首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study the function of the two isoforms of creatine kinase (CK; EC 2.7.3.2) in myocardium is investigated. The 'phosphocreatine shuttle' hypothesis states that mitochondrial and cytosolic CK plays a pivotal role in the transport of high-energy phosphate (HEP) groups from mitochondria to myofibrils in contracting muscle. Temporal buffering of changes in ATP and ADP is another potential role of CK. With a mathematical model, we analyzed energy transport and damping of high peaks of ATP hydrolysis during the cardiac cycle. The analysis was based on multiscale data measured at the level of isolated enzymes, isolated mitochondria and on dynamic response times of oxidative phosphorylation measured at the whole heart level. Using 'sloppy modeling' ensemble simulations, we derived confidence intervals for predictions of the contributions by phosphocreatine (PCr) and ATP to the transfer of HEP from mitochondria to sites of ATP hydrolysis. Our calculations indicate that only 15±8% (mean±SD) of transcytosolic energy transport is carried by PCr, contradicting the PCr shuttle hypothesis. We also predicted temporal buffering capabilities of the CK isoforms protecting against high peaks of ATP hydrolysis (3750 μM*s(-1)) in myofibrils. CK inhibition by 98% in silico leads to an increase in amplitude of mitochondrial ATP synthesis pulsation from 215±23 to 566±31 μM*s(-1), while amplitudes of oscillations in cytosolic ADP concentration double from 77±11 to 146±1 μM. Our findings indicate that CK acts as a large bandwidth high-capacity temporal energy buffer maintaining cellular ATP homeostasis and reducing oscillations in mitochondrial metabolism. However, the contribution of CK to the transport of high-energy phosphate groups appears limited. Mitochondrial CK activity lowers cytosolic inorganic phosphate levels while cytosolic CK has the opposite effect.  相似文献   

2.
Mitochondrial hexokinase (HK) and creatine kinase (CK) known to form complexes with a voltage dependent anion channel (VDAC) have been reported to increase cell death resistance under hypoxia/anoxia. In this work we propose a new, non-Mitchell mechanism of generation of the inner and outer membrane potentials at anaerobic conditions. The driving force is provided by the Gibbs free energy of the HK and CK reactions associated with the VDAC–HK and the ANT (adenine nucleotide translocator)–CK–VDAC complexes, respectively, both functioning as voltage generators. In the absence of oxygen, the cytosolic creatine phosphate can be directly used by the ANT–CK–VDAC contact sites to produce ATP from ADP in the mitochondrial matrix. After that, ATP released through the fraction of unbound ANTs in exchange for ADP is used in the mitochondrial intermembrane space by the outer membrane VDAC–HK electrogenic complexes to convert cytosolic glucose into glucose-6-phosphate. A simple computational model based on the application of Ohm's law to an equivalent electrical circuit showed a possibility of generation of the inner membrane potential up to − 160 mV, under certain conditions, and of relatively high outer membrane potential without wasting of ATP that normally leads to cell death. The calculated membrane potentials depended on the restriction of ATP/ADP diffusion in narrow cristae and through the cristae junctions. We suggest that high inner membrane potential and calcium extrusion from the mitochondrial intermembrane space by generated positive outer membrane potential prevent mitochondrial permeability transition, thus allowing the maintenance of mitochondrial integrity and cell survival in the absence of oxygen.  相似文献   

3.
Ca(2+)-mediated mitochondrial permeability transition (mPT) is the final common pathway of stress-induced cell death in many major pathologies, but its regulation in intact cells is poorly understood. Here we report that the mitochondrial carrier SCaMC-1/SLC25A24 mediates ATP-Mg(2-)/Pi(2-) and/or HADP(2-)/Pi(2-) uptake into the mitochondria after an increase in cytosolic [Ca(2+)]. ATP and ADP contribute to Ca(2+) buffering in the mitochondrial matrix, resulting in desensitization of the mPT. Comprehensive gene expression analysis showed that SCaMC-1 overexpression is a general feature of transformed and cancer cells. Knockdown of the transporter led to vast reduction of mitochondrial Ca(2+) buffering capacity and sensitized cells to mPT-mediated necrotic death triggered by oxidative stress and Ca(2+) overload. These findings revealed that SCaMC-1 exerts a negative feedback control between cellular Ca(2+) overload and mPT-dependent cell death, suggesting that the carrier might represent a novel target for cancer therapy.  相似文献   

