首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Computerized tomography (CT) was used to monitor the exact anatomical location and dimensions of the cryosurgical iceball within the brain. The gross and microscopic appearance of the tissue iceball was examined in both acute and chronic animals. Iceball formation was monitored in the brain of four dogs under a general anesthesia. The radiographic image of the iceball was that of a well-demarcated radiolucent sphere that disappeared upon thawing. The post-thaw contrast-enhanced CT scan revealed a zone of blood-brain barrier breakdown extending no more than 1 mm beyond the maximum diameter that the iceball had attained. Histological examination demonstrated a sharp transition from frankly necrotic brain within the iceball to the normal cytoarchitecture of the surrounding neuropil. The safety and efficacy of a neurosurgical ablative procedure depends on the precision with which it can be generated. The use of CT imaging to monitor the formation of the cryosurgical iceball offers the neurosurgeon a means to precisely control the size of the ablative lesion. Small deeply situated brain tumors can be incorporated into the iceball under direct CT observation, thereby ensuring the completeness of the cryoablation while minimizing damage to the surrounding brain.  相似文献   

2.
H Lenz  J Eichler 《Cryobiology》1976,13(1):37-46
Experiments on freezing of muscle and liver tissue of 113 rabbits were performed. The diameter on the frozen surface, and the thickness and the mass of the iceball were measured for the live and dead, body-temperature, animal. Four continuously cooled and six massive probes (2.5–20-mm diameter) were used with liquid nitrogen as the cooling agent. The following conclusions can be drawn: (1) with use of round probe-tips, the iceball has approximately spherical symmetry. However, the depth of the frozen tissue is about 15% smaller than the lateral extension on the visible surface. (2) For continuously cooled probes the diameter of the iceball in the steady state is about five times as large as the probe diameter. The maximal iceball diameter for massive probes is two times larger than the probe diameter. (3) The different blood circulation of liver and muscle tissue has an influence of only 10% on the size of the iceball. For clinical applications this difference is of little importance. (4) For live tissue the iceball is about 15% smaller than for body-temperature dead tissue. Thus, the main heat-transport process in tissue is heat condition.  相似文献   

3.
Cryosurgery is increasingly being used to treat prostate cancer; however, a major limitation is local recurrence of disease within the previously frozen tissue. We have recently demonstrated that tumor necrosis factor alpha (TNF-α), given 4h prior to cryosurgery can yield complete destruction of prostate cancer within a cryosurgical iceball. The present work continues the investigation of the cellular and molecular mechanisms and dynamics of TNF-α enhancement on cryosurgery. In vivo prostate tumor (LNCaP Pro 5) was grown in a dorsal skin fold chamber (DSFC) on a male nude mouse. Intravital imaging, thermography, and post-sacrifice histology and immunohistochemistry were used to assess iceball location and the ensuing biological effects after cryosurgery with and without TNF-α pre-treatment. Destruction was specifically measured by vascular stasis and by the size of histologic zones of injury (i.e., inflammatory infiltrate and necrosis). TNF-α induced vascular pre-conditioning events that peaked at 4h and diminished over several days. Early events (4-24 h) include upregulation of inflammatory markers (nuclear factor-κB (NFκB) and vascular cell adhesion molecule-1 (VCAM)) and caspase activity in the tumor prior to cryosurgery. TNF-α pre-conditioning resulted in recruitment of an augmented inflammatory infiltrate at day 3 post treatment vs. cryosurgery alone. Finally, pre-conditioning yielded enhanced cryosurgical destruction up to the iceball edge at days 1 and 3 vs. cryosurgery alone. Thus, TNF-α pre-conditioning enhances cryosurgical lesions by vascular mechanisms that lead to tumor cell injury via promotion of inflammation and leukocyte (esp. neutrophil) recruitment.  相似文献   

