首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intraspecific migration patterns in birds have both spatial and temporal components. Two commonly reported spatial patterns are leap-frog and chain migration. Temporal migration patterns refer to the timing of migration of populations from different breeding latitudes. We investigated the spatial and temporal migration patterns of hatching-year (HY) sharp-shinned hawks Accipiter striatus of interior North America using stable-hydrogen isotope and band encounter analyses. Feather samples were collected from hawks migrating through New Mexico, USA and measured for their stable-hydrogen isotope ratios (δD) to distinguish individuals originating from relatively high and low natal latitudes. We then examined the relationship between feather δD values and passage dates through New Mexico, USA. We also gathered band encounter data from the Bird Banding Lab of the United States Geological Survey to determine the wintering latitudes of HY sharp-shinned hawks relative to their passage date through migration banding sites in interior North America. Combining these data, we found that during fall migration HY sharp-shinned hawks used a chain migration pattern, that is, hawks originating from lower latitudes wintered further south than those from higher latitudes. In addition, birds originating from lower latitudes passed through interior North America earlier than those from higher latitudes. We also found that hawks from higher latitudes were significantly larger than those from lower latitudes, and that females from higher latitudes had significantly higher estimated fat levels than females from lower latitudes.  相似文献   

2.
Patterns of evolution are believed to vary latitudinally, but our understanding of this variation remains limited. Here we examine how patterns of subspecific diversification vary within species of birds, specifically addressing three questions: (1) Are subspecies more numerous at lower latitudes within species, consistent with greater phenotypic differentiation at lower latitudes? (2) If there are more subspecies at lower latitudes within species, can area of breeding range explain this relationship? and (3) how do latitudinal differences in subspecies within species vary geographically across the globe? Using all species with five or more subspecies from 12 of the most diverse families of birds in the world, we found consistently more subspecies at lower latitudes across all families, both hemispheres, and all continents examined. Despite the positive influence of area on the number of subspecies within species, area did not explain the greater number of subspecies at lower latitudes within species. Global patterns of subspecies support the idea that phenotypic differentiation of populations is greater at lower latitudes within species. If subspecies density provides an index of rates of incipient speciation, then our results support evolutionary hypotheses for the latitudinal diversity gradient that invoke higher tropical speciation rates.  相似文献   

3.
4.
Hybridization is important in the evolution of many animal groups; however, broad scale patterns of natural hybridization are still poorly understood. Using phylogenetic comparative analyses, we tested for relationships between demographic, ecological, phenotypic and phylogenetic variables and the incidence of natural hybridization among 45 species of North American wood warbler. Since 1980, hybrids have been documented in 24 species (53 %). We detected negative relationships between the incidence of hybridization and both breeding range size and phylogenetic distance, and positive relationships between the incidence of hybridization and (1) song similarity, (2) the extent of breeding sympatry of species pairs and (3) the number of additional heterospecific warbler species that co-occur during breeding. Neither population size nor breeding habitat quality (as measured by threats to survival or reproduction in breeding areas) explained variation in the incidence of hybridization. Our results suggest a potential role of limited breeding habitat in wood warbler hybridization events and a net positive effect of breeding sympatry. They also support the hypothesis that mating signal similarity facilitates hybridization events and are consistent with an increase in reproductive isolation with increasing genetic divergence. Our results also suggest the presence of phylogenetic signal in wood warbler hybridization. By investigating natural hybridization at the taxonomic level of family, we have identified several previously undocumented patterns of natural hybridization. This study demonstrates the utility of examining the combined effects of ecology, demography, phenotype and phylogeny when studying variation in the expression of natural hybridization among taxa.  相似文献   

