共查询到20条相似文献,搜索用时 0 毫秒
1.
Gene selection in cancer classification using sparse logistic regression with Bayesian regularization 总被引:3,自引:0,他引:3
MOTIVATION: Gene selection algorithms for cancer classification, based on the expression of a small number of biomarker genes, have been the subject of considerable research in recent years. Shevade and Keerthi propose a gene selection algorithm based on sparse logistic regression (SLogReg) incorporating a Laplace prior to promote sparsity in the model parameters, and provide a simple but efficient training procedure. The degree of sparsity obtained is determined by the value of a regularization parameter, which must be carefully tuned in order to optimize performance. This normally involves a model selection stage, based on a computationally intensive search for the minimizer of the cross-validation error. In this paper, we demonstrate that a simple Bayesian approach can be taken to eliminate this regularization parameter entirely, by integrating it out analytically using an uninformative Jeffrey's prior. The improved algorithm (BLogReg) is then typically two or three orders of magnitude faster than the original algorithm, as there is no longer a need for a model selection step. The BLogReg algorithm is also free from selection bias in performance estimation, a common pitfall in the application of machine learning algorithms in cancer classification. RESULTS: The SLogReg, BLogReg and Relevance Vector Machine (RVM) gene selection algorithms are evaluated over the well-studied colon cancer and leukaemia benchmark datasets. The leave-one-out estimates of the probability of test error and cross-entropy of the BLogReg and SLogReg algorithms are very similar, however the BlogReg algorithm is found to be considerably faster than the original SLogReg algorithm. Using nested cross-validation to avoid selection bias, performance estimation for SLogReg on the leukaemia dataset takes almost 48 h, whereas the corresponding result for BLogReg is obtained in only 1 min 24 s, making BLogReg by far the more practical algorithm. BLogReg also demonstrates better estimates of conditional probability than the RVM, which are of great importance in medical applications, with similar computational expense. AVAILABILITY: A MATLAB implementation of the sparse logistic regression algorithm with Bayesian regularization (BLogReg) is available from http://theoval.cmp.uea.ac.uk/~gcc/cbl/blogreg/ 相似文献
2.
DNA microarray technology provides a promising approach to the diagnosis and prognosis of tumors on a genome-wide scale by monitoring the expression levels of thousands of genes simultaneously. One problem arising from the use of microarray data is the difficulty to analyze the high-dimensional gene expression data, typically with thousands of variables (genes) and much fewer observations (samples), in which severe collinearity is often observed. This makes it difficult to apply directly the classical statistical methods to investigate microarray data. In this paper, total principal component regression (TPCR) was proposed to classify human tumors by extracting the latent variable structure underlying microarray data from the augmented subspace of both independent variables and dependent variables. One of the salient features of our method is that it takes into account not only the latent variable structure but also the errors in the microarray gene expression profiles (independent variables). The prediction performance of TPCR was evaluated by both leave-one-out and leave-half-out cross-validation using four well-known microarray datasets. The stabilities and reliabilities of the classification models were further assessed by re-randomization and permutation studies. A fast kernel algorithm was applied to decrease the computation time dramatically. (MATLAB source code is available upon request.). 相似文献
3.
Missing-value estimation using linear and non-linear regression with Bayesian gene selection 总被引:7,自引:0,他引:7
MOTIVATION: Data from microarray experiments are usually in the form of large matrices of expression levels of genes under different experimental conditions. Owing to various reasons, there are frequently missing values. Estimating these missing values is important because they affect downstream analysis, such as clustering, classification and network design. Several methods of missing-value estimation are in use. The problem has two parts: (1) selection of genes for estimation and (2) design of an estimation rule. RESULTS: We propose Bayesian variable selection to obtain genes to be used for estimation, and employ both linear and nonlinear regression for the estimation rule itself. Fast implementation issues for these methods are discussed, including the use of QR decomposition for parameter estimation. The proposed methods are tested on data sets arising from hereditary breast cancer and small round blue-cell tumors. The results compare very favorably with currently used methods based on the normalized root-mean-square error. AVAILABILITY: The appendix is available from http://gspsnap.tamu.edu/gspweb/zxb/missing_zxb/ (user: gspweb; passwd: gsplab). 相似文献
4.