4.
《Cryobiology》2011,62(3):280-288
Cryosurgery is increasingly being used to treat prostate cancer; however, a major limitation is local recurrence of disease within the previously frozen tissue. We have recently demonstrated that tumor necrosis factor alpha (TNF-α), given 4 h prior to cryosurgery can yield complete destruction of prostate cancer within a cryosurgical iceball. The present work continues the investigation of the cellular and molecular mechanisms and dynamics of TNF-α enhancement on cryosurgery. In vivo prostate tumor (LNCaP Pro 5) was grown in a dorsal skin fold chamber (DSFC) on a male nude mouse. Intravital imaging, thermography, and post-sacrifice histology and immunohistochemistry were used to assess iceball location and the ensuing biological effects after cryosurgery with and without TNF-α pre-treatment. Destruction was specifically measured by vascular stasis and by the size of histologic zones of injury (i.e., inflammatory infiltrate and necrosis). TNF-α induced vascular pre-conditioning events that peaked at 4 h and diminished over several days. Early events (4–24 h) include upregulation of inflammatory markers (nuclear factor-κB (NFκB) and vascular cell adhesion molecule-1 (VCAM)) and caspase activity in the tumor prior to cryosurgery. TNF-α pre-conditioning resulted in recruitment of an augmented inflammatory infiltrate at day 3 post treatment vs. cryosurgery alone. Finally, pre-conditioning yielded enhanced cryosurgical destruction up to the iceball edge at days 1 and 3 vs. cryosurgery alone. Thus, TNF-α pre-conditioning enhances cryosurgical lesions by vascular mechanisms that lead to tumor cell injury via promotion of inflammation and leukocyte (esp. neutrophil) recruitment.  相似文献   

5.
Current research in cryosurgery is concerned with finding a thermal history that will definitively destroy tissue. In this study, we measured and predicted the thermal history obtained during freezing and thawing in a cryosurgical model. This thermal history was then compared to the injury observed in the tissue of the same cryosurgical model (reported in companion paper (Hoffmann and Bischof, 2001)). The dorsal skin flap chamber, implanted in the Copenhagen rat, was chosen as the cryosurgical model. Cryosurgery was performed in the chamber on either normal skin or tumor tissue propagatedfrom an AT-1 Dunning rat prostate tumor. The freezing was performed by placing a approximately 1 mm diameter liquid-nitrogen-cooled cryoprobe in the center of the chamber and activating it for approximately 1 minute, followed by a passive thaw. This created a 4.2 mm radius iceball. Thermocouples were placed in the tissue around the probe at three locations (r = 2, 3, and 3.8 mm from the center of the window) in order to monitor the thermal history produced in the tissue. The conduction error introduced by the presence of the thermocouples was investigated using an in vitro simulation of the in vivo case and found to be <10 degrees C for all cases. The corrected temperature measurements were used to investigate the validity of two models of freezing behavior within the iceball. The first model used to approximate the freezing and thawing behavior within the DSFC was a two-dimensional transient axisymmetric numerical solution using an enthalpy method and incorporating heating due to blood flow. The second model was a one-dimensional radial steady state analytical solution without blood flow. The models used constant thermal properties for the unfrozen region, and temperature-dependent thermal properties for the frozen region. The two-dimensional transient model presented here is one of the first attempts to model both the freezing and thawing of cryosurgery. The ability of the model to calculate freezing appeared to be superior to the ability to calculate thawing. After demonstrating that the two-dimensional model sufficiently captured the freezing and thawing parameters recorded by the thermocouples, it was used to estimate the thermal history throughout the iceball. This model was used as a basis to compare thermal history to injury assessment (reported in companion paper (Hoffmann and Bischof, 2001)).  相似文献   

6.
We aimed to assess the thermal profile and size of iceballs produced by Accuprobe cryoprobes in fresh porcine and human liver and human colorectal cancer liver metastases in vitro to allow better planning of cryosurgical treatment of liver metastases. Iceballs were produced by a 20-min single freeze cycle using 8-mm cryoprobes in pig liver in a waterbath at 37 degrees C (n = 8) and 3-mm cryoprobes in pig liver (n = 8), human liver (n = 3), and human colorectal cancer liver metastases (n = 8). The iceball diameters and the temperatures at different distances from the cryoprobe were measured. Mean iceball diameters produced by 8-mm cryoprobes in pig liver were 56.3 mm and varied from 38.7 to 39.6 mm for 3-mm cryoprobes in the different tissues used. There was no significant difference in iceball size in the different tissues. The diameter of the zone of -40 degrees C or less was approximately 44 mm using 8-mm cryoprobes in porcine liver and between 27 and 31 mm using 3-mm cryoprobes in the different tissues examined. The results may allow better preoperative planning of the cryosurgical treatment of liver metastases with Accuprobe cryoprobes.  相似文献   

