首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
TRalpha1 and TRbeta mediate the regulatory effects of T3 and have profound effects on the cardiovascular system. We have analyzed the expression of the cardiac myosin heavy chain (MyHC) genes alpha and beta in mouse strains deficient for one or several TR genes to identify specific regulatory functions of TRalpha1 and TRbeta. The results show that TRalpha1 deficiency, which slows the heart rate, causes chronic overexpression of MyHCbeta. However, MyHCbeta was still suppressible by T3 in both TRalpha1- and TRbeta-deficient mice, indicating that either receptor can mediate repression of MyHCbeta. T3-dependent induction of the positively regulated MyHCalpha gene was similar in both TRalpha1- and TRbeta-deficient mice. The data identify a specific role for TRalpha1 in the negative regulation of MyHCbeta, whereas TRalpha1 and TRbeta appear interchangeable for hormone-dependent induction of MyHCalpha. This suggests that TR isoforms exhibit distinct specificities in the genes that they regulate within a given tissue type. Thus, dysregulation of MyHCbeta is likely to contribute to the critical role of TRalpha1 in cardiac function.  相似文献   

4.
Mutations in the thyroid hormone receptor beta gene (TRbeta) cause resistance to thyroid hormone (RTH). Genetic analyses indicate that phenotypic manifestation of RTH is due to the dominant negative action of mutant TRbeta. However, the molecular mechanisms underlying the dominant negative action of mutants and how the same mutation results in marked variability of resistance in different tissues in vivo are not clear. Here we used a knock-in mouse (TRbetaPV mouse) that faithfully reproduces human RTH to address these questions. We demonstrated directly that TRbeta1 protein was approximately 3-fold higher than TRalpha1 in the liver of TRbeta(+/+) mice but was not detectable in the heart of wild-type and TRbetaPV mice. The abundance of PV in the liver of TRbeta(PV/PV) was more than TRbeta(PV/+) mice but not detectable in the heart. TRalpha1 in the liver was approximately 6-fold higher than that in the heart of wild-type and TRbetaPV mice. Using TR isoforms and PV-specific antibodies in gel shift assays, we found that in vivo, PV competed not only with TR isoforms for binding to thyroid hormone response elements (TRE) but also competed with TR for the retinoid X receptors in binding to TRE. These competitions led to the inhibition of the thyroid hormone (T(3))-positive regulated genes in the liver. In the heart, however, PV was significantly lower and thus could not effectively compete with TRalpha1 for binding to TRE, resulting in activation of the T(3)-target genes by higher levels of circulating thyroid hormones. These results indicate that in vivo, differential expression of TR isoforms in tissues dictates the dominant negative activity of mutant beta receptor, thereby resulting in variable phenotypic expression in RTH.  相似文献   

5.
Nuclear thyroid hormone (TH) receptors (TR) play a critical role in mediating the diverse actions of TH in development, differentiation, and metabolism of most tissues, but the role of TR isoforms in muscle development and function is unclear. Therefore, we have undertaken a comprehensive expression analysis of TRalpha 1, TRbeta 1, TRbeta 2 (TH binding), and TRalpha 2 (non-TH binding) in functionally distinct porcine muscles during prenatal and postnatal development. Use of a novel and highly sensitive RNase protection assay revealed striking muscle-specific developmental profiles of all four TR isoform mRNAs in cardiac, longissimus, soleus, rhomboideus, and diaphragm. Distribution of TR isoforms varied markedly between muscles; TRalpha expression was considerably greater than TRbeta and there were significant differences in the ratios TRalpha 1:TRalpha 2, and TRbeta 1:TRbeta 2. Together with immunohistochemistry of myosin heavy chain isoforms and data on myogenesis and maturation of the TH axis, these findings provide new evidence that highlights central roles for 1) TRalpha isoforms in fetal myogenesis, 2) the ratio TRalpha 1:TRalpha 2 in determining cardiac and skeletal muscle phenotype and function; 3) TRbeta in maintaining a basal level of cellular response to TH throughout development and a specific maturational function around birth. These findings suggest that events disrupting normal developmental profiles of TR isoforms may impair optimal function of cardiac and skeletal muscles.  相似文献   