Multi-class cancer classification via partial least squares with gene expression profiles 总被引:8,自引:0,他引:8
MOTIVATION: Discrimination between two classes such as normal and cancer samples and between two types of cancers based on gene expression profiles is an important problem which has practical implications as well as the potential to further our understanding of gene expression of various cancer cells. Classification or discrimination of more than two groups or classes (multi-class) is also needed. The need for multi-class discrimination methodologies is apparent in many microarray experiments where various cancer types are considered simultaneously. RESULTS: Thus, in this paper we present the extension to the classification methodology proposed earlier Nguyen and Rocke (2002b; Bioinformatics, 18, 39-50) to classify cancer samples from multiple classes. The methodologies proposed in this paper are applied to four gene expression data sets with multiple classes: (a) a hereditary breast cancer data set with (1) BRCA1-mutation, (2) BRCA2-mutation and (3) sporadic breast cancer samples, (b) an acute leukemia data set with (1) acute myeloid leukemia (AML), (2) T-cell acute lymphoblastic leukemia (T-ALL) and (3) B-cell acute lymphoblastic leukemia (B-ALL) samples, (c) a lymphoma data set with (1) diffuse large B-cell lymphoma (DLBCL), (2) B-cell chronic lymphocytic leukemia (BCLL) and (3) follicular lymphoma (FL) samples, and (d) the NCI60 data set with cell lines derived from cancers of various sites of origin. In addition, we evaluated the classification algorithms and examined the variability of the error rates using simulations based on randomization of the real data sets. We note that there are other methods for addressing multi-class prediction recently and our approach is along the line of Nguyen and Rocke (2002b; Bioinformatics, 18, 39-50). CONTACT: dnguyen@stat.tamu.edu; dmrocke@ucdavis.edu 相似文献
5.
Differential diagnosis among a group of histologically similar cancers poses a challenging problem in clinical medicine. Constructing a classifier based on gene expression signatures comprising multiple discriminatory molecular markers derived from microarray data analysis is an emerging trend for cancer diagnosis. To identify the best genes for classification using a small number of samples relative to the genome size remains the bottleneck of this approach, despite its promise. We have devised a new method of gene selection with reliability analysis, and demonstrated that this method can identify a more compact set of genes than other methods for constructing a classifier with optimum predictive performance for both small round blue cell tumors and leukemia. High consensus between our result and the results produced by methods based on artificial neural networks and statistical techniques confers additional evidence of the validity of our method. This study suggests a way for implementing a reliable molecular cancer classifier based on gene expression signatures. 相似文献
6.
Both microRNA (miRNA) and mRNA expression profiles are important methods for cancer type classification. A comparative study of their classification performance will be helpful in choosing the means of classification. Here we evaluated the classification performance of miRNA and mRNA profiles using a new data mining approach based on a novel SVM (Support Vector Machines) based recursive fea- ture elimination (nRFE) algorithm. Computational experiments showed that information encoded in miRNAs is not sufficient to classify cancers; gut-derived samples cluster more accurately when using mRNA expression profiles compared with using miRNA profiles; and poorly differentiated tumors (PDT) could be classified by mRNA expression profiles at the accuracy of 100% versus 93.8% when using miRNA profiles. Furthermore, we showed that mRNA expression profiles have higher capacity in normal tissue classifications than miRNA. We concluded that classification performance using mRNA profiles is superior to that of miRNA profiles in multiple-class cancer classifications. 相似文献
7.
Background
Accurate diagnosis of cancer subtypes remains a challenging problem. Building classifiers based on gene expression data is a promising approach; yet the selection of non-redundant but relevant genes is difficult. 相似文献8.
Eric B Meltzer William T Barry Thomas A D'Amico Robert D Davis Shu S Lin Mark W Onaitis Lake D Morrison Thomas A Sporn Mark P Steele Paul W Noble 《BMC medical genomics》2011,4(1):70
Background
The accurate diagnosis of idiopathic pulmonary fibrosis (IPF) is a major clinical challenge. We developed a model to diagnose IPF by applying Bayesian probit regression (BPR) modelling to gene expression profiles of whole lung tissue.Methods
Whole lung tissue was obtained from patients with idiopathic pulmonary fibrosis (IPF) undergoing surgical lung biopsy or lung transplantation. Controls were obtained from normal organ donors. We performed cluster analyses to explore differences in our dataset. No significant difference was found between samples obtained from different lobes of the same patient. A significant difference was found between samples obtained at biopsy versus explant. Following preliminary analysis of the complete dataset, we selected three subsets for the development of diagnostic gene signatures: the first signature was developed from all IPF samples (as compared to controls); the second signature was developed from the subset of IPF samples obtained at biopsy; the third signature was developed from IPF explants. To assess the validity of each signature, we used an independent cohort of IPF and normal samples. Each signature was used to predict phenotype (IPF versus normal) in samples from the validation cohort. We compared the models' predictions to the true phenotype of each validation sample, and then calculated sensitivity, specificity and accuracy.Results
Surprisingly, we found that all three signatures were reasonably valid predictors of diagnosis, with small differences in test sensitivity, specificity and overall accuracy.Conclusions
This study represents the first use of BPR on whole lung tissue; previously, BPR was primarily used to develop predictive models for cancer. This also represents the first report of an independently validated IPF gene expression signature. In summary, BPR is a promising tool for the development of gene expression signatures from non-neoplastic lung tissue. In the future, BPR might be used to develop definitive diagnostic gene signatures for IPF, prognostic gene signatures for IPF or gene signatures for other non-neoplastic lung disorders such as bronchiolitis obliterans.9.