7.
The technological advances which have caused renewed interest in cryosurgery are the development of intraoperative ultrasound to monitor the therapeutic process and the development of new cryosurgical equipment designed to use supercooled liquid nitrogen. The thin, highly efficient probes, available in several sizes, can be placed in diseased sites via endoscopy or percutaneously in minimally invasive procedures. The manner of use is to place the probe in the desired location in the diseased tissue with ultrasound guidance. If required by the size or location of the tumor, as many as five probes can be inserted and cooled to −195°C simultaneously. The process of freezing is monitored by ultrasound which displays a hypoechoic (dark) image when the tissue if frozen. Rapid freezing, slow thawing, and repetition of the freeze/thaw cycle are standard features of technique. Clinical applications which have become common in the past 4 years include the treatment of prostatic cancer and liver tumors. The cases selected for cryosurgery are generally those for which no conventional treatment is possible. However, especially in prostatic cancer, the operative morbidity is so low and the results of therapy are sufficiently good in the short term to merit consideration of use in earlier stages of the disease. Diverse tumors in other sites, such as the brain, bronchus, bone, pancreas, kidney, and uterus, have also been treated in small numbers by cryosurgery. Judging from this experience, further expansion in the use of cryosurgical techniques seems certain.  相似文献   

8.
W.B. Bald 《Cryobiology》1984,21(5):570-573
The design and testing of a prototype cryosurgical probe utilizing helium gas precooled with liquid nitrogen are described. An 8-mm-diameter probe produced an ice ball with a diameter of 28 mm after 10 min freezing using a helium gas flow rate of 42 liter/min. This indicated a surface heat transfer coefficient of 0.34 W/cm2 °K and temperature of ?138 °C at the probe tip. Improved performance figures can be achieved using higher gas pressures and flow rates. A helium gas flow system schematic for use with this new type of cryoprobe is also presented. It is claimed that this system will overcome the problems of developing both multiple-tipped probes and small-diameter needle probes for use in cryoanalgesia.  相似文献   

9.
Li X  He Z  Zhou J 《Nucleic acids research》2005,33(19):6114-6123
The oligonucleotide specificity for microarray hybridization can be predicted by its sequence identity to non-targets, continuous stretch to non-targets, and/or binding free energy to non-targets. Most currently available programs only use one or two of these criteria, which may choose ‘false’ specific oligonucleotides or miss ‘true’ optimal probes in a considerable proportion. We have developed a software tool, called CommOligo using new algorithms and all three criteria for selection of optimal oligonucleotide probes. A series of filters, including sequence identity, free energy, continuous stretch, GC content, self-annealing, distance to the 3′-untranslated region (3′-UTR) and melting temperature (Tm), are used to check each possible oligonucleotide. A sequence identity is calculated based on gapped global alignments. A traversal algorithm is used to generate alignments for free energy calculation. The optimal Tm interval is determined based on probe candidates that have passed all other filters. Final probes are picked using a combination of user-configurable piece-wise linear functions and an iterative process. The thresholds for identity, stretch and free energy filters are automatically determined from experimental data by an accessory software tool, CommOligo_PE (CommOligo Parameter Estimator). The program was used to design probes for both whole-genome and highly homologous sequence data. CommOligo and CommOligo_PE are freely available to academic users upon request.  相似文献   

10.
The recent development of multiplex ligation-dependent probe amplification (MLPA) has provided an efficient and reliable assay for dosage screening of multiple loci in a single reaction. However, a drawback to this method is the time-consuming process of generating a probe set by cloning in single-stranded bacteriophage vectors. We have developed a synthetic probe set to screen for deletions in a region spanning 18.5 Mb within chromosome 3q. In a pilot study, we tested 15 synthetic probes on 4 control samples and on 2 patients previously found to possess a heterozygous deletion in the region 3q26-q28. These synthetic probes detected deletions at all previously known deleted loci. Furthermore, using synthetic probes, the variability of results within samples was similar to that reported for commercially available M13-derived probes. Our results demonstrate that this novel approach to MLPA provides a generic solution to the difficulties of probe development by cloning; such synthetically generated probes may be used to screen a large number of loci in a single reaction. We conclude that the use of synthetic probes for MLPA is a rapid, robust, and efficient alternative for research (and potentially diagnostic) deletion and duplication screening of multiple genomic loci.  相似文献   

