenge. In the present study, we used adoptive transfer experiments and gene knockout mice to demonstrate that the DNA-induced E-specific antibody alone can confer protection in the absence of cytotoxic T-lymphocyte (CTL) functions. Plasmid pE administered by either intramuscular or gene gun injection produced significant E-specific antibodies, helper T (Th)-cell proliferative responses, and CTL activities. Animals receiving suboptimal DNA vaccination produced low titers of anti-E antibodies and were only partially or not protected from viral challenge, indicating a strong correlation between anti-E antibodies and the protective capacity. This observation was confirmed by adoptive transfer experiments. Intravenous transfer of E-specific antisera but not crude or T-cell-enriched immune splenocytes to sublethally irradiated hosts conferred protection against a lethal JEV challenge. Furthermore, experiments with gene knockout mice showed that DNA vaccination did not induce anti-E titers and protective immunity in Igmu(-/-) and I-Abeta(-/-) mice, whereas in CD8alpha(-/-) mice the pE-induced antibody titers and protective rate were comparable to those produced in the wild-type mice. Taken together, these results demonstrate that the anti-E antibody is the most critical protective component in this JEV challenge model and that production of anti-E antibody by pE DNA vaccine is dependent on the presence of CD4(+) T cells but independent of CD8(+) T cells.  相似文献   

3.
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is a zoonotic pathogen that is prevalent in some Southeast Asian countries and causes acute encephalitis in humans. To evaluate the potential application of gene immunization to JEV infection, we characterized the immune responses from mice intramuscularly injected with plasmid DNA encoding JEV glycoproteins, including the precursor membrane (prM) plus envelope (E) proteins and the nonstructural protein NS1. When injected with the plasmid expressing prM plus E, 70% of the immunized mice survived after a lethal JEV challenge, whereas when immunized with the plasmid expressing NS1, 90% of the mice survived after a lethal challenge. As a control, the mice immunized with the DNA vector pcDNA3 showed a low level (40%) of protection, suggesting a nonspecific adjuvant effect of the plasmid DNA. Despite having no detectable neutralizing activity, the NS1 immunization elicited a strong antibody response exhibiting cytolytic activity against JEV-infected cells in a complement-dependent manner. By contrast, immunization with a construct expressing a longer NS1 protein (NS1′), containing an extra 60-amino-acid portion from the N terminus of NS2A, failed to protect mice against a lethal challenge. Biochemical analyses revealed that when individually expressed, NS1 but not NS1′ could be readily secreted as a homodimer in large quantity and could also be efficiently expressed on the cell surface. Interestingly, when NS1 and NS1′ coexisted in cells, the level of NS1 cell surface expression was much lower than that in cells expressing NS1 alone. These data imply that the presence of partial NS2A might have a negative influence on an NS1-based DNA vaccine. The results herein clearly illustrate that immunization with DNA expressing NS1 alone is sufficient to protect mice against a lethal JEV challenge.  相似文献   

4.
A plasmid encoding Japanese encephalitis virus (JEV) prM and E proteins was constructed, and its efficacy as a candidate vaccine against JEV was evaluated in suckling mice. Groups of 10 BALB/c mice (5-7 days old) were immunized twice via muscular injection with this DNA vaccine, an empty vector or PBS at an interval of 3 weeks, and were challenged with a lethal dose of JEV 3 weeks after the second inoculation. Both cellular and humoral immune responses were examined before the challenge. Two animals from each group were sacrificed to detect the JEV-specific cytotoxic T lymphocyte activity. JEV-specific lactate dehydrogenase release in the DNA vaccine, empty vector and PBS groups was 37.5%, 18% and 8.5% respectively. JEV-specific antibody was detected in 8 of 10 animals in DNA vaccine group with a geometrical mean titer of 1: 28.3. The pooled serum from the same group also showed a neutralizing activity. Six of 8 mice in the DNA vaccine group survived the challenge, with a protection rate of 75%, but all the mice died in the two control groups. These results show that this JEV prM and E DNA vaccine is immunogenic and protective against JEV infection in the mouse model.  相似文献   