4.
Protein import into mitochondria requires the energy of ATP hydrolysis inside and/or outside mitochondria. Although the role of ATP in the mitochondrial matrix in mitochondrial protein import has been extensively studied, the role of ATP outside mitochondria (external ATP) remains only poorly characterized. Here we developed a protocol for depletion of external ATP without significantly reducing the import competence of precursor proteins synthesized in vitro with reticulocyte lysate. We tested the effects of external ATP on the import of various precursor proteins into isolated yeast mitochondria. We found that external ATP is required for maintenance of the import competence of mitochondrial precursor proteins but that, once they bind to mitochondria, the subsequent translocation of presequence-containing proteins, but not the ADP/ATP carrier, proceeds independently of external ATP. Because depletion of cytosolic Hsp70 led to a decrease in the import competence of mitochondrial precursor proteins, external ATP is likely utilized by cytosolic Hsp70. In contrast, the ADP/ATP carrier requires external ATP for efficient import into mitochondria even after binding to mitochondria, a situation that is only partly attributed to cytosolic Hsp70.  相似文献   

5.
Adenylate kinase (AK) uses one each of Mg-complexed and free adenylates as substrates in both directions of its reaction. It is very active in the mitochondrial intermembrane space (IMS), but is absent from the mitochondrial matrix where low [ADP] upon intensive respiration limits the respiratory rate. AK activity in the IMS is linked to ATP/ADP exchange across the inner mitochondrial membrane by using ATP (imported from the matrix) and AMP as substrates, the latter provided by apyrase and other AMP-generating reactions. The ADP formed by AK is exported to the matrix (in exchange for ATP), providing a mechanism for regeneration of ADP during respiration. From the AK equilibrium, and taking pH values characteristic of subcellular compartments, [Mg2+] in the IMS is calculated as 0.4-0.5 mM and in the cytosol as 0.2-0.3 mM, whereas the MgATP:MgADP ratio in the IMS and cytosol is 6-9 and 10-15, respectively. These represent optimal conditions for transport of adenylates (via the maintenance of an ATPfree:ADPfree ratio close to 1) and mitochondrial respiratory rates (via the maintenance of submillimolar [ADPfree] in the IMS). This, in turn, has important consequences for mitochondrial and cytosolic metabolism, including regulation of the protein phosphorylation rate (via changes in the MgATP:AMPfree ratio) and allosteric regulation of mitochondrial and cytosolic enzymes. Metabolomic consequences are discussed in connection with the calculation of metabolic fluxes from subcompartmental distributions of total adenylates and Mg2+.  相似文献   

6.
Non-mitochondrial ATP transport   总被引:14,自引:0,他引:14  
Exchange of organelle ATP with cytosolic ADP through the ADP/ATP carrier is a well-characterized feature of mitochondrial metabolism. Obligate intracellular bacteria, such as Rickettsia prowazekii, and higher-plant plastids possess another type of adenylate transporter, which exchanges bacterial or plastidic ADP for ATP from the eukaryotic (host cell) cytoplasm. The bacterial and plastidic transporters are similar but do not share significant sequence similarities with the mitochondrial carrier. Recent molecular and biochemical studies are providing deeper insight into the functional and evolutionary relationships between the bacterial and the plant transport proteins.  相似文献   

7.
Net adenine nucleotide transport into and out of the mitochondrial matrix via the ATP-Mg/Pi carrier is activated by micromolar calcium concentrations in rat liver mitochondria. The purpose of this study was to induce net adenine nucleotide transport by varying the substrate supply and/or extramitochondrial ATP consumption in order to evaluate the effect of the mitochondrial adenine nucleotide pool size on intramitochondrial adenine nucleotide patterns under phosphorylating conditions. Above 12 nmol/mg protein, intramitochondrial ATP/ADP increased with an increase in the mitochondrial adenine nucleotide pool. The relationship between the rate of respiration and the mitochondrial ADP concentration did not depend on the mitochondrial adenine nucleotide pool size up to 9 nmol ADP/mg mitochondrial protein. The results are compatible with the notion that net uptake of adenine nucleotides at low energy states supports intramitochondrial ATP consuming processes and energized mitochondria may lose adenine nucleotides. The decrease of the mitochondrial adenine nucleotide content below 9 nmol/mg protein inhibits oxidative phosphorylation. In particular, this could be the case within the postischemic phase which is characterized by low cytosolic adenine nucleotide concentrations and energized mitochondria.  相似文献   