Recent studies suggest that the deregulation of pathways, rather than individual genes, may be critical in triggering carcinogenesis. The pathway deregulation is often caused by the simultaneous deregulation of more than one gene in the pathway. This suggests that robust gene pair combinations may exploit the underlying bio-molecular reactions that are relevant to the pathway deregulation and thus they could provide better biomarkers for cancer, as compared to individual genes. In order to validate this hypothesis, in this paper, we used gene pair combinations, called doublets, as input to the cancer classification algorithms, instead of the original expression values, and we showed that the classification accuracy was consistently improved across different datasets and classification algorithms. We validated the proposed approach using nine cancer datasets and five classification algorithms including Prediction Analysis for Microarrays (PAM), C4.5 Decision Trees (DT), Naive Bayesian (NB), Support Vector Machine (SVM), and k-Nearest Neighbor (k-NN). 相似文献
10.
Shen L Tan EC 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2005,2(2):166-175
The use of penalized logistic regression for cancer classification using microarray expression data is presented. Two dimension reduction methods are respectively combined with the penalized logistic regression so that both the classification accuracy and computational speed are enhanced. Two other machine-learning methods, support vector machines and least-squares regression, have been chosen for comparison. It is shown that our methods have achieved at least equal or better results. They also have the advantage that the output probability can be explicitly given and the regression coefficients are easier to interpret. Several other aspects, such as the selection of penalty parameters and components, pertinent to the application of our methods for cancer classification are also discussed. 相似文献
11.
Marker-assisted selection using ridge regression 总被引:4,自引:0,他引:4
In cross between inbred lines, linear regression can be used to estimate the correlation of markers with a trait of interest; these marker effects then allow marker assisted selection (MAS) for quantitative traits. Usually a subset of markers to include in the model must be selected: no completely satisfactory method of doing this exists. We show that replacing this selection of markers by ridge regression can improve the mean response to selection and reduce the variability of selection response. 相似文献
12.
MOTIVATION: Using gene expression data to classify (or predict) tumor types has received much research attention recently. Due to some special features of gene expression data, several new methods have been proposed, including the weighted voting scheme of Golub et al., the compound covariate method of Hedenfalk et al. (originally proposed by Tukey), and the shrunken centroids method of Tibshirani et al. These methods look different and are more or less ad hoc. RESULTS: We point out a close connection of the three methods with a linear regression model. Casting the classification problem in the general framework of linear regression naturally leads to new alternatives, such as partial least squares (PLS) methods and penalized PLS (PPLS) methods. Using two real data sets, we show the competitive performance of our new methods when compared with the other three methods. 相似文献
13.
14.
Background
Classification and regression tree (CART) models are tree-based exploratory data analysis methods which have been shown to be very useful in identifying and estimating complex hierarchical relationships in ecological and medical contexts. In this paper, a Bayesian CART model is described and applied to the problem of modelling the cryptosporidiosis infection in Queensland, Australia.Methodology/Principal Findings
We compared the results of a Bayesian CART model with those obtained using a Bayesian spatial conditional autoregressive (CAR) model. Overall, the analyses indicated that the nature and magnitude of the effect estimates were similar for the two methods in this study, but the CART model more easily accommodated higher order interaction effects.Conclusions/Significance
A Bayesian CART model for identification and estimation of the spatial distribution of disease risk is useful in monitoring and assessment of infectious diseases prevention and control. 相似文献15.