5.
In North America, spring migration routes and breeding distribution of northern pintails Anas acuta vary because some individuals opportunistically nest at mid‐latitudes in years when ephemeral prairie wetlands are available, whereas others regularly nest in arctic and sub‐arctic regions where wetland abundance is more constant. Less was known about migration routes and breeding distribution of pintails in East Asia. From 2007–2009 we marked 198 pintails on their wintering areas in Japan with satellite transmitters to: 1) document spring migration routes and summer distribution, 2) evaluate migratory connections and breeding season sympatry with North American pintails, and 3) determine if pintails used the same migration routes in fall as in spring. Most pintails (67%) migrated to the Kamchatka or Chukotka peninsulas in eastern Russia either directly from Japan or via Sakhalin Island, Russia. Remaining pintails primarily migrated to the Magadan region or Kolyma River Basin in eastern Russia via Sakhalin Island. The Chukotka Peninsula was the most common summer destination, with highest densities in the Anadyr Lowlands; a region also used by pintails that migrate from North America. One pintail migrated to St. Lawrence Island, Alaska, in spring and another briefly migrated to the western coast of Alaska in fall. Autumn migration routes generally mirrored spring migration although most pintails bypassed Sakhalin Island in fall. Compared to North American pintails, pintails that winter in Japan exhibited less variation in migration routes and breeding distribution, and nested at higher latitudes. In the Russian Far East there is no region with habitats comparable in extent to the ephemeral mid‐latitude wetlands of North America. Consequently, East Asian pintails mainly nest in arctic and sub‐arctic regions where annual consistency in wetlands promotes constancy in migration routes and breeding distribution. Breeding season sympatry between pintails from different continents results more from North American pintails migrating to eastern Russia than from Japanese pintails migrating to North America.  相似文献   

6.
Just as features of the physical and biotic environment constrain evolution of ecological and morphological traits, they may also affect evolution of communication systems. Here we analyze constraints on rates of vocal evolution, using a large dataset of New World avian sister taxa. We show that species breeding in tropical forests sing at generally lower frequencies and across narrower bandwidths than species breeding in open habitats, or at high latitudes. We attribute these restrictions on birdsong frequency to the presence of high-frequency insect noise and greater degradation of high-frequency sounds in tropical forests. We fit Ornstein-Uhlenbeck models to show that recent evolution of song frequency has been more greatly constrained in tropical forests than elsewhere, that is, songs have shown less tendency to diverge over time in tropical forests, consistent with inferred acoustic restrictions. In addition, we find that song frequency has evolved more rapidly overall at high latitudes in both forest and open habitats. Besides a larger available sound window, other factors contributing to more rapid divergence at high latitudes may include an overall increased intensity of sexual selection, occupation of more divergent habitats, and the presence of fewer competing species.  相似文献   

7.
Current ideas about the evolution of bird migration equate its origin with the first appearance of fully migratory populations, and attribute its evolution to a selective advantage generated by increased breeding success, gained through temporary emigration from resident populations to breed in under-exploited seasonal areas. I propose an alternative hypothesis in which migration first appears as a temporary directional shift away from the breeding site outside the reproductive period, in response to seasonal variation in the direction and/or severity of environmental gradients. Fully migratory populations then appear through either extinction of sedentary phenotypes, or colonisation of vacant seasonal areas by migrants. Where colonisation occurs, resident ancestral populations can be driven to extinction by competition from migrants which invade their range outside the breeding season, resulting in fully migratory species. An analogous process drives the evolution of migration between high latitudes and the tropics, since extension of breeding range into higher latitudes may drive low latitude populations to extinction, resulting in an overall shift of breeding range. This process can explain reverse latitudinal gradients in avian diversity in the temperate zone, since the breeding ranges of migratory species concentrate in latitudes where they enjoy the highest breeding success. Near absence of forest-dwelling species among Palaearctic-African migrants is attributable to the lack of forest in northern Africa for much of the Tertiary, which has precluded selection both for southward extension of migration by west Palaearctic forest species, and northward breeding colonisation by African forest species.  相似文献   

