首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparison of the inferred amino acid sequence of outer-membrane protein PIB from gonococcal strain P9 with those from other serovars reveals that sequence variations occur in two discrete regions of the molecule centred on residues 196 (Var1) and 237 (Var2). A series of peptides spanning the amino acid sequence of the protein were synthesized on solid-phase supports and reacted with a panel of monoclonal antibodies (mAbs) which recognize either type-specific or conserved antigenic determinants on PIB. Four type-specific mAbs reacted with overlapping peptides in Var1 between residues 192-198. Analysis of the effect of amino acid substitutions revealed that the mAb specificity is generated by differences in the effect of single amino acid changes on mAb binding, so that antigenic differences between strains are revealed by different patterns of reactivity within a panel of antibodies. The variable epitopes in Var1 recognized by the type-specific mAbs lie in a hydrophilic region of the protein exposed on the gonococcal surface, and are accessible to complement-mediated bactericidal lysis. In contrast, the epitope recognized by mAb SM198 is highly conserved but is not exposed in the native protein and the antibody is non-bactericidal. However, the conserved epitope recognized by mAb SM24 is centred on residues 198-199, close to Var1 , and is exposed for bactericidal killing.  相似文献   

2.
Nonbactericidal monoclonal antibodies (MAbs) directed against gonococcal surface antigens were examined for their effect on complement-mediated bactericidal killing by other MAbs and normal human serum. One MAb, SM73, directed against the H.8 antigen activated complement only moderately well and had little influence on bactericidal antibodies. Two antibodies directed against an epitope on protein III had very different effects. Antibody SM51 activated complement poorly and had no effect on bactericidal killing, whereas antibody SM50, although itself nonbactericidal, activated complement and blocked the bactericidal effect of other antibodies. The extent of the blocking ability of MAb SM50 was studied using MAbs of different specificities as well as polyclonal antisera raised against gonococcal surface antigens. Antibody SM50 blocked IgG MAbs of all specificities, but several MAbs of the IgM class retained their bactericidal effect. Each of these IgM MAbs reacted with lipopolysaccharide, but with different epitopes.  相似文献   

3.
In this study, we identified a region in the human parvovirus structural protein which involves the neutralization of the virus by a monoclonal antibody and site-specific synthetic peptides. A newly established monoclonal antibody reacted with both viral capsid proteins VP1 and VP2. The epitope was found in six strains of independently isolated human parvovirus B19. The monoclonal antibody could protect colony-forming unit erythroid in human bone marrow cell culture from injury by the virus. The monoclonal antibody reacted with only 1 of 12 peptides that were synthesized according to a predicted amino acid sequence based on nucleotide sequences of the coding region for the structural protein of B19 virus. The sequence recognized by the antibody was a site corresponding to amino acids 328 to 344 from the amino-terminal portion of VP2. This evidence suggests that the epitope of the viral capsid protein is located on the surface of the virus and may be recognized by virus-neutralizing antibodies.  相似文献   

4.
Immunization of rabbits with outer membranes (OM) of Neisseria gonorrhoeae produced antibodies directed against outer-membrane proteins PI and PIII. The antibodies directed against PIII reacted equally well on Western blots with all strains tested, but antibodies directed against PI reacted only with the homologous strain. When purified PIB was used for immunization the immune response was quite different: the sera obtained reacted with both homologous and heterologous PIB types and also reacted with strains expressing PIA. Western blotting of peptides produced by sequential cleavage of PIB revealed that the antigenic determinants recognized by anti-OM sera were predominantly located in the central surface-exposed region of PIB, as is the epitope recognized by the protective anti-PIB monoclonal antibody SM24. In contrast antibodies produced by immunization with purified PI reacted with antigenic determinants in the N-terminal portion of PIB. Nevertheless these determinants are accessible to immune attack on the native protein since the anti-PI sera were opsonic and were strongly bactericidal for both PIA- and PIB-expressing strains.  相似文献   