5.
Zhao Z  Wakita T  Yasui K 《Journal of virology》2003,77(7):4248-4260
We established a simple and effective method for DNA immunization against Japanese encephalitis virus (JEV) infection with plasmids encoding the viral PrM and E proteins and colloidal gold. Inoculation of plasmids mixed with colloidal gold induced the production of specific anti-JEV antibodies and a protective response against JEV challenge in BALB/c mice. When we compared the efficacy of different inoculation routes, the intravenous and intradermal inoculation routes were found to elicit stronger and more sustained neutralizing immune responses than intramuscular or intraperitoneal injection. After being inoculated twice, mice were found to resist challenge with 100,000 times the 50% lethal dose (LD(50)) of JEV (Beijing-1 strain) even when immunized with a relatively small dose of 0.5 micro g of plasmid DNA. Protective passive immunity was also observed in SCID mice following transfer of splenocytes or serum from plasmid DNA- and colloidal gold-immunized BALB/c mice. The SCID mice resisted challenge with 100 times the LD(50) of JEV. Analysis of histological sections detected expression of proteins encoded by plasmid DNA in the tissues of intravenously, intradermally, and intramuscularly inoculated mice 3 days after inoculation. DNA immunization with colloidal gold elicited encoded protein expression in splenocytes and might enhance immune responses in intravenously inoculated mice. This approach could be exploited to develop a novel DNA vaccine.  相似文献   

6.
Epitope-based vaccination is a promising means to achieve protective immunity and to avoid immunopathology in Japanese encephalitis virus (JEV) infection. Several B-cell and T-cell epitopes have been mapped to the E protein of JEV, and they are responsible for the elicitation of the neutralizing antibodies and CTLs that impart protective immunity to the host. In the present study, we optimized a proposed multi-epitope peptide (MEP) using an epitope-based vaccine strategy, which combined six B-cell epitopes (amino acid residues 75-92, 149-163, 258-285, 356-362, 373-399 and 397-403) and two T-cell epitopes (amino acid residues 60-68 and 436-445) from the E protein of JEV. This recombinant protein was expressed in Escherichia coli, named rMEP, and its protective efficacy against JEV infection was assessed in BALB/c mice. The results showed that rMEP was highly immunogenic and could elicit high titer neutralizing antibodies and cell-mediated immune responses. It provided complete protection against lethal challenge with JEV in mice. Our findings indicate that the multi-epitope vaccine rMEP may be an attractive candidate vaccine for the prevention of JEV infection.  相似文献   

7.
We have previously shown that immunization of mice with plasmid pMEa synthesizing Japanese encephalitis virus (JEV) envelope protein induced anti-JEV humoral and cellular immune responses. We now show that intra-muscular co-administration of mice with pMEa and pGM-CSF, encoding murine granulocyte-macrophage colony-stimulating factor or pIL-2, encoding murine interleukin-2 given 4 days after pMEa, augmented anti-JEV antibody titers. This did not enhance the level of protection in immunized mice against JEV. However, intra-dermal co-administration of pMEa and pGM-CSF in mice using the gene gun, enhanced anti-JEV antibody titers resulting in an increased level of protection in mice against lethal JEV challenge.  相似文献   

8.
In order to evaluate the possibility of developing an oral vaccine against Japanese encephalitis virus (JEV), mice were fed with recombinant JEV envelope (E) protein synthesized in Escherichia coli. The protein was administered orally to mice with or without an immunostimulatory cytosine-phosphate-guanosine (CpG) motif containing synthetic oligodeoxynucleotide (ODN) as an adjuvant. The immunized mice made high-titered anti-E and anti-JEV antibodies. Mice immunized with JEV E protein along with the ODN adjuvant produced higher antibody titers and these were predominantly IgG2a type. These antibodies, however, failed to neutralize JEV activity in vitro, and the immunization did not protect the mice against lethal JEV challenge. Splenocytes from the immunized mice secreted large amounts of interferon (IFN)-gamma and showed proliferation in the presence of JEV E protein. Our results indicate that JEV E protein delivered orally to mice together with ODN generated both humoral and cellular immune responses to JEV, and these were of the Th1 type.  相似文献   

