首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Endocrine treatment of prostate cancer   总被引:5,自引:0,他引:5  
Although androgen deprivation as a treatment for patients with prostate cancer was described more than 60 years ago its optimal use remains controversial. The widespread use of prostate-specific (PSA) assay has lead to earlier diagnosis and earlier detection of recurrent disease. This means that the systemic side effects of androgen deprivation and quality of life have become more important. Debates continue regarding the proper use and timing of endocrine therapy with orchiectomy, oestrogen agonists, gonadotropin hormone-releasing hormone (GnRH) agonists, GnRH antagonists, and androgen antagonists. A critical review of the literature was performed. Data support that androgen deprivation is an effective treatment for patients with advanced prostate cancer. However, although it improves survival, it is not curative, and creates a spectrum of unwanted effects that influence quality of life. Castration remains the frontline treatment for metastatic prostate cancer, where orchiectomy, oestrogen agonists and GnRH agonists produce equivalent clinical responses. Maximum androgen blockade (MAB) is not significantly more effective than single agent GnRH agonist or orchiectomy. Nonsteroidal antiandrogen monotherapy is as effective as castration in treatment of locally advanced prostate cancer offering quality of life benefits. Adjuvant endocrine treatment is able to delay disease progression at any stage. There is, however, controversy of the possible survival benefit of such treatment, including patients having PSA relapse after definitive local treatment for prostate cancer. Neoadjuvant endocrine treatment has its place mainly in the external beam radiotherapy setting. Intermittent androgen blockade is still considered experimental. The decision regarding the type of androgen deprivation should be made individually after informing the patient of all available treatment options, including watchful waiting, and on the basis of potential benefits and adverse effects. Several large studies are under way to investigate the role of adjuvant endocrine treatment in the field of early prostate cancer, intermittent androgen deprivation and endocrine therapy alone compared with endocrine therapy with radiotherapy. The real challenge, however, is to develop better means to avert hormone-refractory prostate cancer and better treatments for patients with hormone-refractory disease when it occurs.  相似文献   

3.
Androgen ablation therapy is currently the primary treatment for metastatic prostate cancer. Unfortunately, in nearly all cases, androgen ablation fails to permanently arrest cancer progression. As androgens like testosterone are withdrawn, prostate cancer cells lose their androgen sensitivity and begin to proliferate without hormone growth factors. In this study, we constructed and analyzed a mathematical model of the integration between hormone growth factor signaling, androgen receptor activation, and the expression of cyclin D and Prostate-Specific Antigen in human LNCaP prostate adenocarcinoma cells. The objective of the study was to investigate which signaling systems were important in the loss of androgen dependence. The model was formulated as a set of ordinary differential equations which described 212 species and 384 interactions, including both the mRNA and protein levels for key species. An ensemble approach was chosen to constrain model parameters and to estimate the impact of parametric uncertainty on model predictions. Model parameters were identified using 14 steady-state and dynamic LNCaP data sets taken from literature sources. Alterations in the rate of Prostatic Acid Phosphatase expression was sufficient to capture varying levels of androgen dependence. Analysis of the model provided insight into the importance of network components as a function of androgen dependence. The importance of androgen receptor availability and the MAPK/Akt signaling axes was independent of androgen status. Interestingly, androgen receptor availability was important even in androgen-independent LNCaP cells. Translation became progressively more important in androgen-independent LNCaP cells. Further analysis suggested a positive synergy between the MAPK and Akt signaling axes and the translation of key proliferative markers like cyclin D in androgen-independent cells. Taken together, the results support the targeting of both the Akt and MAPK pathways. Moreover, the analysis suggested that direct targeting of the translational machinery, specifically eIF4E, could be efficacious in androgen-independent prostate cancers.  相似文献   

4.
Since in men androgen levels decrease with age and result in symptoms of hypogonadism, the use of testosterone supplementation to treat symptoms resulting from hypogonadism is increasing. One potential complication of this treatment is the possibility of an increased risk of prostate cancer. Although most authorities agree that androgen is involved in the exacerbation of existing carcinoma of the prostate, the action of androgens on the carcinogenic process is not well understood. Attempts to demonstrate a correlation between hormone levels and prostate cancer have yielded inconsistent results. No clear evidence exists that androgen supplementation to restore physiologic levels produces any deleterious effects on the prostate. It is highly doubtful that when testosterone therapy is administered to middle-aged or older men, any potential prostate cancer promotion effect will be clinically manifested in the absence of already established cancer. It is, however, imperative that existing or developing prostate cancer be ruled out before initiation and during androgen replacement therapy. As with any therapeutic regimen, careful monitoring of the patient receiving treatment is recommended and constitutes good medical care.  相似文献   