8.
Computational models of a large metabolic system can be assembled from modules that represent a biological function emerging from interaction of a small subset of molecules. A "skeleton model" is tested here for a module that regulates the first phase of dynamic adaptation of oxidative phosphorylation (OxPhos) to demand in heart muscle cells. The model contains only diffusion, mitochondrial outer membrane (MOM) permeation, and two isoforms of creatine kinase (CK), in cytosol and mitochondrial intermembrane space (IMS), respectively. The communication with two neighboring modules occurs via stimulation of mitochondrial ATP production by ADP and Pi from the IMS and via time-varying cytosolic ATP hydrolysis during contraction. Assuming normal cytosolic diffusion and high MOM permeability for ADP, the response time of OxPhos (tmito; generalized time constant) to steps in cardiac pacing rate is predicted to be 2.4 s. In contrast, with low MOM permeability, tmito is predicted to be 15 s. An optimized MOM permeability of 21 µm/s gives tmito = 3.7 s, in agreement with experiments on rabbit heart with blocked glycolytic ATP synthesis. The model correctly predicts a lower tmito if CK activity is reduced by 98%. Among others, the following predictions result from the model analysis: 1) CK activity buffers large ADP oscillations; 2) ATP production is pulsatile in beating heart, although it adapts slowly to demand with "time constant" 14 heartbeats; 3) if the muscle isoform of CK is overexpressed, OxPhos reacts slower to changing workload; and 4) if mitochondrial CK is overexpressed, OxPhos reacts faster. systems biology; computational model; creatine kinase; phosphocreatine shuttle; regulatory module; mitochondrial membrane permeability; oxygen consumption  相似文献   

9.
Previously we demonstrated that efficient coupling between cellular sites of ATP production and ATP utilization, required for optimal muscle performance, is mainly mediated by the combined activities of creatine kinase (CK)- and adenylate kinase (AK)-catalyzed phosphotransfer reactions. Herein, we show that simultaneous disruption of the genes for the cytosolic M-CK- and AK1 isoenzymes compromises intracellular energetic communication and severely reduces the cellular capability to maintain total ATP turnover under muscle functional load. M-CK/AK1 (MAK=/=) mutant skeletal muscle displayed aberrant ATP/ADP, ADP/AMP and ATP/GTP ratios, reduced intracellular phosphotransfer communication, and increased ATP supply capacity as assessed by 18O labeling of [Pi] and [ATP]. An analysis of actomyosin complexes in vitro demonstrated that one of the consequences of M-CK and AK1 deficiency is hampered phosphoryl delivery to the actomyosin ATPase, resulting in a loss of contractile performance. These results suggest that MAK=/= muscles are energetically less efficient than wild-type muscles, but an apparent compensatory redistribution of high-energy phosphoryl flux through glycolytic and guanylate phosphotransfer pathways limited the overall energetic deficit. Thus, this study suggests a coordinated network of complementary enzymatic pathways that serve in the maintenance of energetic homeostasis and physiological efficiency.  相似文献   

10.
The efficiency of stimulation of mitochondrial respiration in permeabilized muscle cells by ADP produced at different intracellular sites, e.g. cytosolic or mitochondrial intermembrane space, was evaluated in wild-type and creatine kinase (CK)-deficient mice. To activate respiration by endogenous production of ADP in permeabilized cells, ATP was added either alone or together with creatine. In cardiac fibers, while ATP alone activated respiration to half of the maximal rate, creatine plus ATP increased the respiratory rate up to its maximum. To find out whether the stimulation by creatine is a consequence of extramitochondrial [ADP] increase, or whether it directly correlates with ADP generation by mitochondrial CK in the mitochondrial intermembrane space, an exogenous ADP-trap system was added to rephosphorylate all cytosolic ADP. Under these conditions, creatine plus ATP still increased the respiration rate by 2.5 times, compared with ATP alone, for the same extramitochondrial [ADP] of 14 microM. Moreover, this stimulatory effect of creatine, observed in wild-type cardiac fibers disappeared in mitochondrial CK deficient, but not in cytosolic CK-deficient muscle. It is concluded that respiration rates can be dissociated from cytosolic [ADP], and ADP generated by mitochondrial CK is an important regulator of oxidative phosphorylation.  相似文献   