9.
Adjuvant arthritis (AA) is an autoimmune disease inducible in rats involving T cell reactivity to the mycobacterial 65-kDa heat shock protein (HSP65). HSP65-specific T cells cross-reactive with the mammalian 60-kDa heat shock protein (HSP60) are thought to participate in the modulation of AA. In this work we studied the effects on AA of DNA vaccination using constructs coding for HSP65 (pHSP65) or human HSP60 (pHSP60). We found that both constructs could inhibit AA, but that pHSP60 was more effective than pHSP65. The immune effects associated with specific DNA-induced suppression of AA were complex and included enhanced T cell proliferation to a variety of disease-associated Ags. Effective vaccination with HSP60 or HSP65 DNA led paradoxically to up-regulation of IFN-gamma secretion to HSP60 and, concomitantly, to down-regulation of IFN-gamma secretion to the P180-188 epitope of HSP65. There were also variable changes in the profiles of IL-10 secretion to different Ags. However, vaccination with pHSP60 or pHSP65 enhanced the production of TGFbeta1 to both HSP60 and HSP65 epitopes. Our results support a regulatory role for HSP60 autoreactivity in AA and demonstrate that this control mechanism can be activated by DNA vaccination with both HSP60 or HSP65.  相似文献   

10.
Intramuscular immunization with DNA vaccines has been shown to induce a broad range of immune responses and protective immunity in many animal models, but it is less effective in primates. One reason for this may be the low expression of vector-encoded antigen in cells. Here we report that the use of vaccine vector (pCJ-3) containing two regulatory elements, a chimeric intron and a bovine growth hormone (BGH) polyadenylation signal, markedly increased antigen expression both in vitro and in vivo. A positive correlation was seen between the level of expression of Japanese encephalitis virus (JEV) envelope proteins and the levels of antibodies in C3H/HeN mice. Immunization of mice with pCJ-3/ME (pCJ-3 containing the entire membrane and envelope protein genes) with or without cardiotoxin pretreatment resulted in higher antibody titers than immunization with vector containing only envelope protein and conferred full protection against infection with JEV. Electron microscopy showed that pCJ-3/ME expression resulted in the production of virus-like particles of JEV in vitro. The particles enhanced the production of higher titers of neutralizing antibodies and thus provided immunity against JEV. Consequently, the efficacy of the newly developed DNA vaccines was validated. This should pave the way to clinical trials in man.  相似文献   

11.
Immunogenicity and protective efficacy of recombinant Japanese encephalitis virus (JEV) NS1 proteins generated using DNA vaccines and recombinant viruses have been demonstrated to induce protection in mice against a challenge of JEV at a lethal dose. The West Nile virus NS1 region expressed in E. coli is recognized by these protective monoclonal antibodies and, in this study, we compare immunogenicity and protective immunity of the E. coli-synthesized NS1 protein with another protective immunogen, the envelope domain III (ED3). Pre-challenge, detectable titers of JEV-specific neutralizing antibody were detected in the immunized mice with E. coli-synthesized ED3 protein (PRNT50 = 1:28) and the attenuated JEV strain T1P1 (PRNT50 = 1:53), but neutralizing antibodies were undetectable in the immunized mice with E. coli-synthesized NS1 protein (PRNT50 < 1:10). However, the survival rate of the NS1-immunized mice against the JEV challenge was 87.5% (7/8), showing significantly higher levels of protection than the ED3-immunized mice, 62.5% (5/8) (P = 0.041). In addition, E. coli-synthesized NS1 protein induced a significant increase of anti-NS1 IgG1 antibodies, resulting in an ELISA titer of 100,1000 in the immunized sera before lethal JEV challenge. Surviving mice challenged with the virulent JEV strain Beijing-1 showed a ten-fold or greater rise in IgG1 and IgG2b titers of anti-NS1 antibodies, implying that the Th2 cell activation might be predominantly responsible for antibody responses and mice protection.  相似文献   

