首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Marta Filizola 《Life sciences》2010,86(15-16):590-597
For years, conventional drug design at G-protein coupled receptors (GPCRs) has mainly focused on the inhibition of a single receptor at a usually well-defined ligand-binding site. The recent discovery of more and more physiologically relevant GPCR dimers/oligomers suggests that selectively targeting these complexes or designing small molecules that inhibit receptor–receptor interactions might provide new opportunities for novel drug discovery. To uncover the fundamental mechanisms and dynamics governing GPCR dimerization/oligomerization, it is crucial to understand the dynamic process of receptor–receptor association, and to identify regions that are suitable for selective drug binding. This minireview highlights current progress in the development of increasingly accurate dynamic molecular models of GPCR oligomers based on structural, biochemical, and biophysical information that has recently appeared in the literature. In view of this new information, there has never been a more exciting time for computational research into GPCRs than at present. Information-driven modern molecular models of GPCR complexes are expected to efficiently guide the rational design of GPCR oligomer-specific drugs, possibly allowing researchers to reach for the high-hanging fruits in GPCR drug discovery, i.e. more potent and selective drugs for efficient therapeutic interventions.  相似文献   

2.
3.
In systems biology, a number of detailed genetic regulatory networks models have been proposed that are capable of modeling the fine-scale dynamics of gene expression. However, limitations on the type and sampling frequency of experimental data often prevent the parameter estimation of the detailed models. Furthermore, the high computational complexity involved in the simulation of a detailed model restricts its use. In such a scenario, reduced-order models capturing the coarse-scale behavior of the network are frequently applied. In this paper, we analyze the dynamics of a reduced-order Markov Chain model approximating a detailed Stochastic Master Equation model. Utilizing a reduction mapping that maintains the aggregated steady-state probability distribution of stochastic master equation models, we provide bounds on the deviation of the Markov Chain transient distribution from the transient aggregated distributions of the stochastic master equation model.  相似文献   

4.
Kinetic models of metabolic networks are essential for predicting and optimizing the transient behavior of cells in culture. However, such models are inherently high dimensional and stiff due to the large number of species and reactions involved and to kinetic rate constants of widely different orders of magnitude. In this paper we address the problem of deriving non-stiff, reduced-order non-linear models of the dominant dynamics of metabolic networks with fast and slow reactions. We present a method, based on singular perturbation analysis, which allows the systematic identification of quasi-steady-state conditions for the fast reactions, and the derivation of explicit non-linear models of the slow dynamics independent of the fast reaction rate expressions. The method is successfully applied to detailed models of metabolism in human erythrocytes and Saccharomyces cerevisiae.  相似文献   

5.
Regulators of G-protein signaling (RGS) proteins form a multifunctional signaling family. A key role of RGS proteins is binding to the G-protein Galpha-subunit and acting as GTPase-activating proteins (GAPs), thereby rapidly terminating G protein-coupled receptor (GPCR) signaling. Using the published RGS4-Gialpha1 X-ray structure we have designed and synthesized a series of cyclic peptides, modeled on the Gialpha Switch I region, that inhibit RGS4 GAP activity. These compounds should prove useful for elucidating RGS-mediated activity and serve as a starting point for the development of a novel class of therapeutic agent.  相似文献   

6.
The Ras-related protein, activator of G-protein signaling 1 (AGS1) or Dexras1, interacts with G(i)/G(o)alpha and activates heterotrimeric G-protein signaling systems independent of a G-protein-coupled receptor (GPCR). As an initial approach to further define the cellular role of AGS1 in GPCR signaling, we determined the influence of AGS1 on the regulation of G(betagamma)-regulated inwardly rectifying K(+) channel (GIRK) current (I(ACh)) by M(2)-muscarinic receptor (M(2)-MR) in Xenopus oocytes. AGS1 expression inhibited receptor-mediated current activation by >80%. Mutation of a key residue (G31V) within the G(1) domain involved in nucleotide binding for Ras-related proteins eliminated the action of AGS1. The inhibition of I(ACh) was not overcome by increasing concentrations of the muscarinic agonist acetylcholine but was progressively lost upon injection of increasing amounts of M(2)-MR cRNA. These data suggest that AGS1 may antagonize GPCR signaling by altering the pool of heterotrimeric G-proteins available for receptor coupling and/or disruption of a preformed signaling complex. Such regulation would be of particular importance for those receptors that exist precoupled to heterotrimeric G-protein and for receptors operating within signaling complexes.  相似文献   