11.
MProbe: computer aided probe design for oligonucleotide microarrays   总被引:1,自引:0,他引:1  
The present work describes a complete probe design software system for oligonucleotide microarrays based on Kane's research on probe sensitivity and specificity (Kane's rule). Combining Kane's rule and traditional criteria for probe design we constructed MProbe, the software system for oligonucleotide microarrays using Java. The general criteria for probe design are: (1) probes may have different lengths that range from 20 to 100 bases; (2) they should have a similar melting temperature (Tm) or GC content; (3) they should not contain stable secondary structures; and (4) they abide by Kane's rule.  相似文献   

12.
13.
Displacement probes have recently been described as a novel probe-based detection system for use in both quantitative real-time polymerase chain reaction (PCR) and single nucleotide polymorphism genotyping analysis. Previous reports have shown that shorter probes (23 mer) had improved detection sensitivity relative to longer probes (29 mer), with the likely reason for this effect being the improved hybridization kinetics of shorter probes. Sterically modified locked nucleic acids (LNAs) have been used to improve the design of a range of real-time PCR probes by raising the melting temperature (Tm) of the probe and enabling shorter probe designs to be considered. A displacement probe for gapdh was designed and tested successfully, and this probe was then redesigned with LNAs to an 11 mer probe. This probe showed increased detection sensitivity compared with the original 26 mer probe. To detect the widest range of displacement probe designs at maximum sensitivity, we have also developed a novel fluorescence capture two-step PCR protocol. This method produces enhanced probe quenching with a single standardized protocol ideal for high-throughput applications. The displacement probes tested produced sensitive and efficient quantitative analyses of template serial dilutions when compared with a range of commercially available predesigned real-time PCR detection systems, including TaqMan MGB probes, QuantiTect MGB probes, and LUX primers.  相似文献   

14.
Recently there have been large developments in the indirect estimation of phospholipid bilayer and membrane microviscosities through the use of fluorescent probes with the help of paraffin oils as standard solvents.Before applying this semi-empirical method to membrane systems, it seemed necessary to test: first, a large variety of probes (this has been done by many authors) and secondly, a large variety of aliphatic oils (there is little literature on these tests).The present paper shows the variations of the rotational relaxation rates of three probes in relation to the viscosities of some aliphatic oils. When changing the oil but keeping constant the macroscopic viscosity, large differences appear in the relaxation rates of a given fluorphore (a ratio of 30/1 is observed in the extreme cases).The microviscosities of membranes deduced from the probe motion will consequently exhibit large uncertainty, as is shown with dipalmitoyl phosphatidylcholine.The cause of these different behaviours must be looked for in the properties of the oil. Particularly, the anisotropy of the solute-solvent interaction in the site where the probe is located depends in part on the internal order of the solvent which is used as a reference.  相似文献   

15.
Real-time multiplex PCR assays   总被引:10,自引:0,他引:10  
The ability to multiplex PCR by probe color and melting temperature (T(m)) greatly expands the power of real-time analysis. Simple hybridization probes with only a single fluorescent dye can be used for quantification and allele typing. Different probes are labeled with dyes that have unique emission spectra. Spectral data are collected with discrete optics or dispersed onto an array for detection. Spectral overlap between dyes is corrected by using pure dye spectra to deconvolute the experimental data by matrix algebra. Since fluorescence is temperature dependent and depends on the dye, spectral overlap and color compensation constants are also temperature dependent. Single-labeled probes are easier to synthesize and purify than more complex probes with two or more dyes. In addition, the fluorescence of single-labeled probes is reversible and depends only on hybridization of the probe to the target, allowing study of the melting characteristics of the probe. Although melting curves can be obtained during PCR, data are usually acquired at near-equilibrium rates of 0.05-0.2 degrees C/s after PCR is complete. Using rapid-cycle PCR, amplification requires about 20 min followed by a 10-min melting curve, greatly reducing result turnaround time. In addition to dye color, melting temperature can be used for a second dimension of multiplexing. Multiplexing by color and T(m) creates a "virtual" two-dimensional multiplexing array without the need for an immobilized matrix of probes. Instead of physical separation along the X and Y axes, amplification products are identified by different fluorescence spectra and melting characteristics.  相似文献   