12.
prME和NS1为乙型脑炎病毒两个主要的免疫保护蛋白,且均为N-糖蛋白。为研究N-糖基化对乙型脑炎病毒免疫保护的作用,本研究用PCR介导的定点突变方法,分别消除乙型脑炎病毒prME和NS1基因的不同N-糖基化位点,并构建了prME和NS1突变基因的真核表达质粒。将质粒免疫四周龄雌性小白鼠,经两次免疫后,采集血清检测体液免疫反应,最后对小鼠用强毒进行攻击,观察并记录免疫保护力。研究结果显示,与野生型prME基因免疫组相比,消除单个糖基化位点后prME基因诱导的ELISA抗体、中和抗体和免疫保护力均略有升高,而同时消除两个糖基化位点的则会降低。NS1基因消除单个糖基化位点后保护率高达到100%,但消除两个糖基化位点后则免疫保护率略有降低(75%)。通过本研究证明,N-糖基化在维系乙型脑炎病毒prME和NS1蛋白的免疫保护中具有重要的作用,单个糖基化的缺失可增强蛋白的免疫原性,而两个糖基都缺失后,则造成了免疫效率的降低。  相似文献   

13.
Insulin, an autoantigen in type 1 diabetes, when administered mucosally to diabetes-prone NOD mice induces regulatory T cells (T(reg)) that protect against diabetes. Compared with protein, Ag encoded as DNA has potential advantages as a therapeutic agent. We found that intranasal vaccination of NOD mice with plasmid DNA encoding mouse proinsulin II-induced CD4+ T(reg) that suppressed diabetes development, both after adoptive cotransfer with "diabetogenic" spleen cells and after transfer into NOD mice given cyclophosphamide to accelerate diabetes onset. In contrast to prototypic CD4+ CD25+ T(reg), CD4+ T(reg) induced by proinsulin DNA were both CD25+ and CD25- and not defined by markers such as glucocorticoid-induced TNFR-related protein (GITR), CD103, or Foxp3. Intriguingly, despite induction of T(reg) and reduced islet inflammation, diabetes incidence in proinsulin DNA-treated mice was unchanged. However, diabetes was prevented when DNA vaccination was performed under the cover of CD40 ligand blockade, known to prevent priming of CTL by mucosal Ag. Thus, intranasal vaccination with proinsulin DNA has therapeutic potential to prevent diabetes, as demonstrated by induction of protective T(reg), but further modifications are required to improve its efficacy, which could be compromised by concomitant induction of pathogenic immunity.  相似文献   

14.
Plasmid vectors containing Japanese encephalitis virus (JEV) premembrane (prM) and envelope (E) genes were constructed that expressed prM and E proteins under the control of a cytomegalovirus immediate-early gene promoter. COS-1 cells transformed with this plasmid vector (JE-4B clone) secreted JEV-specific extracellular particles (EPs) into the culture media. Groups of outbred ICR mice were given one or two doses of recombinant plasmid DNA or two doses of the commercial vaccine JEVAX. All mice that received one or two doses of DNA vaccine maintained JEV-specific antibodies 18 months after initial immunization. JEVAX induced 100% seroconversion in 3-week-old mice; however, none of the 3-day-old mice had enzyme-linked immunosorbent assay titers higher than 1:400. Female mice immunized with this DNA vaccine developed plaque reduction neutralization antibody titers of between 1:20 and 1:160 and provided 45 to 100% passive protection to their progeny following intraperitoneal challenge with 5,000 PFU of virulent JEV strain SA14. Seven-week-old adult mice that had received a single dose of JEV DNA vaccine when 3 days of age were completely protected from a 50, 000-PFU JEV intraperitoneal challenge. These results demonstrate that a recombinant plasmid DNA which produced JEV EPs in vitro is an effective vaccine.  相似文献   