5.
Several monoclonal antibodies directed against gonococcal outer membrane protein IB have been used in in vitro assays to investigate their potential efficacy in protection against gonococcal infection. In a cytotoxicity assay, virulence of the variant P9-17 for epithelial cells in tissue culture was reduced in the presence of three of the four antibodies which recognized type-specific epitopes. Similarly, virulence of P9-17 as well as a recent isolate was reduced in the presence of the one antibody, SM24, which reacted with a conserved epitope. This antibody was also bactericidal in the presence of complement, and in addition was opsonic for several protein IB-expressing strains as determined by polymorphonuclear leucocyte chemiluminescence measurements. Similarly, all the type-specific antibodies were opsonic for P9 variants. However, only two of these antibodies mediated complement-dependent killing although those which were ineffective were nevertheless complement-fixing antibodies. These results indicate that antibodies to closely positioned epitopes on protein I vary in their biological activities and that the conserved epitope recognized by the antibody SM24 is potentially an effective target on the gonococcal surface for immunoprophylaxis.  相似文献   

6.
The pili expressed by all isolates of Neisseria gonorrhoeae react with two monoclonal antibodies, SM1 and SM2. In contrast, although many isolates of Neisseria meningitidis also express pili (class I) which react with antibodies SM1 and SM2, a proportion express pili (class II) which fail to react. In order to define the epitopes recognized by these antibodies, a series of overlapping peptides corresponding to the amino acid sequence of conserved regions of gonococcal pili have been synthesized. The minimum epitope recognized by antibody SM1 was found to comprise a linear peptide EYYLN, corresponding to residues 49-53 of mature pilin. In contrast, antibody SM2 reacted with a number of peptides from around the cysteine residue (Cys 1) at position 120, suggesting that an extended region may contribute to a conformational epitope recognized by this antibody in the native protein. The identification of the two epitopes defines structural differences between the classes of pili expressed by meningococci. In order to determine the distribution of pilin gene sequences in Neisseria we used as hybridization probes an oligonucleotide (PS1) with the sequence 5'-GAGTATTACCTGAATCA-3' which spans the coding region for the SM1 epitope, and a fragment of the 3' end of the gonococcal pilE gene which contains conserved sequences flanking the two Cys codons and encodes the SM2 epitope. All strains of N. gonorrhoeae and N. meningitidis tested, regardless of piliation phenotype, harboured DNA sequences homologous to those encoding the carboxy-terminus of meningococcal class I pilin. Furthermore, all gonococci and all meningococci producing class I pili hybridized with oligonucleotide probe PS1. Non-reverting non-piliated derivatives of previously class I pilus-producing strains showed reduced hybridization signals with this probe, but nevertheless retained sequences homologous to the coding sequence for the SM1 epitope. However, meningococci producing class II pili could be divided into two groups on the basis of their reaction with the PS1 probe: half the strains tested failed to react, which is consistent with our previous analysis of silent class I pilin sequences; the remainder reacted (relatively weakly) with the probe, suggesting that the silent pil sequences in these strains extend further towards the 5' end of the pilin gene than in strains studied previously. Some strains of Neisseria lactamica reacted weakly with both types of probe but failed to produce SM1-reactive pili. In contrast, isolates of Neisseria flava, Neisseria pharyngis, Neisseria sicca and a series of unrelated bacteria failed to react with both SM1 antibody and the DNA probes. This confirms that possession of 'gonococcal' pilin sequences is limited to the pathogenic neisseriae.  相似文献   

7.
Molecular mimicry or epitope similarity between group A streptococcal M proteins and myosin may contribute to the presence of heart reactive antibodies in acute rheumatic fever. In our study overlapping synthetic peptides copying the entire sequence of PepM5 protein were used to map the myosin cross-reactive epitopes of streptococcal M protein recognized by mouse and human mAb and affinity purified myosin-specific antibodies from acute rheumatic fever and rheumatic heart disease sera. Overlapping M protein peptides SM5(164-197)C and SM5(184-197)C inhibited the murine mAb reactions with PepM5 protein. The human mAb and affinity purified myosin-specific antibodies reacted exclusively with SM5(184-197)C. However, one of the five different purified myosin-specific antibodies not only reacted with SM5(184-197)C but also reacted with SM5(84-116)C. The synthetic subpeptides SM5(175-184)C and SM5(188-197C) did not react with any of the antibodies to PepM5 and myosin demonstrating a requirement of the 184-188 amino acid sequence for antibody recognition. A heptapeptide containing the sequence SM5(183-189) was also found to inhibit selected human myosin-specific antibodies and a human antimyosin mAb. Therefore, the majority of mouse and human myosin crossreactive antibodies recognized an epitope within the 14 residue carboxy terminus of PepM5 which appeared to involve the GLN-LYS-SER-LYS-GLN sequence.  相似文献   