16.
One of the most important factors in choosing a treatment strategy for cancer is characterization of biomarkers in cancer cells. Particularly, recent advances in Monoclonal Antibodies (MAB) as primary-specific drugs targeting tumor receptors show that their efficacy depends strongly on characterization of tumor biomarkers. Assessment of their status in individual patients would facilitate selection of an optimal treatment strategy, and the continuous monitoring of those biomarkers and their binding process to the therapy would provide a means for early evaluation of the efficacy of therapeutic intervention. In this study we have demonstrated for the first time in live animals that the fluorescence lifetime can be used to detect the binding of targeted optical probes to the extracellular receptors on tumor cells in vivo. The rationale was that fluorescence lifetime of a specific probe is sensitive to local environment and/or affinity to other molecules. We attached Near-InfraRed (NIR) fluorescent probes to Human Epidermal Growth Factor 2 (HER2/neu)-specific Affibody molecules and used our time-resolved optical system to compare the fluorescence lifetime of the optical probes that were bound and unbound to tumor cells in live mice. Our results show that the fluorescence lifetime changes in our model system delineate HER2 receptor bound from the unbound probe in vivo. Thus, this method is useful as a specific marker of the receptor binding process, which can open a new paradigm in the "image and treat" concept, especially for early evaluation of the efficacy of the therapy.  相似文献   

17.
Andrew A. Gage 《Cryobiology》1978,15(4):415-425
In experiments using cryosurgical apparatus to freeze the canine palate in situ, observations were made on techniques of producing tissue destruction. Several time-temperature schedules of freezing were studied. The results showed the great tolerance of palatal tissues to extremely low temperatures for short time periods. Melanocytes were extraordinarily sensitive to cold injury. Tissue necrosis increased with duration of freezing, but repeated freezing was lethal and obviously critical for successful cryosurgical destruction. Thermocouples must be used in clinical cryosurgery to insure that lethal tissue temperatures (colder than ?50 °C) are attained. The incidence of sequestration in the canine palate showed the need for use of proper technique and suitable precautions in the cryosurgical treatment of human palatal tumors.  相似文献   

18.
Glycine metabolism in rat kidney cortex slices.   总被引:3,自引:2,他引:1       下载免费PDF全文
We have previously described a method for measuring the rotational diffusion of membrane proteins by using fluorescent triplet probes [Johnson & Garland (1981) FEBS Lett. 135, 252-256]. We now describe the criteria by which the suitability of such probes may be judged. In general, the greatest sensitivity is achievable with probes where the ratio of the quantum yields for prompt fluorescene (phi f) and triplet formation (phi t) are high, as with Rhodamine (phi f/phi t congruent to 10(3)). However, considerations of heat generation at the sample membrane, of time resolution of fast rotations and of irreversible bleaching of the fluorescent probe also apply. The immediate environment of a probe molecule at a membrane protein must also be important in determining the performance of a given probe. Nevertheless, we describe guidelines for evaluating the likely usefulness of fluorescent triplet probes in measurements of membrane protein rotation.  相似文献   

19.
Oligozymes     
The simple use of nonisotopic hybridization probes to detect complementary sequences provides valuable information in a large number of research and commercial applications. In hybridization assays, the four ‘S’s (speed, simplicity, sensitivity, and specificity) are important criteria for determining the choice of probe and label. The direct chemical combination of synthetic oligonucleotide probes and enzyme labels offer advantages unmatched by other approaches, with the oligonucleotide providing rapid hybridization and high specificity, and the direct enzyme label providing simple and sensitive detection. Such oligonucleotide-enzyme conjugates (“oligozymes”) can be used in a variety of hybridization and detection formats, including dot blots, Southern/northern blots,in situ, and solution hybridization/capture schemes. The practical synthesis and use of such oligozymes are summarized.  相似文献   

20.
Enzymatic labeling of nucleic acids is a fundamental tool in molecular biology with virtually every aspect of nucleic acid hybridization technique involving the use of labeled probes. Different methods for enzymatic labeling of DNA, RNA and oligonucleotide probes are available today. In this review, we will describe both radioactive and nonradioactive labeling methods, yet the choice of system for labeling the probe depends on the application under study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号