7.
Among the most exciting functional features of G-protein coupled receptors (GPCRs) that are coming into focus lately are those relating to the role and structural characteristics of their oligomerization (mostly homo- and heterodimers). The structural underpinnings of these novel functional insights are still not clear, as current experimental techniques have not yet succeeded in identifying the dimerization interfaces between GPCR monomers. Two computational approaches have recently been designed in our lab to provide reasonable three-dimensional (3D) molecular models of the transmembrane (TM) regions of GPCR dimers based on a combination of the structural information of receptor monomers and analyses of correlated mutations in receptor families. The modeling of GPCR heterodimers has been described recently. We present here a related approach for modeling of GPCR homodimers that identifies the interfaces in the most likely configurations of the complexes. The approach is illustrated for the three cloned opioid receptor subtypes (OPRD, OPRM, and OPRK).  相似文献   

8.
9.
Seven transmembrane G-protein-coupled receptors (GPCRs) are commonly used by eukaryotes to sense extracellular signals to switch on cellular responses through the activation of cognate heterotrimeric G-proteins. In Arabidopsis thaliana, GCR2 has been proposed as a GPCR for the plant hormone abscisic acid. On the other hand, biochemical analysis demonstrates that the sole Arabidopsis heterotrimeric G-protein α subunit, GPA1, is in the activated state (GTP-bound) by default, suggesting that the heterotrimeric G-proteins may act without any GPCRs.Key words: heterotrimeric G-proteins, GCR2, GPA1, G-protein-coupled receptor (GPCR), AtRGS1  相似文献   

10.
Recent studies employing differential epitope tagging, selective immunoprecipitation of receptor complexes and fluorescence or bioluminescence resonance energy transfer techniques provide direct evidence for heterodimerization between both closely and distantly related members of the G-protein coupled receptor (GPCR) family. Since heterodimerization appears to play a role in modulating agonist affinity, efficacy and/or trafficking properties, the molecular models of GPCRs required to understand receptor function must consider these oligomerization hypotheses. To advance knowledge in this field, we present here a computational approach based on correlated mutation analysis and the structural information contained in three-dimensional molecular models of the transmembrane regions of GPCRs built using the rhodopsin crystal structure as a template. The new subtractive correlated mutation method reveals likely heterodimerization interfaces amongst the different alternatives for the positioning of two tightly packed bundles of seven transmembrane domains next to each other in contact heterodimers of GPCRs. Predictions are applied to GPCRs in the class of opioid receptors. However, in the absence of a known structure of any GPCR dimer, the features of the method and predictions are also illustrated and analyzed for a dimeric complex of known structure.  相似文献   

11.
BACKGROUND: A cell-based assay system (Transfluor) has been developed for measurement of G-protein coupled receptor (GPCR) activity by using cells transfected to express a fusion protein of arrestin plus green fluorescent protein (GFP) and the target GPCR. Upon agonist stimulation, the arrestin-GFP translocates to and binds the activated GPCR at the plasma membrane. The receptor/arrestin-GFP complexes then localize in clathrin-coated pits and/or intracellular vesicles. This redistribution of arrestin-GFP into condensed fluorescent spots is useful for visually monitoring the active status of GPCRs and its quantitation is possible with certain types of digital image analysis systems. METHODS: We designed two lines of image processing algorithms to carry out quantitative measurement of the arrestin-GFP movement on an inverted version of laser scanning cytometry (iCyte) as an imaging platform. We used a cell line expressing arrestin-GFP and the wild-type beta2-adrenergic receptor or a modified version of this receptor with enhanced affinity for arrestin. Each cell line was challenged with various concentrations of agonist. RESULTS: A dose-dependent signal was measured and half-maximal effective concentration values were obtained that agreed well with results determined by other methods previously reported. CONCLUSIONS: The results indicate that the combination of Transfluor, iCyte, and our algorithms is suitable for robust and pharmacologically relevant GPCR ligand exploration.  相似文献   

12.
We report here on a chemical genetic screen designed to address the mechanism of action of a small molecule. Small molecules that were active in models of urinary incontinence were tested on the nematode Caenorhabditis elegans, and the resulting phenotypes were used as readouts in a genetic screen to identify possible molecular targets. The mutations giving resistance to compound were found to affect members of the RGS protein/G-protein complex. Studies in mammalian systems confirmed that the small molecules inhibit muscarinic G-protein coupled receptor (GPCR) signaling involving G-αq (G-protein alpha subunit). Our studies suggest that the small molecules act at the level of the RGS/G-αq signaling complex, and define new mutations in both RGS and G-αq, including a unique hypo-adapation allele of G-αq. These findings suggest that therapeutics targeted to downstream components of GPCR signaling may be effective for treatment of diseases involving inappropriate receptor activation.  相似文献   