8.
Epitopes on the major capsid protein of simian virus 40   总被引:1,自引:0,他引:1  
Thirteen monoclonal antibodies which react with the major capsid protein (VP1) of simian virus 40 (SV40) have been isolated. Of these, five neutralized viral infectivity when added in sufficient concentration. Seven of the antibodies reacted with denatured VP1 and also recognized fragments generated by protease or cyanogen bromide cleavage. The region of VP1 recognized by all seven antibodies was mapped within a nine-amino-acid segment located in the carboxyl portion of the protein (from amino acid positions 312 to 321). This region is likely to protrude from the surface of the protein as judged by high hydrophilicity and low hydropathy predicted from the amino acid sequence and lack of secondary structure by contrast with the rest of the protein for which predominantly beta-sheet structure is predicted. Competition between these antibodies and synthetic peptides for binding to virus particles confirmed that the continuous epitope is contained within the nine-amino-acid sequence. Competition between the different monoclonal antibodies suggested that the continuous epitope was also part of more complex discontinuous epitopes recognized by some of the other antibodies. These results support a model in which a segment of the carboxyl-terminal portion of VP1 protrudes from the surface of the virus to form an antigenic structure.  相似文献   

9.
Thirty-six monoclonal antibodies from mice and three from rats were raised against a peptide corresponding to the immunodominant domain of the transmembrane gp41 protein of human immunodeficiency virus (HIV) type 1 (LGLWGCSGKLIC; amino acid residues 598 to 609). Of these, three monoclonal antibodies from the mice and one from a rat also reacted with the corresponding peptide derived from the HIV type 2 transmembrane gp41 protein (amino acid residues 593 to 603; NSWGCAFRQVC). Immunochemical studies using a variety of synthetic peptides indicated that the cross-reactivity was due to antibody binding to CSGKLIC of HIV type 1 or CAFRQVC of HIV type 2. Single amino acid substitutions for a cysteine at either the amino or the carboxy end of the peptide interrupted antibody binding, indicating that the site recognized was the Cys-XXXXX-Cys loop. Similar results were obtained when the 11-mer HIV type 2 gp41 peptide (amino acids 593 to 603) was inoculated into mice to raise monoclonal antibodies. In this instance, of 30 monoclonal antibodies developed, 4 reacted with both HIV type 1 and HIV type 2 peptides. The conformation of a seven-residue peptide, CSGKLIC, corresponding to residues 603 to 609 of the gp41 immunodominant epitope of HIV-1 was investigated by proton nuclear magnetic resonance spectroscopy. The immunologically active form of CSGKLIC contains an intramolecular disulfide bond and maintains a preference for a folded conformation, apparently including a type I reverse turn about the residues SGKL. No such preference is observed for the reduced form of the peptide, which contains two thiol groups. The presence of the disulfide bond is thus integral to the formation of the structure of the loop in solution. In agreement with this finding, elimination of the possibility of loop formation by substitution of S for C at the amino or carboxy termini of the 7-mer is accompanied by the failure of antibody binding to this peptide.  相似文献   

10.
Hybrid cell lines were derived which produced monoclonal antibodies directed against gonococcal outer membrane protein IA. One antibody, SM101, recognized 24 P.IA-expressing strains out of 25 tested--the rest exhibited relatively less cross-reactivity. Competitive radioimmunoassays revealed that each antibody could effectively inhibit binding of the others, suggesting close proximity of the epitopes recognized. The antibodies were used in assays in vitro to investigate their potential efficacy in protection against gonococcal infection. In a cytotoxicity assay, the antibodies afforded some protection to epithelial cells challenged with gonococci. They were very effective at bactericidal killing in the presence of complement and, in addition, were opsonic for homologous and heterologous strains. The cross-reacting antibody, SM101, was one of the most effective in both assays. The results show that the conserved epitope on P.IA recognized by antibody SM101 is potentially an effective target on the gonococcal surface for immunoprophylaxis.  相似文献   