6.
Adrenoleukodystrophy-related protein, a peroxisomal ABC transporter encoded by ABCD2, displays functional redundancy with the disease-associated X-linked adrenoleukodystrophy protein, making pharmacological induction of ABCD2 a potentially attractive therapeutic approach. Sterol regulatory element (SRE)-binding proteins (SREBPs) induce ABCD2 through an SRE overlapping with a direct repeat (DR-4) element. Here we show that thyroid hormone (T(3)) receptor (TR)alpha and TRbeta bind this motif thereby modulating SREBP1-dependent activation of ABCD2. Unliganded TRbeta, but not TRalpha, represses ABCD2 induction independently of DNA binding. However, activation by TRalpha and derepression of TRbeta are T(3)-dependent and require intact SRE/DR-4 motifs. Electrophoretic mobility shift assays with nuclear extracts support a direct interaction of TR and SREBP1 at the SRE/DR-4. In the liver, Abcd2 expression is high in young mice (with high T(3) and TRalpha levels) but downregulated in adults (with low T(3) and TRalpha but elevated TRbeta levels). This temporal repression of Abcd2 is blunted in TRbeta-deficient mice, and the response to manipulated T(3) states is abrogated in TRalpha-deficient mice. These findings show that TRalpha and TRbeta differentially modulate SREBP1-activated ABCD2 expression at overlapping SRE/DR-4 elements, suggesting a novel mode of cross-talk between TR and SREBP in gene regulation.  相似文献   

7.
We previously demonstrated that starvation markedly increased the amount of mRNA and protein levels of the intestinal H+/peptide cotransporter (PEPT1) in rats, leading to altered pharmacokinetics of the PEPT1 substrates. In the present study, the mechanism underlying this augmentation was investigated. We focused on peroxisome proliferator-activated receptor alpha (PPARalpha), which plays a pivotal role in the adaptive response to fasting in the liver and other tissues. In 48-h fasted rats, the expression level of PPARalpha mRNA in the small intestine markedly increased, accompanied by the elevation of serum free fatty acids, which are endogenous PPARalpha ligands. Oral administration of the synthetic PPARalpha ligand WY-14643 to fed rats increased the mRNA level of intestinal PEPT1. Furthermore, treatment of the human intestinal model, Caco-2 cells, with WY-14643 resulted in enhanced PEPT1 mRNA expression and uptake activity of glycylsarcosine. In the small intestine of PPARalpha-null mice, augmentation of PEPT1 mRNA during fasting was completely abolished. In the kidney, fasting did not induce PEPT1 expression in either PPARalpha-null or wild-type mice. Together, these results indicate that PPARalpha plays critical roles in fasting-induced intestinal PEPT1 expression. In addition to the well-established roles of PPARalpha, we propose a novel function of PPARalpha in the small intestine, that is, the regulation of nitrogen absorption through PEPT1 during fasting.  相似文献   

8.
9.
T3 potently influences cholesterol metabolism through the nuclear thyroid hormone receptor beta (TRbeta), the most abundant TR isoform in rodent liver. Here, we have tested if TRalpha1, when expressed at increased levels from its normal locus, can replace TRbeta in regulation of cholesterol metabolism. By the use of TRalpha2-/-beta-/- animals that overexpress hepatic TRalpha1 6-fold, a near normalization of the total amount of T3 binding receptors was achieved. These mice are similar to TRbeta-/- and TRalpha1-/-beta-/- mice in that they fail to regulate cholesterol 7alpha-hydroxylase expression properly, and that their serum cholesterol levels are unaffected by T3. Thus, hepatic overexpression of TRalpha1 cannot substitute for absence of TRbeta, suggesting that the TRbeta gene has a unique role in T3 regulation of cholesterol metabolism in mice. However, examination of T3 regulation of hepatic target genes revealed that dependence on TRbeta is not general: T3 regulation of type I iodothyronine deiodinase and the low density lipoprotein receptor were partially rescued by TRalpha1 overexpression. These in vivo data show that TRbeta is necessary for the effects of T3 on cholesterol metabolism. That TRalpha1 only in some instances can substitute for TRbeta indicates that T3 regulation of physiological and molecular processes in the liver occurs in an isoform-specific fashion.  相似文献   

10.
Thyroid hormone receptors (TRs) regulate gene expression by binding to specific DNA sequences, denoted thyroid hormone response elements (TREs). The accepted paradigm for TRs proposes that they bind as homo- or heterodimers to TREs comprised of two AGGTCA half-site sequences. In the prototypic TRE, these half-sites are arranged as direct repeats separated by a four-base spacer. This dimeric model of TR binding, derived from analysis of artificial DNA sequences, fails to explain why many natural TREs contain more than two half-sites. Therefore, we investigated the ability of different TR isoforms to bind to TREs possessing three or more half-sites. We report that the TRbeta isoforms (TRbeta0, TRbeta1, TRbeta2), but not TRalpha1, can bind to reiterated DNA elements, such as the rat GH-TRE, as complexes trimeric or greater in size. The TRbeta0 isoform, in particular, formed homo- and heterotrimers (with the retinoid X receptor) with high efficiency and cooperativity, and TRbeta0 preferentially used reporters containing these reiterated elements to drive gene expression in vivo. Our data demonstrate that TRbeta isoforms can form multimeric receptor complexes on appropriately reiterated DNA response elements, providing a functional distinction between the TR isoforms and an explanation for TREs possessing three or more half-sites.  相似文献   