5.
Although several genes have been associated with prostate cancer progression, it is clear that we are far from understanding all the molecular events implicated in the initiation and progression of the disease to a hormone-refractory state. The androgen receptor is a central player in the initiation and proliferation of prostate cancer and its response to hormone therapy. Nuclear factor-kappaB has important proliferative and antiapoptotic activities that could contribute to the development and progression of cancer cells as well as resistance to therapy. In this study, we report that IkappaB kinase epsilon (IKKepsilon), which is controlled by nuclear factor-kappaB in human chondrocytes, is expressed in human prostate cancer cells. We show that IKKepsilon gene expression is stimulated by tumor necrosis factor-alpha treatment in LNCaP cells and is inhibited by transfection of a dominant-negative form of IkappaBalpha, which prevents the nuclear translocation of p65. Furthermore, we found that tumor necrosis factor-alpha-induced IKKepsilon expression is inhibited by an androgen analogue (R1881) in androgen-sensitive prostate cancer cells and that this inhibition correlates with the modulation of IkappaBalpha expression by R1881. We also noted constitutive IKKepsilon expression in androgen-independent PC-3 and DU145 cells. To our knowledge, this is the first report of an IkappaB kinase family member whose expression is modulated by androgen and deregulated in androgen receptor-negative cells.  相似文献   

6.
7.
Updates on hormonal therapy in the treatment of prostate cancer are presented. The most common therapy is to reduce testosterone to castrate levels. A dosage of 1 mg diethylstilbestrol daily prolonged survival in patients with advanced prostate cancer. The leuteinizing hormone-releasing hormone agonists have essentially replaced surgical orchiectomy in the vast majority of clinical settings; however, a major problem with the leuteinizing hormone- releasing hormone agonists has been the surge and flare of testosterone levels. If hormonal therapy is initiated early, the risk of major complications is significantly decreased. Combined androgen blockade is better than monotherapy, although there is only a small clinical benefit. When androgen deprivation is used for a short time and the normal androgen milieu is re-established, the side effects and toxicity of androgen deprivation are decreased. The major complications of androgen deprivation include hot flushes, reduction of bone mineral density, osteoporosis, and anemia. Intermittent androgen blockade might have the same benefits of total androgen suppression with fewer side effects, increased duration of androgen dependence, and less cost. The 10 steps to take when advising patients about initiation of androgen deprivation therapy are reviewed.  相似文献   

8.
Despite earlier detection and recent advances in surgery and radiation, prostate cancer is second only to lung cancer in male cancer deaths in the United States. Hormone therapy in the form of medical or surgical castration remains the mainstay of systemic treatment in prostate cancer. Over the last 15 years with the clinical use of prostate specific antigen (PSA), there has been a shift to using hormone therapy earlier in the disease course and for longer duration. Despite initial favorable response to hormone therapy, over a period of time these tumors will develop androgen‐independence that results in death. The androgen receptor (AR) is central to the initiation and growth of prostate cancer and to its response to hormone therapy. Analyses have shown that AR continues to be expressed in androgen‐independent tumors and AR signaling remains intact as demonstrated by the expression of the AR regulated gene, PSA. Androgen‐independent prostate cancers have demonstrated a variety of AR alterations that are either not found in hormone naïve tumors or found at lower frequency. These changes include AR amplification, AR point mutation, and changes in expression of AR co‐regulatory proteins. These AR changes result in a “super AR” that can respond to lower concentrations of androgens or to a wider variety of agonistic ligands. There is also mounting evidence that AR can be activated in a ligand independent fashion by compounds such as growth factors or cytokines working independently or in combination. These growth factors working through receptor tyrosine kinase pathways may promote AR activation and growth in low androgen environments. The clinical significance of these AR alterations in the development and progression of androgen‐independent prostate cancer remains to be determined. Understanding the changes in AR signaling in the evolution of androgen‐independent prostate cancer will be key to the development of more effective hormone therapy. © 2003 Wiley‐Liss, Inc.  相似文献   