11.
Abstract: Antisera were raised in rabbits against five synthetic peptides. These peptides have been identified as potentially antigenic epitopes from the sequence of porcine choline acetyltransferase (ChAT) using primary and secondary structure analysis. All five antisera recognized immunoaffinity-purified antigen from porcine brain in an ELISA and on western blots. Four antisera recognized ChAT on dot blots, and another four antisera reacted with native and degraded enzyme in a sandwich ELISA using monoclonal antibodies as the capture antibody. One peptide antiserum was of similar avidity in this sandwich ELISA as a polyclonal antibody raised against immunoaffinity-purified ChAT. The same antiserum reacted with the enzyme from human placenta in an ELISA and on western and dot blots and recognized ChAT in rat, primate, and human neurons. Thus, a single peptide (amino acids 168- 189) provides the means for easy, reliable, and reproducible generation of antibodies against ChAT suitable for replacing conventional polyclonal and monoclonal antibodies.  相似文献   

12.
A fusion between lacZ and ftsZ of Escherichia coli was constructed to obtain a beta-galactosidase-FtsZ fusion protein. This fusion protein was used to raise antibodies against cell division protein FtsZ. Six monoclonal antibodies were obtained, and they reacted with FtsZ from cytoplasm and membrane fractions. The epitopes in FtsZ were localized by studying the reactions of the monoclonal antibodies with fusion proteins truncated at the carboxy terminus and with fragments that were obtained by CNBr cleavage of purified FtsZ. Five different epitopes were defined. Epitopes I and III reacted with the same monoclonal antibody, without showing apparent amino acid homology. Epitope II was defined by monoclonal antibodies that cross-reacted with an unknown cytoplasmic 50-kDa protein not related to FtsZ. Epitopes IV and V were recognized by different monoclonal antibodies. All monoclonal antibodies reacted strongly under native conditions, so it is likely that the five epitopes are situated on the surface of native FtsZ. By using these data and computer analysis, a provisional model of FtsZ is proposed. The FtsZ protein is considered to be globular, with a hydrophobic pocket containing GTP-binding elements. Epitopes I and II are situated on each side of the hydrophobic pocket. Because the carboxy terminus contains epitope V, the carboxy terminus of FtsZ is likely oriented toward the protein's surface.  相似文献   

13.
The neisserial Lip antigen is a conserved antigen associated with the pathogenic Neisseria species, and is composed of multiple repeats of a consensus pentapeptide. A series of monoclonal antibodies reacting with meningococcal Lip antigen were subjected to epitope mapping, using solid-phase synthetic peptides based on the consensus repeat sequence. The antibodies were found to recognize different continuous epitopes based on the consensus sequence. One monoclonal antibody was utilized in affinity chromatography to obtain purified Lip antigen and the antigen was used for immunization of mice. The resulting antisera did not recognize Lip antigen on Western blots but reacted specifically with Lip antigen in immune precipitation experiments, indicating that the predominant polyclonal immune response was directed against conformational epitopes. Despite the diversity of both continuous and conformational epitopes recognized by the antibodies produced, none of the antibodies demonstrated the ability to promote complement-mediated bactericidal activity. Thus despite its initial apparent promise as a potential vaccine candidate the case for the inclusion of Lip antigen in vaccine formulation cannot be supported at present.  相似文献   