11.
12.
13.
14.
15.
16.
The timing of oligodendrocyte development is regulated by thyroid hormone (TH) in vitro and in vivo, but it is still uncertain which TH receptors mediate this regulation. TH acts through nuclear receptors that are encoded by two genes, TRalpha and TRbeta. Here, we provide direct evidence for the involvement of the TRalpha1 receptor isoform in vivo, by showing that the number of oligodendrocytes in the postnatal day 7 (P7) and P14 optic nerve of TRalpha1-/- mice is decreased compared with normal. We demonstrate that TRalpha1 mediates the normal differentiation-promoting effect of TH on oligodendrocyte precursor cells (OPCs): unlike wild-type OPCs, postnatal TRalpha1-/- OPCs fail to stop dividing and differentiate in response to TH in culture. We also show that overexpression of TRalpha1 accelerates oligodendrocyte differentiation in culture, suggesting that the level of TRalpha1 expression is normally limiting for TH-dependent OPC differentiation. Finally, we provide evidence that the inhibitory isoforms of TRalpha are unlikely to play a part in the timing of OPC differentiation.  相似文献   

17.
18.
2D QSAR studies were carried out for a series of 55 ligands for the Thyroid receptors, TRalpha and TRbeta. Significant cross-validated correlation coefficients (q(2)=0.781 (TRalpha) and 0.693 (TRbeta)) were obtained. The models' predictive abilities were proved more valuable than the classical 2D-QSAR, and were further investigated by means of an external test set of 13 compounds. The predicted values are in good agreement with experimental values, suggesting that the models could be useful in the design of novel, more potent TR ligands. Contribution map analysis identified a number of positions that are promising for the development of receptor isoform specific ligands.  相似文献   

19.
A major challenge in understanding nuclear hormone receptor function is to determine how the same ligand can cause very different tissue-specific responses. Tissue specificity may result from the presence of more than one receptor subtype arising from multiple receptor genes or alternative splicing. Recently, high affinity analogs of nuclear receptor ligands have been synthesized that show subtype selectivity. These analogs can greatly facilitate the study of receptor subtype-specific functions in organisms where mutational analysis is problematic or where it is desirable for receptors to be expressed in their normal physiological contexts. We describe here the effects of the synthetic thyroid hormone analog GC-1 on the metamorphosis of the frog Xenopus laevis. The most potent natural thyroid hormone, 3,5,3'-triidothyronine or T3, shows similar binding affinity and transactivation dose-response curves for both thyroid hormone receptor isotypes, designated TRalpha and TRbeta. GC-1, however, binds to and activates TRbeta at least an order of magnitude better than it does TRalpha. GC-1 efficiently induces death and resorption of premetamorphic tadpole tissues such as the gills and the tail, two tissues that strongly induce thyroid hormone receptor beta during metamorphosis. GC-1 has less effect on the growth of adult tissues such as the hindlimbs, which express high TRalpha levels. The effectiveness of GC-1 in inducing tail resorption and tail gene expression correlates with increasing TRbeta levels. These results illustrate the utility of subtype selective ligands as probes of nuclear receptor function in vivo.  相似文献   

20.
We investigated the effect of thyroid hormone (TH) receptor (TR)alpha and -beta isoforms in TH action in the heart. Noninvasive echocardiographic measurements were made in mice homozygous for disruption of TRalpha (TRalpha(0/0)) or TRbeta (TRbeta(-/-)). Mice were studied at baseline, 4 wk after TH deprivation (using a low-iodine diet containing propylthiouracil), and after 4-wk treatment with TH. Baseline heart rates (HR) were similar in wild-type (WT) and TRalpha(0/0) mice but were greater in TRbeta(-/-) mice. With TH deprivation, HR decreased 49% in WT and 37% in TRbeta(-/-) mice and decreased only 5% in TRalpha(0/0) mice from baseline, whereas HR increased in all genotypes with TH treatment. Cardiac output (CO) and cardiac index (CI) in WT mice decreased (-31 and -32%, respectively) with TH deprivation and increased (+69 and +35%, respectively) with TH treatment. The effects of CO and CI were blunted with TH withdrawal in both TRalpha(0/0) (+8 and -2%, respectively) and TRbeta(-/-) mice (-17 and -18%, respectively). Treatment with TH resulted in a 64% increase in LV mass in WT and a 44% increase in TRalpha(0/0) mice but only a 6% increase in TRbeta(-/-) mice (ANOVA P < 0.05). Taken together, these data suggest that TRalpha and TRbeta play different roles in the physiology of TH action on the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号