8.
Interactive forces between competition and habitat filtering drive many biogeographic patterns over evolutionary time scales. However, the responsiveness of assemblages to these two forces is highly influenced by spatial scale, forming complex patterns of niche separation. We explored these spatial dependencies by quantifying the influence of phylogeny and functional traits in shaping present day native terrestrial mammal assemblages at multiple scales, principally by identifying the spatial scales at which niche evolution operates. We modelled the distribution of 53 native terrestrial mammal species across New South Wales, Australia. Using predicted distributions, we estimated the range overlap between each pair of species at increasing grain sizes (~0.8, 5.1, 20, 81, 506, 2,025, 8,100 km2). We employed a decision tree to identify how interactions among functional traits and phylogenetic relatedness translated to levels of sympatry at increasing spatial scales. We found that Australian terrestrial mammals displayed phylogenetic over-dispersion that was inversely related to spatial scale, suggesting that ecological processes were more influential than biogeographic sympatry patterns in defining assemblages of species. While the contribution of phylogenetic relatedness to patterns of co-occurrence decreased as spatial scale increased, the reverse was true for habitat preferences. At the same time, functional traits also operated at different scales, as dietary preferences dominated at local spatial scales (<10 km2) while body mass has a stronger effect at larger spatial scales. Our findings show that ecological and evolutionary processes operate at different scales and that Australian terrestrial mammals diverged slower along their micro-scale niche compared to their macro-scale niche. By combining phylogenetic and niche methods through the modelling of species distributions, we assessed whether specific traits were related to a particular niche. More importantly, conducting multi-scale spatial analysis avoids categorical assignment of traits-to-niches, providing a clearer relationship between traits and a species ecological niche and a more precise scaling for the axes of niche evolution.  相似文献   

9.
Historically, bird song complexity was thought to evolve primarily through sexual selection on males; yet, in many species, both sexes sing and selection pressure on both sexes may be broader. Previous research suggests competition for mates and resources during short, synchronous breeding seasons leads to more elaborate male songs at high, temperate latitudes. Furthermore, we expect male–female song structure and elaboration to be more similar at lower, tropical latitudes, where longer breeding seasons and year‐round territoriality yield similar social selection pressures in both sexes. However, studies seldom take both types of selective pressures and sexes into account. We examined song in both sexes in 15 populations of nine‐fairy‐wren species (Maluridae), a Southern Hemisphere clade with female song. We compared song elaboration (in both sexes) and sexual song dimorphism to latitude and life‐history variables tied to sexual and social selection pressures and sex roles. Our results suggest that song elaboration evolved in part due to sexual competition in males: male songs were longer than female songs in populations with low male survival and less male provisioning. Also, female songs evolved independently of male songs: female songs were slower paced than male songs, although only in less synchronously breeding populations. We also found male and female songs were more similar when parental care was more equal and when male survival was high, which provides strong evidence that sex role similarity correlates with male–female song similarity. Contrary to Northern Hemisphere latitudinal patterns, male and female songs were more similar at higher, temperate latitudes. These results suggest that selection on song can be sex specific, with male song elaboration favored in contexts with stronger sexual selection. At the same time, selection pressures associated with sex role similarity appear to favor sex role similarity in song structure.  相似文献   

10.
As the earth is getting warmer, many animals and plants have shifted their timing of breeding towards earlier dates. However, there is substantial variation between populations in phenological shifts that typically goes unexplained. Identification of the different location and species characteristics that drive such variable responses to global warming is crucial if we are to make predictions for how projected climate change scenarios will play out on local and global scales. Here we conducted a phylogenetically controlled meta‐analysis of breeding phenology across frogs, toads and salamanders to examine the extent of variation in amphibian breeding phenology in response to global climate change. We show that there is strong geographic variation in response to global climate change, with species at higher latitudes exhibiting a more pronounced shift to earlier breeding than those at lower latitudes. Our analyses suggest that this latitude effect is a result of both the increased temperature (but not precipitation) at higher latitudes as well as a greater responsiveness by northern populations of amphibians to this change in temperature. We suggest that these effects should reinforce any direct effect of increasing warming at higher latitudes on breeding phenology. In contrast, we found very little contribution from other location factors or species traits. There was no evidence for a phylogenetic signal on advancing breeding phenology or responsiveness to temperature, suggesting that the amphibians that have been studied to date respond similarly to global warming.  相似文献   