15.
BACKGROUND: Foot-and-mouth disease virus (FMDV) causes a severe livestock disease, and the virus is an interesting target for virology and vaccine studies. MATERIALS AND METHODS: Here we evaluated comparatively three different viral antigen-encoding DNA sequences, delivered via two physical means (i.e., gene gun delivery into skin and electroporation delivery into muscle), for naked DNA-mediated vaccination in a mouse system. RESULTS: Both methods gave similar results, demonstrating commonality of the observed DNA vaccine effects. Immunization with a cDNA vector expressing the major viral antigen (VP1) alone routinely failed to induce the production of anti-VP1 or neutralizing antibodies in test mice. As a second approach, the plasmid L-VP1 that produces a transgenic membrane-anchored VP1 protein elicited a strong antibody response, but all test mice failed in the FMDV challenge experiment. In contrast, for mice immunized with the viral capsid precursor protein (P1) cDNA expression vector, both neutralizing antibodies and 80-100% protection in test mice were detected. CONCLUSIONS: This strategy of using the whole capsid precursor protein P1 cDNA for vaccination, intentionally without the use of virus-specific protease or other encoding genes for safety reasons, may thus be employed as a relevant experimental system for induction or upgrading of effective neutralizing antibody response, and as a convenient surrogate test system for DNA vaccination studies of FMDV and presumably other viral diseases.  相似文献   

16.
DNA vaccination with mammalian-expressible plasmid DNA encoding protein antigens is known to be an effective means to elicit cell-mediated immunity, sometimes in the absence of a significant antibody response. This may be contrasted with protein vaccination, which gives rise to antibody responses with little evidence of cell-mediated immunity. This has led to considerable interest in DNA vaccination as a means to elicit cell-mediated immune responses against conserved viral antigens or intracellular cancer antigens, for the purpose of therapeutic vaccination. However, almost all current vaccines are used prophylactically and work by producing antibodies rather than cell mediated immune responses. In the present study we have therefore explored the combination of DNA and protein forms of an antigen using two exemplary prophylactic vaccine antigens, namely inactivated influenza virion and hepatitis-B surface antigen. We studied the effects of various combinations of DNA and protein on the antibody response. Co-administration of soluble forms of DNA and protein representations of the same antigen gave rise to the same level of antibody response as if protein were administered alone. In contrast, we found that when these antigens are entrapped in the same liposomal compartment, that there was a strong synergistic effect on the immune response, which was much greater than when either antigen was administered alone, or in various other modes of combination (e.g. co-administration as free entities, also pooled liposomal formulations where the two materials were contained in separate liposomal vehicles in the same suspension). The synergistic effect of liposomally co-entrapped DNA and protein exceeded, markedly, the well known adjuvant effects of plasmid DNA and liposomes. We have termed this new approach to vaccination ‘co-delivery’ and suggest that it may derive from the simultaneous presentation of antigen via MHC class-I (DNA) and MHC class-II (protein) pathways to CD8+ and CD4+ cells at the same antigen presenting cell – a mode of presentation that would commonly occur with live viral pathogens. We conclude that co-delivery is a very effective means to generate protective antibody responses against viral pathogens.  相似文献   

17.
Effective immunotherapy of cancer by DNA vaccination.   总被引:11,自引:0,他引:11  
Direct injection of naked plasmid DNA either intramuscularly or intradermally induces strong, long-lived cell-mediated and humoral immune responses to the antigen encoded by the gene vaccine. In the present study, we used gene vaccination with naked plasmid DNA to induce prophylactic immune responses to tumor associated antigens. MAGE-1 (melanoma antigen 1) is an ideal candidate for cancer vaccines because it belongs to a family of genes that are expressed in a number of human tumors of various histological types but not in normal adult tissues except for the testis, and because both humoral and cell-mediated immune responses against MAGE-1 antigen were detected in tumor patients. Intradermal administration of plasmid DNA encoding MAGE-1 (pcMAGE1) induced anti-MAGE-1-specific antibody in BALB/c mice. In contrast, no detectable level of anti-MAGE-1 antibody was induced by intramuscular injection of pcMAGE1. Also, intradermal injection of pcMAGE1 was capable of generating CTLs reactive with MAGE-1-transfected murine tumor cells, M-MSV-MAGE1. Most of the mice (8 out of 10) immunized with pcMAGE1 rejected the challenge of M-MSV-MAGE1 tumor cells, compared with control animals most of which developed tumors. This suggests that intradermal DNA vaccination could provide a novel immunotherapy of cancer.  相似文献   