9.
Achieving and maintaining effective suppression of serum testosterone levels in men treated with androgen ablation is one of the essential strategies in the management of prostate cancer. Historically, a serum testosterone below 50 ng/dL was considered to be the castrate level. Current data suggest that the new target for either surgical or chemical castration is a serum testosterone level of lower than 20 ng/dL in an attempt to maximize therapeutic outcomes. Testosterone breakthrough and the acute-on-chronic effects of administration of a luteinizing hormone-releasing hormone analogue may cause testosterone levels to periodically rise, sometimes to noncastrate levels. The goal of androgen ablation is to identify those agents that will most consistently achieve and maintain the lowest testosterone levels possible.Key words: Prostate cancer, Androgen ablation, LHRH analogues, LHRH antagonists, TestosteroneThe cornerstone of understanding the basic biology of prostate cancer relies upon the important discovery that prostate cancer is a hormonally responsive tumor. The current use of androgen ablation therapy in prostate cancer includes treatment based on serum prostate-specific antigen (PSA) only or local recurrence; neoadjuvant or adjuvant treatment of high-risk disease, usually in combination with radiation therapy; and treatment of patients with metastatic disease regardless of symptoms. The American Society of Clinical Oncology (ASCO) 2007 guidelines and National Comprehensive Cancer Network (NCCN) 2009 guidelines recommend either luteinizing hormone-releasing hormone (LHRH) agonists or bilateral orchiectomy as first-line therapy for men with advanced prostate cancer.1,2Medical or chemical castration is almost exclusively performed by the use of injectable LHRH analogues, with a minor role for estrogen and limited experience with LHRH antagonists. Surgical castration through bilateral orchiectomy is infrequently used today.Intermittent hormonal therapy (IHT) is being investigated as an alternative to continuous hormonal therapy with a potential for reduced morbidity and a delay of the progression to hormone-refractory disease.3 Although intermittent therapy may rely upon restoring a normal testosterone level, it is believed that the testosterone level should be as low as possible when the patient is on treatment, thus generating the lowest serum PSA level possible and likely improving outcome.4 Although the data on IHT are promising, trials reported thus far are relatively small and somewhat underpowered, and it is likely that its use will increase in the future as trials mature.There is growing recognition that many men may not achieve acceptable levels of testosterone using androgen ablation. This has led to a renewed interest in the significance of the testosterone level in the modern era of prostate cancer management. Can we define the best castration therapy for prostate cancer? Is this the therapy that provides the lowest and most consistent levels of testosterone suppression? To quote Dr. Claude Schulman in a recent editorial: “less is more.”5  相似文献   

10.
Prostate cancer is the most frequently diagnosed non-cutaneous tumor of men in Western countries. While surgery is often successful for organ-confined prostate cancer, androgen ablation therapy is the primary treatment for metastatic prostate cancer. However, this therapy is associated with several undesired side-effects, including increased risk of cardiovascular diseases. Shortening the period of androgen ablation therapy may benefit prostate cancer patients. Intermittent Androgen Deprivation therapy improves quality of life, reduces toxicity and medical costs, and delays disease progression in some patients. Cell culture and xenograft studies using androgen receptor (AR)-positive castration-resistant human prostate cancers cells (LNCaP, ARCaP, and PC-3 cells over-expressing AR) suggest that androgens may suppress the growth of AR-rich prostate cancer cells. Androgens cause growth inhibition and G1 cell cycle arrest in these cells by regulating c-Myc, Skp2, and p27Kip via AR. Higher dosages of testosterone cause greater growth inhibition of relapsed tumors. Manipulating androgen/AR signaling may therefore be a potential therapy for AR-positive advanced prostate cancer.  相似文献   