11.
The mechanisms underlying evolutionary changes in sexual dimorphism have long been of interest to biologists. A striking gradient in sexual dichromatism exists among songbirds in North America, including the wood-warblers (Parulidae): males are generally more colourful than females at northern latitudes, while the sexes are similarly ornamented at lower latitudes. We use phylogenetically controlled comparative analysis to test three non-mutually exclusive hypotheses for the evolution of sexual dichromatism among wood-warblers. The first two hypotheses focus on the loss of female coloration with the evolution of migration, either owing to the costs imposed by visual predators during migration, or owing to the relaxation of selection for female social signalling at higher latitudes. The third hypothesis focuses on whether sexual dichromatism evolved owing to changes in male ornamentation as the strength of sexual selection increases with breeding latitude. To test these hypotheses, we compared sexual dichromatism to three variables: the presence of migration, migration distance, and breeding latitude. We found that the presence of migration and migration distance were both positively correlated with sexual dichromatism, but models including breeding latitude alone were not strongly supported. Ancestral state reconstruction supports the hypothesis that the ancestral wood-warblers were monochromatic, with both colourful males and females. Combined, these results are consistent with the hypotheses that the evolution of migration is associated with the relaxation of selection for social signalling among females and that there are increased predatory costs along longer migratory routes for colourful females. These results suggest that loss of female ornamentation can be a driver of sexual dichromatism and that social or natural selection may be a stronger contributor to variation in dichromatism than sexual selection.  相似文献   

12.
A new approach for biogeography to find patterns of sympatry, based on network analysis, is proposed. Biogeographic analysis focuses basically on sympatry patterns of species. Sympatry is a network (= relational) datum, but it has never been analyzed before using relational tools such as Network Analysis. Our approach to biogeographic analysis consists of two parts: first the sympatry inference and second the network analysis method (NAM). The sympatry inference method was designed to propose sympatry hypothesis, constructing a basal sympatry network based on punctual data, independent of a priori distributional area determination. In this way, two or more species are considered sympatric when there is interpenetration and relative proximity among their records of occurrence. In nature, groups of species presenting within-group sympatry and between-group allopatry constitute natural units (units of co-occurrence). These allopatric units are usually connected by intermediary species. The network analysis method (NAM) that we propose here is based on the identification and removal of intermediary species to segregate units of co-occurrence, using the betweenness measure and the clustering coefficient. The species ranges of the units of co-occurrence obtained are transferred to a map, being considered as candidates to areas of endemism. The new approach was implemented on three different real complex data sets (one of them a classic example previously used in biogeography) resulting in (1) independence of predefined spatial units; (2) definition of co-occurrence patterns from the sympatry network structure, not from species range similarities; (3) higher stability in results despite scale changes; (4) identification of candidates to areas of endemism supported by strictly endemic species; (5) identification of intermediary species with particular biological attributes.  相似文献   

13.
Global warming affects breeding phenology of birds differentially with latitude, but there is contrasting evidence about how the changing climate influences the breeding of migrating songbirds at their northern breeding range. We investigate the effect of climate warming on breeding time and breeding success of European pied flycatchers Ficedula hypoleuca in Sweden during a period of 36 years using nest reports from bird ringing. To account for the latitudinal variation, we divided Sweden into three latitudinal bands (northern, intermediate, and southern). We applied a sliding window approach to find the most influential period and environment characteristics (temperature, vegetation greenness, and precipitation), using linear mixed models and model averaging. Our results show a long‐term advancement of breeding time related to increasing spring temperature and vegetation greenness during a period before hatching. Northern breeders revealed a larger advancement over the years (8.3 days) compared with southern breeders (3.6 days). We observed a relatively stronger effect of temperature and greenness on breeding time in the north. Furthermore, northern birds showed an increase in breeding success over time, while birds breeding at southern and intermediate latitudes showed reduced breeding success in years with higher prehatching temperatures. Our findings with stronger environment effects on breeding time advancement in the north suggest that pied flycatchers are more responsive to weather cues at higher latitudes. Breeding time adjustment and, potentially, low competition help explain the higher long‐term success observed in the north. Reduced breeding success at more southerly latitudes suggests an inability to match breeding time to very early and warm springs, a fate that with continued climate change could also be expected for pied flycatchers and other long‐distance migrants at their very northern breeding range.  相似文献   