11.
Induced fit in arginine kinase   总被引:1,自引:0,他引:1       下载免费PDF全文
Creatine kinase (CK) and arginine kinase (AK) are related enzymes that reversibly transfer a phosphoryl group between a guanidino compound and ADP. In the buffering of ATP energy levels, they are central to energy metabolism and have been paradigms of classical enzymology. Comparison of the open substrate-free structure of CK and the closed substrate-bound structure of AK reveals differences that are consistent with prior biophysical evidence of substrate-induced conformational changes. Large and small domains undergo a hinged 13 degrees rotation. Several loops become ordered and adopt different positions in the presence of substrate, including one (residues 309-319) that moves 15 A to fold over the substrates. The conformational changes appear to be necessary in aligning the two substrates for catalysis, in configuring the active site only when productive phosphoryl transfer is possible, and excluding water from the active site to avoid wasteful ATP hydrolysis.  相似文献   

12.
Glucose-induced changes in cytosolic ATP content in pancreatic islets   总被引:11,自引:0,他引:11  
The cytosolic and mitochondrial contents in ATP, ADP and AMP were measured in islets incubated for 45 min at increasing concentrations of D-glucose and then exposed for 20 s to digitonin. The latter treatment failed to affect the total islet ATP/ADP ratio and adenylate charge. D-Glucose caused a much greater increase in cytosolic than mitochondrial ATP/ADP ratio. In the cytosol, a sigmoidal pattern characterized the changes in ATP/ADP ratio at increasing concentrations of D-glucose. These findings are compatible with the view that cytosolic ATP participates in the coupling of metabolic to ionic events in the process of nutrient-induced insulin release.  相似文献   

13.
The effect of thyroid-hormone application on cytosolic and mitochondrial ATP/ADP ratio was investigated in rat liver in vivo and in the isolated perfused organ. In vivo the ATP/ADP ratio in livers from hypothyroid rats was 0.84 +/- 0.08 in the mitochondrial matrix and 5.6 +/- 0.9 in the cytosol, as was observed in euthyroid controls. In contrast, hyperthyroidism was followed by a significant decrease in the mitochondrial and by an increase in the cytosolic ATP/ADP ratio (to 0.34 +/- 0.06 and 11.3 +/- 2.8 respectively). In the perfused liver from hypothyroid animals, addition of L-3,3',5-tri-iodothyronine in the perfusate also provoked, within 2 h, a significant decrease in the mitochondrial ATP/ADP ratio, whereas the cytosolic ratio was unaffected. From these and previous data in the isolated perfused liver and in isolated mitochondria from hypothyroid and tri-iodothyronine-treated rats it is concluded that thyroid hormones increase mitochondrial respiration and ATP regeneration, which is associated with an acceleration of mitochondrial adenine nucleotide transport and significant alterations in the mitochondrial and cytosolic ATP/ADP ratios.  相似文献   

14.
D-fructose (10 mM) augments, in rat pancreatic islets, insulin release evoked by 10 mM D-glucose. Even in the absence of D-glucose, D-fructose (100 mM) displays a positive insulinotropic action. It was now examined whether the insulinotropic action of D-fructose could be attributed to an increase in the ATP content of islet cells. After 30-60 min incubation in the presence of D-glucose and/or D-fructose, the ATP and ADP content was measured by bioluminescence in either rat isolated pancreatic islets (total ATP and ADP) or the supernatant of dispersed rat pancreatic islet cells exposed for 30 s to digitonine (cytosolic ATP and ADP). D-fructose (10 and 100 mM) was found to cause a concentration-related decrease in the total ATP and ADP content and ATP/ADP ratio below the basal values found in islets deprived of exogenous nutrient. Moreover, in the presence of 10 mM D-glucose, which augmented both the total ATP content and ATP/ADP ratio above basal value, D-fructose (10 mM) also lowered these two parameters. The cytosolic ATP/ADP ratio, however, was increased in the presence of D-glucose and/or D-fructose. Under the present experimental conditions, a sigmoidal relationship was found between such a cytosolic ATP/ADP ratio and either (86)Rb net uptake by dispersed islet cells or insulin release from isolated islets. These data provide, to our knowledge, the first example of a dramatic dissociation between changes in total ATP content or ATP/ADP ratio and insulin release in pancreatic islets exposed to a nutrient secretagogue. Nevertheless, the cationic and insulinotropic actions of d-glucose and/or d-fructose were tightly related to the cytosolic ATP/ADP ratio.  相似文献   