Bayesian logistic regression using a perfect phylogeny 总被引:1,自引:0,他引:1
Haplotype data capture the genetic variation among individuals in a population and among populations. An understanding of this variation and the ancestral history of haplotypes is important in genetic association studies of complex disease. We introduce a method for detecting associations between disease and haplotypes in a candidate gene region or candidate block with little or no recombination. A perfect phylogeny demonstrates the evolutionary relationship between single-nucleotide polymorphisms (SNPs) in the haplotype blocks. Our approach extends the logic regression technique of Ruczinski and others (2003) to a Bayesian framework, and constrains the model space to that of a perfect phylogeny. Environmental factors, as well as their interactions with SNPs, may be incorporated into the regression framework. We demonstrate our method on simulated data from a coalescent model, as well as data from a candidate gene study of sarcoidosis. 相似文献
16.
Sun BY Zhu ZH Li J Linghu B 《IEEE/ACM transactions on computational biology and bioinformatics / IEEE, ACM》2011,8(6):1671-1677
Prognostic prediction is important in medical domain, because it can be used to select an appropriate treatment for a patient by predicting the patient's clinical outcomes. For high-dimensional data, a normal prognostic method undergoes two steps: feature selection and prognosis analysis. Recently, the L?-L?-norm Support Vector Machine (L?-L? SVM) has been developed as an effective classification technique and shown good classification performance with automatic feature selection. In this paper, we extend L?-L? SVM for regression analysis with automatic feature selection. We further improve the L?-L? SVM for prognostic prediction by utilizing the information of censored data as constraints. We design an efficient solution to the new optimization problem. The proposed method is compared with other seven prognostic prediction methods on three realworld data sets. The experimental results show that the proposed method performs consistently better than the medium performance. It is more efficient than other algorithms with the similar performance. 相似文献
17.
Wu B 《Bioinformatics (Oxford, England)》2006,22(4):472-476
Differential gene expression detection and sample classification using microarray data have received much research interest recently. Owing to the large number of genes p and small number of samples n (p > n), microarray data analysis poses big challenges for statistical analysis. An obvious problem owing to the 'large p small n' is over-fitting. Just by chance, we are likely to find some non-differentially expressed genes that can classify the samples very well. The idea of shrinkage is to regularize the model parameters to reduce the effects of noise and produce reliable inferences. Shrinkage has been successfully applied in the microarray data analysis. The SAM statistics proposed by Tusher et al. and the 'nearest shrunken centroid' proposed by Tibshirani et al. are ad hoc shrinkage methods. Both methods are simple, intuitive and prove to be useful in empirical studies. Recently Wu proposed the penalized t/F-statistics with shrinkage by formally using the (1) penalized linear regression models for two-class microarray data, showing good performance. In this paper we systematically discussed the use of penalized regression models for analyzing microarray data. We generalize the two-class penalized t/F-statistics proposed by Wu to multi-class microarray data. We formally derive the ad hoc shrunken centroid used by Tibshirani et al. using the (1) penalized regression models. And we show that the penalized linear regression models provide a rigorous and unified statistical framework for sample classification and differential gene expression detection. 相似文献
18.
A simple and efficient algorithm for gene selection using sparse logistic regression 总被引:4,自引:0,他引:4
MOTIVATION: This paper gives a new and efficient algorithm for the sparse logistic regression problem. The proposed algorithm is based on the Gauss-Seidel method and is asymptotically convergent. It is simple and extremely easy to implement; it neither uses any sophisticated mathematical programming software nor needs any matrix operations. It can be applied to a variety of real-world problems like identifying marker genes and building a classifier in the context of cancer diagnosis using microarray data. RESULTS: The gene selection method suggested in this paper is demonstrated on two real-world data sets and the results were found to be consistent with the literature. AVAILABILITY: The implementation of this algorithm is available at the site http://guppy.mpe.nus.edu.sg/~mpessk/SparseLOGREG.shtml Supplementary Information: Supplementary material is available at the site http://guppy.mpe.nus.edu.sg/~mpessk/SparseLOGREG.shtml 相似文献
19.
20.
In this work we propose a new method for finding gene subsets of microarray data that effectively discriminates subtypes of disease. We developed a new criterion for measuring the relevance of individual genes by using mean and standard deviation of distances from each sample to the class centroid in order to treat the well-known problem of gene selection, large within-class variation. Also this approach has the advantage that it is applicable not only to binary classification but also to multiple classification problems. We demonstrated the performance of the method by applying it to the publicly available microarray datasets, leukemia (two classes) and small round blue cell tumors (four classes). The proposed method provides a very small number of genes compared with the previous methods without loss of discriminating power and thus it can effectively facilitate further biological and clinical researches. 相似文献