14.
Differences in body size are widely thought to allow closely related species to coexist in sympatry, but body size also varies as an adaptive response to climate. Here, we use a sister lineage approach to test the prediction that body size differences between closely related species of birds worldwide are greater for species whose ranges are sympatric rather than allopatric. We further test if body size differences among sympatric versus allopatric species vary with geography, evolutionary distance, and environmental temperatures. We find greater differences in size among sympatric compared with allopatric lineages, but only in closely related species that live where mean annual temperatures are above 25°C. These size differences in warm environments declined with the evolutionary distance between sister lineages. In species living in cooler regions, closely related allopatric and sympatric species did not differ significantly in size, suggesting either that colder temperatures constrain the evolutionary divergence of size in sympatry, or that the biotic selective pressures favoring size differences in sympatry are weaker in colder environments. Our results are consistent with suggestions by Wallace, Darwin, and Dobzhansky that climatic selective pressures are more important in cooler environments (e.g., high elevations and latitudes) whereas biotic selective pressures dominate in warm environments (e.g., lowland tropics).  相似文献   

15.
Heliconius are unpalatable butterflies that exhibit remarkable intra‐ and interspecific variation in wing color pattern, specifically warning coloration. Species that have converged on the same pattern are often clustered in Müllerian mimicry rings. Overall, wing color patterns are nearly identical among co‐mimics. However, fine‐scale differences exist, indicating that factors in addition to natural selection may underlie wing phenotype. Here, we investigate differences in shape and size of the forewing and the red band in the Heliconius postman mimicry ring (H. erato phyllis and the co‐mimics H. besckei, H. melpomene burchelli, and H. melpomene nanna) using a landmark‐based approach. If phenotypic evolution is driven entirely by predation pressure, we expect nonsignificant differences among co‐mimics in terms of wing shape. Also, a reinforcement of wing pattern (i.e., greater similarity) could occur when co‐mimics are in sympatry. We also examined variation in the red forewing band because this trait is critical for both mimicry and sexual communication. Morphometric results revealed significant but small differences among species, particularly in the shape of the forewing of co‐mimics. Although we did not observe greater similarity when co‐mimics were in sympatry, nearly identical patterns provided evidence of convergence for mimicry. In contrast, mimetic pairs could be distinguished based on the shape (but not the size) of the red band, suggesting an “advergence” process. In addition, sexual dimorphism in the red band shape (but not size) was found for all lineages. Thus, we infer that natural selection due to predation by birds might not be the only mechanism responsible for variation in color patterns, and sexual selection could be an important driver of wing phenotypic evolution in this mimicry ring.  相似文献   

16.
Abstract: The data published on reproduction of the species of the genus Didelphis (Didelphimorphia, Didelphidae) were compiled and analysed to identify general patterns. The duration of the breeding season for the Didelphis species varied from 12 months near the Equator to 6 months at latitude 25°S and varied inversely with latitude and litter size. The mean litter size varied from 4.2 in Colombia to 9.4 in New York and was positively associated with latitude and negatively with the duration of breeding season. We propose that the higher investment in production at higher latitudes was compensated by increased mortality owing to the seasonal variation in food availability and environmental variables in theses latitudes.  相似文献   

17.
Macroecology strives to identify ecological patterns on broad spatial and temporal scales. One such pattern, Rapoport''s rule, describes the tendency of species'' latitudinal ranges to increase with increasing latitude. Several mechanisms have been proposed to explain this rule. Some invoke climate, either through glaciation driving differential extinction of northern species or through increased seasonal variability at higher latitudes causing higher thermal tolerances and subsequently larger ranges. Alternatively, continental tapering or higher interspecific competition at lower latitudes may be responsible. Assessing the incidence of Rapoport''s rule through deep time can help to distinguish between competing explanations. Using fossil occurrence data from the Palaeobiology Database, we test these hypotheses by evaluating mammalian compliance with the rule throughout the Caenozoic of North America. Adherence to Rapoport''s rule primarily coincides with periods of intense cooling and increased seasonality, suggesting that extinctions caused by changing climate may have played an important role in erecting the latitudinal gradients in range sizes seen today.  相似文献   