18.
DNA vaccination with mammalian-expressible plasmid DNA encoding protein antigens is known to be an effective means to elicit cell-mediated immunity, sometimes in the absence of a significant antibody response. This may be contrasted with protein vaccination, which gives rise to antibody responses with little evidence of cell-mediated immunity. This has led to considerable interest in DNA vaccination as a means to elicit cell-mediated immune responses against conserved viral antigens or intracellular cancer antigens, for the purpose of therapeutic vaccination. However, almost all current vaccines are used prophylactically and work by producing antibodies rather than cell mediated immune responses. In the present study we have therefore explored the combination of DNA and protein forms of an antigen using two exemplary prophylactic vaccine antigens, namely inactivated influenza virion and hepatitis-B surface antigen. We studied the effects of various combinations of DNA and protein on the antibody response. Co-administration of soluble forms of DNA and protein representations of the same antigen gave rise to the same level of antibody response as if protein were administered alone. In contrast, we found that when these antigens are entrapped in the same liposomal compartment, that there was a strong synergistic effect on the immune response, which was much greater than when either antigen was administered alone, or in various other modes of combination (e.g. co-administration as free entities, also pooled liposomal formulations where the two materials were contained in separate liposomal vehicles in the same suspension). The synergistic effect of liposomally co-entrapped DNA and protein exceeded, markedly, the well known adjuvant effects of plasmid DNA and liposomes. We have termed this new approach to vaccination 'co-delivery' and suggest that it may derive from the simultaneous presentation of antigen via MHC class-I (DNA) and MHC class-II (protein) pathways to CD8+ and CD4+ cells at the same antigen presenting cell--a mode of presentation that would commonly occur with live viral pathogens. We conclude that co-delivery is a very effective means to generate protective antibody responses against viral pathogens.  相似文献   

19.
Labeaud D 《Future virology》2010,5(6):675-678
Rift Valley fever virus (RVFV) is an important animal and human threat and leads to longstanding morbidity and mortality in susceptible hosts. Since no therapies currently exist to treat Rift Valley fever, it remains a public and animal health priority to develop safe, effective RVFV vaccines (whether for animals, humans, or both) that provide long-term protective immunity. In the evaluated article, Bhardwaj and colleagues describe the creation and testing of two successful vaccine strategies against RVFV, a DNA plasmid vaccine expressing Gn coupled to C3d, and an alpha-virus replicon vaccine expressing Gn protein. Both vaccines elicited strong neutralizing antibody responses, prevented morbidity and mortality in RVFV-challenged mice, and enabled protection of naive mice via passive antibody transfer from vaccinated mice. Both DNA and replicon RVFV vaccines have previously been shown to protect against RVFV challenge, but these results allow for direct comparison of the two methods and evaluation of a combined prime-boost method. The results also highlight the specific humoral and cell-mediated immune responses to vaccination.  相似文献   

20.
Increasing evidence suggests that mucosally targeted vaccines will enhance local humoral and cellular responses whilst still eliciting systemic immunity. We therefore investigated the capacity of nasal, sublingual or vaginal delivery of DNA-PEI polyplexes to prime immune responses prior to mucosal protein boost vaccination. Using a plasmid expressing the model antigen HIV CN54gp140 we show that each of these mucosal surfaces were permissive for DNA priming and production of antigen-specific antibody responses. The elicitation of systemic immune responses using nasally delivered polyplexed DNA followed by recombinant protein boost vaccination was equivalent to a systemic prime-boost regimen, but the mucosally applied modality had the advantage in that significant levels of antigen-specific IgA were detected in vaginal mucosal secretions. Moreover, mucosal vaccination elicited both local and systemic antigen-specific IgG+ and IgA+ antibody secreting cells. Finally, using an Influenza challenge model we found that a nasal or sublingual, but not vaginal, DNA prime/protein boost regimen protected against infectious challenge. These data demonstrate that mucosally applied plasmid DNA complexed to PEI followed by a mucosal protein boost generates sufficient antigen-specific humoral antibody production to protect from mucosal viral challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号