11.
Prostate cancer is one of the most common malignancies in men and is predicted to be the second leading cause of cancer-related deaths. After 6–18 months, hormone ablation treatment results in androgen-independent growth of cancer cells, metastasis and progression. The mechanism of androgen-independent growth of prostatic carcinoma cells is still unknown. Identification of factors that facilitate the transition from androgen-dependent to independent states is crucial in designing future diagnostics and medication strategies. To understand the biochemical meaning of hormone dependency deprivation, glycoproteins enriched profiles were compared between DU145 (hormone non-responding) and LNCaP (hormone responding) prostate cancer cells. These results allow for anticipation on the important role of glycosylation in malignant transformation. Both Tn antigen and complex antennary N-oligosaccharides were recognized. Their occurrence might be involved in the development and progression of tumor, and failure of hormone ablation therapy. Among identified proteins in androgen-sensitive cells nucleolin (P19338) was found that is widely described as apoptosis inhibitor, and also transporter of molecules from the membrane to the cytoplasm or nucleus. In addition, 14-3-3 protein family (P27348, P31946, P61981, P63104, P62258, Q04917, and P31947) was investigated across available databases as it forms stable complexes with glycoproteins. Our studies indicate that isoforms: sigma and eta were found in androgen-dependent prostate cancer cells, while other isoforms were present in androgen non-responding cells. 14-3-3 binding partners are involved in cancer pathogenesis. These findings may contribute to a better understanding of prostate cancer tumorigenesis and to a more efficient prognosis and individual therapy in a future. However, it still remains to be revealed how important those changes are for androgen dependency loss in prostate cancer patients carried out on clinically relevant populations.  相似文献   

12.
J. L. Pariente 《Andrologie》2001,11(3):160-164
Androgens play an important biological role at all phases of a man’s life. The objective of treatment of androgen deficiency is to maintain physiological testosterone levels. Misuse and abuse of androgen as anabolic steroids are frequent in sportsmen and body-builders or for erectile dysfunction. The main concerns for the potential adverse effects of testosterone treatment are the prostate and the cardiovascular system (lipid metabolism). Liver function must also be monitored. There is no evidence, at the present time, that testosterone replacement therapy in hypogonadal men increases the risk of prostate cancer. Only sporadic cases have been reported. Because of the risk of stimulating an existing prostate cancer, each patient must be monitored every six months (PSA and DRE).  相似文献   

13.
Prostate cancer is the most frequently diagnosed non-skin cancer and the third leading cause of cancer mortality in men. In the initial stages, prostate cancer is dependent on androgens for growth, which is the basis for androgen ablation therapy. However, in most cases, prostate cancer progresses to a hormone refractory phenotype for which there is no effective therapy available at present. The androgen receptor (AR) is required for prostate cancer growth in all stages, including the relapsed, "androgen-independent" tumors in the presence of very low levels of androgens. This review focuses on AR function and AR-target genes and summarizes the major signaling pathways implicated in prostate cancer progression, their crosstalk with each other and with AR signaling. This complex network of interactions is providing a deeper insight into prostate carcinogenesis and may form the basis for novel diagnostic and therapeutic strategies.  相似文献   

14.
ErbB-3, an ErbB receptor tyrosine kinase, has been implicated in the pathogenesis of several malignancies, including prostate cancer. We found that ErbB-3 expression was up-regulated in prostate cancer cells within lymph node and bone metastases. Despite being a plasma membrane protein, ErbB-3 was also detected in the nuclei of the prostate cancer cells in the metastatic specimens. Because most metastatic specimens were from men who had undergone androgen ablation, we examined the primary tumors from patients who have undergone hormone deprivation therapy and found that a significant fraction of these specimens showed nuclear localization of ErbB3. We thus assessed the effect of androgens and the bone microenvironment on the nuclear translocation of ErbB-3 by using xenograft tumor models generated from bone-derived prostate cancer cell lines, MDA PCa 2b, and PC-3. In subcutaneous tumors, ErbB-3 was predominantly in the membrane/cytoplasm; however, it was present in the nuclei of the tumor cells in the femur. Castration of mice bearing subcutaneous MDA PCa 2b tumors induced a transient nuclear translocation of ErbB-3, with relocalization to the membrane/cytoplasm upon tumor recurrence. These findings suggest that the bone microenvironment and androgen status influence the subcellular localization of ErbB-3 in prostate cancer cells. We speculate that nuclear localization of ErbB-3 may aid prostate cancer cell survival during androgen ablation and progression of prostate cancer in bone.  相似文献   