15.
Creatine kinase (CK) and glycolysis represent important energy-buffering processes in the cardiac myocyte. Although the role of compartmentalized CK in energy transfer has been investigated intensely, similar duties for intracellular glycolysis have not been demonstrated. By measuring the response time of mitochondrial oxygen consumption to dynamic workload jumps (tmito) in isolated rabbit hearts, we studied the effect of inhibiting energetic systems (CK and/or glycolysis) on transcytosolic signal transduction that couples cytosolic ATP hydrolysis to activation of oxidative phosphorylation. Tyrode-perfused hearts were exposed to 15 min of the following: 1) 0.4 mM iodoacetamide (IA; n = 6) to block CK (CK activity <3% vs. control), 2) 0.3 mM iodoacetic acid (IAA; n = 5) to inhibit glycolysis (GAPDH activity <3% vs. control), or 3) vehicle (control, n = 7) at 37 degrees C. Pretreatment tmito was similar across groups at 4.3 +/- 0.3 s (means +/- SE). No change in tmito was observed in control hearts; however, in IAA- and IA-treated hearts, tmito decreased by 15 +/- 3% and 40 +/- 5%, respectively (P < 0.05 vs. control), indicating quicker energy supply-demand signaling in the absence of ADP/ATP buffering by CK or glycolysis. The faster response times in IAA and IA groups were independent of the size of the workload jump, and the increase in myocardial oxygen consumption during workload steps was unaffected by CK or glycolysis blockade. Contractile function was compromised by IAA and IA treatment versus control, with contractile reserve (defined as increase in rate-pressure product during a standard heart rate jump) reduced to 80 +/- 8% and 80 +/- 10% of baseline, respectively (P < 0.05 vs. control), and significant elevations in end-diastolic pressure, suggesting raised ADP concentration. These results demonstrate that buffering of phosphate metabolites by glycolysis in the cytosol contributes appreciably to slower mitochondrial activation and may enhance contractile efficiency during increased cardiac workloads. Glycolysis may therefore play a role similar to CK in heart muscle.  相似文献   

16.
Highly purified fractions of sarcoplasmic reticulum (SR) were prepared from chicken pectoralis muscles (Saito, A., Seiler, S., Chu, A., and Fleischer, S. (1984) J. Cell Biol. 99, 875-885) and analyzed for the presence of creatine kinase (CK). Vesicles derived from longitudinal SR contained 0.703 +/- 0.428 IU of CK/mg of (SR) protein. Immunogold localization of muscle-type MM-CK on ultrathin cryosections of muscle, after removal of soluble CK, revealed relatively strong in situ labeling of M-CK remaining bound to the M band as well as to the SR membranes. In addition, purified SR vesicles were also labeled by anti-M-CK antibodies, and the peripheral labeling was similar to that observed with anti-Ca2(+)-ATPase antibodies. Only some particulate CK enzyme was released from isolated SR membranes by EDTA/low salt buffer, and CK was resistant to extraction by 0.6 M KCl. Thus, some of the MM-CK present in muscle displays strong associative behavior to the SR membranes. The SR-bound CK was sufficient to support, in the presence of phosphocreatine plus ADP, a significant portion of the maximal in vitro Ca2+ uptake rate. The ATP regeneration potential of SR-bound CK was similar to the rate of Ca2(+)-stimulated ATP hydrolysis of isolated SR vesicles. Thus, CK bound to SR may be physiologically relevant in vivo for regeneration of ATP used by the Ca2(+)-ATPase, as well as for regulation of local ATP/ADP ratios in the proximity of the Ca2+ pump and of other ATP-requiring reactions in the excitation-contraction coupling pathway.  相似文献   

17.
Nucleotide metabolism in potato (Solanum tuberosum) mitochondria was studied using 31P-nuclear magnetic resonance spectroscopy and the O2 electrode. Immediately following the addition of ADP, ATP synthesis exceeded the rate of oxidative phosphorylation, fueled by succinate oxidation, due to mitochondrial adenylate kinase (AK) activity two to four times the maximum activity of ATP synthase. Only when the AK reaction approached equilibrium was oxidative phosphorylation the primary mechanism for net ATP synthesis. A pool of sequestered ATP in mitochondria enabled AK and ATP synthase to convert AMP to ATP in the presence of exogenous inorganic phosphate. During this conversion, AK activity can indirectly influence rates of oxidation of both succinate and NADH via changes in mitochondrial ATP. Mitochondrial nucleoside diphosphokinase, in cooperation with ATP synthase, was found to facilitate phosphorylation of nucleoside diphosphates other than ADP at rates similar to the maximum rate of oxidative phosphorylation. These results demonstrate that plant mitochondria contain all of the machinery necessary to rapidly regenerate nucleoside triphosphates from AMP and nucleoside diphosphates made during cellular biosynthesis and that AK activity can affect both the amount of ADP available to ATP synthase and the level of ATP regulating electron transport.  相似文献   