13.
The mechanisms by which G-protein-coupled receptors (GPCRs) activate G-proteins are not well understood due to the lack of atomic structures of GPCRs in an active form or in GPCR/G-protein complexes. For study of GPCR/G-protein interactions, we have generated a series of chimeras by replacing the third cytoplasmic loop of a scaffold protein bacteriorhodopsin (bR) with various lengths of cytoplasmic loop 3 of bovine rhodopsin (Rh), and one such chimera containing loop 3 of the human beta2-adrenergic receptor. The chimeras expressed in the archaeon Halobacterium salinarum formed purple membrane lattices thus facilitating robust protein purification. Retinal was correctly incorporated into the chimeras, as determined by spectrophotometry. A 2D crystal (lattice) was evidenced by circular dichroism analysis, and proper organization of homotrimers formed by the bR/Rh loop 3 chimera Rh3C was clearly illustrated by atomic force microscopy. Most interestingly, Rh3C (and Rh3G to a lesser extent) was functional in activation of GTPgamma35S/GDP exchange of the transducin alpha subunit (Galphat) at a level 3.5-fold higher than the basal exchange. This activation was inhibited by GDP and by a high-affinity peptide analog of the Galphat C terminus, indicating specificity in the exchange reaction. Furthermore, a specific physical interaction between the chimera Rh3C loop 3 and the Galphat C terminus was demonstrated by cocentrifugation of transducin with Rh3C. This Galphat-activating bR/Rh chimera is highly likely to be a useful tool for studying GPCR/G-protein interactions.  相似文献   

14.
Many cellular functions are carried out by multiprotein complexes. The last five years of research have revealed that many G-protein coupled receptor (GPCR) functions that are not mediated by G proteins involve protein networks, which interact with their intracellular domains. This review focuses on one family of GPCRs activated by serotonin, the 5-HT(2) receptor family, which comprises three closely related subtypes, the 5-HT(2A), the 5-HT(2B) and the 5-HT(2c) receptors. These receptors still raise particular interest, because a large number of psychoactive drugs including hallucinogens, anti-psychotics, anxiolytics and anti-depressants, mediate their action, at least in part, through activation of 5-HT(2) receptors. Recent studies based on two-hybrid screens, proteomic, biochemical and cell biology approaches, have shown that the C-terminal domains of 5-HT(2) receptors interact with intracellular proteins. To date, the protein network associated with the C-terminus of the 5-HT(2C) receptor has been the most extensively characterized, using a proteomic approach combining affinity chromatography, mass spectrometry and immunoblotting. It includes scaffolding proteins containing one or several PDZ domains, signalling proteins and proteins of the cytoskeleton. Data indicating that the protein complexes interacting with 5-HT(2) receptor C-termini tightly control receptor trafficking and receptor-mediated signalling will also be reviewed.  相似文献   

15.
Obesity has been proposed to be a result of an imbalance in the physiological system that controls and maintains the body energy homeostasis. Several G-protein coupled receptors (GPCRs) are involved in the regulation of energy homeostasis. To investigate the importance of GPCR12, mice deficient of this receptor (GPCR12 KO) were studied regarding metabolism. Expression of GPCR12 was found primarily in the limbic and sensory systems, indicating its possible involvement in motivation, emotion together with various autonomic functions, and sensory information processing. GPCR12 KO mice were found to have higher body weight, body fat mass, lower respiratory exchange ratio (RER), hepatic steatosis, and were dyslipidemic. Neither food intake nor energy in faeces was affected in the GPCR12 KO mice. However, lower energy expenditure was found in the GPCR12 KO mice, which may explain the obesity. In conclusion, GPCR12 is considered important for the energy balance since GPCR12 KO mice develop obesity and have lower energy expenditure. This may be important for future drugs that target this receptor.  相似文献   

16.
Membrane topology of the Drosophila OR83b odorant receptor   总被引:4,自引:0,他引:4  
By analogy to mammals, odorant receptors (ORs) in insects, such as Drosophila melanogaster, have long been thought to belong to the G-protein coupled receptor (GPCR) superfamily. However, recent work has cast doubt on this assumption and has tentatively suggested an inverted topology compared to the canonical N(out) - C(in) 7 transmembrane (TM) GPCR topology, at least for some Drosophila ORs. Here, we report a detailed topology mapping of the Drosophila OR83b receptor using engineered glycosylation sites as topology markers. Our results are inconsistent with a classical GPCR topology and show that OR83b has an intracellular N-terminus, an extracellular C-terminus, and 7TM helices.  相似文献   