15.
16.
Dehydroepiandrosterone (DHEA), the most abundant steroid in human circulating blood, is metabolized to sex hormones and other C19-steroids. Our previous collaborative study demonstrated that androst-5-ene-3beta,17beta-diol (Adiol) and androst-4-ene-3,17-dione (Adione), metabolites of DHEA, can activate androgen receptor (AR) target genes. Adiol is maintained at a high concentration in prostate cancer tissue; even after androgen deprivation therapy and its androgen activity is not inhibited by the antiandrogens currently used to treat prostate cancer patients. We have synthesized possible metabolites of DHEA and several synthetic analogues and evaluated their role in androgen receptor transactivation to identify AR modulators. Steroids with low androgenic potential in PC-3 cell lines were evaluated for anti-dihydrotestosterone (DHT) and anti-Adiol activity. We discovered three potent antiandrogens: 3beta-acetoxyandrosta-1,5-diene-17-one 17-ethylene ketal (ADEK), androsta-1,4-diene-3,17-dione 17-ethylene ketal (OAK), and 3beta-hydroxyandrosta-5,16-diene (HAD) that antagonized the effects of DHT as well as of Adiol on the growth of LNCaP cells and on the expression of prostate-specific antigen (PSA). In vivo tests of these compounds will reveal their potential as potent antiandrogens for the treatment of prostate cancer.  相似文献   

17.
Prostate cancer is the second leading cause of cancer related death in American men. Development and progression of clinically localized prostate cancer is highly dependent on androgen signaling. Metastatic tumors are initially responsive to anti-androgen therapy, however become resistant to this regimen upon progression. Genomic and proteomic studies have implicated a role for androgen in regulating metabolic processes in prostate cancer. However, there have been no metabolomic profiling studies conducted thus far that have examined androgen-regulated biochemical processes in prostate cancer. Here, we have used unbiased metabolomic profiling coupled with enrichment-based bioprocess mapping to obtain insights into the biochemical alterations mediated by androgen in prostate cancer cell lines. Our findings indicate that androgen exposure results in elevation of amino acid metabolism and alteration of methylation potential in prostate cancer cells. Further, metabolic phenotyping studies confirm higher flux through pathways associated with amino acid metabolism in prostate cancer cells treated with androgen. These findings provide insight into the potential biochemical processes regulated by androgen signaling in prostate cancer. Clinically, if validated, these pathways could be exploited to develop therapeutic strategies that supplement current androgen ablative treatments while the observed androgen-regulated metabolic signatures could be employed as biomarkers that presage the development of castrate-resistant prostate cancer.  相似文献   

18.
The growth, development, and differentiation of the prostate gland is largely dependent on the action of androgens and peptide growth factors that act differentially at the level of the mesenchymal and epithelial compartments. It is our premise that to understand the emergence of metastatic and hormone refractory prostate cancer we need to investigate: (1) how androgen action at the level of the mesenchyme induces the production of peptide growth factors that in turn can facilitate the growth and development of the epithelial compartment; (2) how androgen action at the level of the epithelium induces and maintains cellular differentiation, function, and replicative senescence; and (3) how transformation of the prostate gland can corrupt androgen and growth factor signaling homeostasis. To this end, we focus our discussion on how deregulation of the growth factor signaling axis can cooperate with deregulation of the androgen signaling axis to facilitate transformation, metastasis, and the emergence of the hormone refractory and neuroendocrine phenotypes associated with progressive androgen-independent prostate cancer. Finally, we suggest a working hypothesis to explain why hormone ablation therapy works to control early disease but fails to control, and may even facilitate, advanced prostate cancer.  相似文献   

19.
The most significant discovery of the second half of the XXth century in the field of prostate cancer therapy is probably the observation that the human prostate, as well as many other peripheral human tissues, synthesize locally an important amount of androgens from the inactive steroid precursors dehydroepiandrosterone (DHEA) and its sulfate DHEA-S. In parallel with these observations, two important discoveries also made by our group are applied in the clinic worldwide, namely the use of LHRH (luteininizing hormone-releasing hormone) agonists to completely block testicular androgens, while, simultaneously, the androgens made locally in the prostate from DHEA are blocked in their access to the androgen receptor by a pure antiandrogen of the class of flutamide. This treatment, called combined androgen blockade, has been the first treatment demonstrated to prolong life in prostate cancer. While the first studies were performed in patients with advanced and metastatic disease, our recent data indicate a remarkable level of efficacy of the same treatment applied to localized prostate cancer, namely a 90% possibility of cure. However, in order to be able to treat localized prostate cancer, early diagnosis must be achieved. In the first large-scale randomized study of prostate cancer screening, we have demonstrated that 99% of prostate cancers can be diagnosed at the localized or potentially curable stage, using simple annual measurement of PSA (prostatic specific antigen). Today's data show that with the simple application of the available diagnostic and therapeutic tools, death from prostate cancer should be an exception.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号