18.
ABSTRACT Alaska (USA) contains a large proportion of the breeding population of trumpeter swans (Cygnus buccinator) in the United States. However, tracking population trends in Alaska trumpeter swans is complicated by variables such as an increase in survey effort over time, periodic surveys (1968 and every 5 yr after 1975), and missing data. We therefore constructed Bayesian hierarchical negative binomial models to account for nuisance variables and to estimate population size of trumpeter swans using aerial survey data from all known breeding habitats in Alaska, 1968–2005. We also performed an augmented analysis, where we entered zeroes for missing data. This approach differed from the standard (nonaugmented) analysis where we generated estimates for missing data through simulation. We estimated that adult swan populations in Alaska increased at an average rate of 5.9% annually (95% credibility interval = 5.2–6.6%) and cygnet production increased at 5.3% annually (95% credibility interval = 2.2–8.0%). We also found evidence that cygnet production exhibited higher rates of increase at higher latitudes in later years, which may be a response to warmer spring temperatures. Augmented analyses always produced higher swan population estimates than the nonaugmented estimates and likely overestimate true population abundance. Our results provide evidence that trumpeter swan populations are increasing in Alaska, especially at northern latitudes. Changes in population size and distribution could negatively affect tundra swans (Cygnus columbianus) breeding in Alaska, and biologists should monitor these interactions. We recommend using nonaugmented Bayesian hierarchical analyses to estimate wildlife populations when missing survey data occur.  相似文献   

19.
Latitudinal variation in avian life history strategies is well documented. Clutch size and nest success tend to increase with latitude, whereas longevity and developmental periods have been argued to decrease with latitude. However, these patterns are largely based on interspecific comparisons of species breeding at tropical and temperate latitudes. We compared the life history of Yellow Warblers Setophaga petechia breeding in arctic habitat at the northern extent of their range, in Inuvik, NWT (68°N), Canada, with those breeding in temperate habitat in Revelstoke, BC (50°N), and use data from 21 populations spanning 0–68°N to evaluate latitudinal trends in life history traits from tropical to arctic habitats. Females breeding in Inuvik laid first clutches that were slightly (although not significantly) larger and had higher nest success, which resulted in higher annual productivity compared with their low- latitude counterparts. Apparent adult survival rates were only marginally lower in Inuvik than in Revelstoke, whereas incubation and nestling periods in the arctic were similar to our temperate site. When comparing life history traits across the Yellow Warbler breeding range, we observed increases in clutch sizes and nest success with increasing latitude that appeared to be associated with declines in adult survival, though this relationship was weakened by the addition of our arctic site. We detected more moderate declines in incubation and nestling periods with increasing latitude. As we observed latitudinal variation in some life history traits, but not a consistent transition of traits associated with a shift from a slow to fast life history from tropical to arctic latitudes, our study suggests that the expectation for a general shift in life history traits may be over-simplified.  相似文献   

20.
Many species of birds show distinctive seasonal breeding and nonbreeding plumages. A number of hypotheses have been proposed for the evolution of this seasonal dichromatism, specifically related to the idea that birds may experience variable levels of sexual selection relative to natural selection throughout the year. However, these hypotheses have not addressed the selective forces that have shaped molt, the underlying mechanism of plumage change. Here, we examined relationships between life‐history variation, the evolution of a seasonal molt, and seasonal plumage dichromatism in the New World warblers (Aves: Parulidae), a family with a remarkable diversity of plumage, molt, and life‐history strategies. We used phylogenetic comparative methods and path analysis to understand how and why distinctive breeding and nonbreeding plumages evolve in this family. We found that color change alone poorly explains the evolution of patterns of biannual molt evolution in warblers. Instead, molt evolution is better explained by a combination of other life‐history factors, especially migration distance and foraging stratum. We found that the evolution of biannual molt and seasonal dichromatism is decoupled, with a biannual molt appearing earlier on the tree, more dispersed across taxa and body regions, and correlating with separate life‐history factors than seasonal dichromatism. This result helps explain the apparent paradox of birds that molt biannually but show breeding plumages that are identical to the nonbreeding plumage. We find support for a two‐step process for the evolution of distinctive breeding and nonbreeding plumages: That prealternate molt evolves primarily under selection for feather renewal, with seasonal color change sometimes following later. These results reveal how life‐history strategies and a birds' environment act upon multiple and separate feather functions to drive the evolution of feather replacement patterns and bird coloration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号