17.
18.
A Monte Carlo study of the dynamics of G-protein activation.   总被引:7,自引:1,他引:6       下载免费PDF全文
To link quantitatively the cell surface binding of ligand to receptor with the production of cellular responses, it may be necessary to explore early events in signal transduction such as G-protein activation. Two different model frameworks relating receptor/ligand binding to G-protein activation are examined. In the first framework, a simple ordinary differential equation model is used to describe receptor/ligand binding and G-protein activation. In the second framework, the events leading to G-protein activation are simulated using a dynamic Monte Carlo model. In both models, reactions between ligand-bound receptors and G-proteins are assumed to be diffusion-limited. The Monte Carlo model predicts two regimes of G-protein activation, depending upon whether the lifetime of a receptor/ligand complex is long or short compared with the time needed for diffusional encounters of complexes and G-proteins. When the lifetime of a complex is relatively short compared with the diffusion time, the movement of ligand among free receptors by binding and unbinding ("switching") significantly enhances G-protein activation. Receptor antagonists dramatically reduce G-protein activation and, thus, signal transduction in this case, and significant clustering of active G-proteins near receptor/ligand complexes results. The simple ordinary differential equation model poorly predicts G-protein activation for this situation. In the alternative case, when diffusion is relatively fast, ligand movement among receptors is less important and the simple ordinary differential equation model and Monte Carlo model results are similar. In this case, there is little clustering of active G-proteins near receptor/ligand complexes. Results also indicate that as the GTPase activity of the alpha-subunit decreases, the steady-state level of alpha-GTP increases, although temporal sensitivity is compromised.  相似文献   

19.
The G-protein coupled receptor (GPCR) superfamily is one of the largest classes of molecules involved in signal transduction across the plasma membrane. The serotonin(1A) receptor is a representative member of the GPCR superfamily and serves as an important target in the development of therapeutic agents for neuropsychiatric disorders such as anxiety and depression. In the context of the pharmacological relevance of the serotonin(1A) receptor, the membrane organization and dynamics of this receptor in the cellular environment assume relevance. We have highlighted results, obtained from fluorescence microscopy-based approaches, related to domain organization and dynamics of the serotonin(1A) receptor. A fraction of serotonin(1A) receptors displays detergent insolubility, monitored using green fluorescent protein, that increases upon depletion of membrane cholesterol. Fluorescence recovery after photobleaching measurements with varying bleach spot sizes show that lateral diffusion parameters of serotonin(1A) receptors in normal cells are consistent with models describing diffusion of molecules in a homogenous membrane. Interestingly, these characteristics are altered in cholesterol-depleted cells. Taken together, we conclude that the serotonin(1A) receptor exhibits dynamic confinement in the cellular plasma membranes. Progress in understanding GPCR organization and dynamics would result in better insight into our overall understanding of GPCR function in health and disease.  相似文献   

20.
Navarro J  Landau EM  Fahmy K 《Biopolymers》2002,67(3):167-177
The primary step in cellular signaling by G-protein-coupled receptors (GPCRs) is the interaction of the agonist-activated transmembrane receptor with an intracellular G-protein. Understanding the underlying molecular mechanisms requires the structural determination of receptor G-protein complexes that are not yet achieved. The crystal structure of the bovine photoreceptor rhodopsin, a prototypical GPCR, was solved recently and the structures of different states of engineered G-proteins were reported. Posttranslational hydrophobic modifications of G-proteins are in most cases removed for crystallization but play functional roles for interactions among G-protein subunits with receptors, as well as membranes. Bovine rhodopsin is reconstituted into lipidic cubic phases to assess their potential for crystallization of receptor G-protein complexes under conditions that may preserve the structural and functional roles of hydrophobic protein modifications. Three-dimensional bilayers of a bicontinuous lipidic cubic phase are successfully employed for crystallization of membrane and soluble proteins. UV-visible absorption and attenuated total reflection Fourier transform IR difference spectroscopy reveal that light activation of cubic phase reconstituted rhodopsin results in the generation of a metarhodopsin II-like state. Via diffusion along aqueous channels, transducin couples efficiently to this photoproduct as evidenced by the nucleotide-dependent increase of transducin fluorescence. Thus, rhodopsin transducin interactions do not crucially depend on the presence of sn1 and sn2 acyl chains, phospholipid head groups, or membrane planarity. Because lipidic cubic phases preserve the essential functional and structural properties of native rhodopsin and transducin, they appear suitable for the detergent-free crystallization of receptor G-protein complexes carrying a normal pattern of hydrophobic modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号