18.
The effect of long-chain acyl-CoA on subcellular adenine nucleotide systems was studied in the intact liver cell. Long-chain acyl-CoA content was varied by varying the nutritional state (fed and starved states) or by addition of oleate. Starvation led to an increase in the mitochondrial and a decrease in the cytosolic ATP/ADP ratio in liver both in vivo and in the isolated perfused organ as compared with the fed state. The changes were reversed on re-feeding glucose in liver in vivo or on infusion of substrates (glucose, glycerol) in the perfused liver, respectively. Similar changes in mitochondrial and cytosolic ATP/ADP ratios occurred on addition of oleate, but, importantly, not with a short-chain fatty acid such as octanoate. It is concluded that long-chain acyl-CoA exerts an inhibitory effect on mitochondrial adenine nucleotide translocation in the intact cell, as was previously postulated in the literature from data obtained with isolated mitochondria. The physiological relevance with respect to pyruvate metabolism, i.e. regulation of pyruvate carboxylase and pyruvate dehydrogenase by the mitochondrial ATP/ADP ratio, is discussed.  相似文献   

19.
Creatine kinase (CK) exists as a family of isoenzymes in excitable tissue. We studied isolated perfused hearts from mice lacking genes for either the main muscle isoform of CK (M-CK) or both M-CK and the main mitochondrial isoform (Mt-CK) to determine 1) the biological significance of CK isoenzyme shifts, 2) the necessity of maintaining a high CK reaction rate, and 3) the role of CK isoenzymes in establishing the thermodynamics of ATP hydrolysis. (31)P NMR was used to measure [ATP], [PCr], [P(i)], [ADP], pH, as well as the unidirectional reaction rate of PCr--> [gamma-P]ATP. Developmental changes in the main fetal isoform of CK (BB-CK) were unaffected by loss of other CK isoenzymes. In hearts lacking both M- and Mt-CK, the rate of ATP synthesis from PCr was only 9% of the rate of ATP synthesis from oxidative phosphorylation demonstrating a lack of any high energy phosphate shuttle. We also found that the intrinsic activities of the BB-CK and the MM-CK isoenzymes were equivalent. Finally, combined loss of M- and Mt-CK (but not loss of only M-CK) prevented the amount of free energy released from ATP hydrolysis from increasing when pyruvate was provided as a substrate for oxidative phosphorylation.  相似文献   

20.
Adenylate kinase 4 (AK4) is a unique member with no enzymatic activity in vitro in the adenylate kinase (AK) family although it shares high sequence homology with other AKs. It remains unclear what physiological function AK4 might play or why it is enzymatically inactive. In this study, we showed increased AK4 protein levels in cultured cells exposed to hypoxia and in an animal model of the neurodegenerative disease amyotrophic lateral sclerosis. We also showed that short hairpin RNA (shRNA)-mediated knockdown of AK4 in HEK293 cells with high levels of endogenous AK4 resulted in reduced cell proliferation and increased cell death. Furthermore, we found that AK4 over-expression in the neuronal cell line SH-SY5Y with low endogenous levels of AK4 protected cells from H2O2 induced cell death. Proteomic studies revealed that the mitochondrial ADP/ATP translocases (ANTs) interacted with AK4 and higher amount of ANT was co-precipitated with AK4 when cells were exposed to H2O2 treatment. In addition, structural analysis revealed that, while AK4 retains the capability of binding nucleotides, AK4 has a glutamine residue instead of a key arginine residue in the active site well conserved in other AKs. Mutation of the glutamine residue to arginine (Q159R) restored the adenylate kinase activity with GTP as substrate. Collectively, these results indicate that the enzymatically inactive AK4 is a stress responsive protein critical to cell survival and proliferation. It is likely that the interaction with the mitochondrial inner membrane protein ANT is important for AK4 to exert the protective benefits to cells under stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号