14.
Two-dimensional structure of the Opc invasin from Neisseria meningitidis   总被引:2,自引:0,他引:2  
A two-dimensional structural model was devised for the Opc outer membrane protein invasin which contains 10 transmembrane strands and five surface-exposed loops. One continuous epitope recognized by three monoclonal antibodies was localized to the tip of loop 2 by synthetic peptides and site-directed mutagenesis while a second, discontinuous epitope recognized by a fourth antibody was localized to loops 4 and 5 by insertion mutagenesis. These monoclonal antibodies are bactericidal and inhibit adhesion and invasion. Most of the T-cell epitopes defined by Wiertz et al. (1996) were localized to the transmembrane strands. Oligonucleotides encoding a foreign epitope (∇) from Semliki Forest virus were inserted into Bgl II restriction sites created by site-directed mutagenesis. The ∇ epitopes inserted in all five predicted loops were recognized on the cell surface of live Escherichia coli bacteria by a monoclonal antibody and are exposed while ∇ epitopes in the N-terminus or three predicted turns were not. The results thus confirm important predictions of the model and define five permissive sites within surface-exposed loops which can be used to insert foreign epitopes.  相似文献   

15.
Synthetic peptides of increasing length and corresponding in sequence to the C-terminal end of the HA1 molecule of influenza virus were constructed and examined for their immunogenic and antigenic properties. Peptides containing at least the four C-terminal amino acids, when coupled to keyhole limpet hemocyanin, were capable of eliciting antibody in BALB/c mice that bound to the 24-residue parent peptide H3 HA1 (305 to 328). In the absence of a carrier, the C-terminal decapeptide was the shortest peptide capable of eliciting antibody. The specificity of this antibody was indistinguishable from that of a monoclonal antibody to the parent peptide which recognizes an epitope encompassed by the C-terminal seven residues. All peptides containing at least the C-terminal four residues were able to inhibit completely the binding of this monoclonal antibody to the parent peptide. Taken together, these results indicate that (i) the tetrapeptide is capable of eliciting specific antibody when coupled to a carrier, (ii) this tetrapeptide possesses all of the antigenic information necessary to occupy the paratope of a monoclonal antibody elicited by the longer parent peptide, and (iii) the decapeptide contains all of the information necessary to elicit a specific immune response and therefore carries an epitope recognized by T cells as well as one recognized by B cells.  相似文献   

16.
We have generated antibodies against a synthetic peptide corresponding to the sequence of human von Willebrand factor (vWF) between residues Glu1737-Ser1750 which includes the Arg-Gly-Asp sequence common to several adhesive molecules. Two anti-peptide antibodies, one polyclonal, and one monoclonal reacted with native vWF and inhibited its binding to platelet glycoprotein (GP) IIb-IIIa, but showed negligible cross-reactivity with fibrinogen, fibronectin, and vitronectin, three other molecules that contain the sequence Arg-Gly-Asp and bind to platelets. The structural bases for the specificity of the two antibodies were evaluated by testing the ability of peptides homologous to the parent sequence, but with single amino acid substitutions, to neutralize the binding of the two antibodies to vWF. The substitution of Pro1743, the residue immediately adjacent to the Arg-Gly-Asp sequence on the amino-terminal side, with Phe resulted in a peptide that failed to interact with either antibody. Thus, Pro1743 is important for maintaining a peptide conformation recognized by two antibodies specific for the GP IIb-IIIa-binding domain of vWF. Other residues important for optimal peptide reactivity with the polyclonal antibody were Ser1742, Arg1744, and Gly1745, whereas Gly1741, Gly1745, and Asp1746, but not Arg1744, were important for reactivity with the monoclonal antibody. The epitopes of both antibodies, therefore, included at least 2 of the residues in the sequence Arg-Gly-Asp considered the common cell-binding site of adhesive molecules that interact with GP IIb-IIIa. Nevertheless, both antibodies reacted only with vWF. These studies demonstrate that peptide-specific antibodies, unlike the promiscuous GP IIb-IIIa receptor, can recognize distinctive structural characteristics of the cell-binding domain of adhesive molecules imposed by residues adjacent to the sequence Arg-Gly-Asp.  相似文献   

17.
We established five monoclonal antibodies that reacted with human LCAT and recognized different epitopes on LCAT. These are mouse anti-human LCAT monoclonal antibodies designated 36487, 36454, 36442, 36405, and 36486, which react with the peptides corresponding to human LCAT amino acid residues R159-E179, M258-S273, S274-S294, D352-S376, and N415-E440, respectively. We also successfully used two of these antibodies to develop an ELISA, which uses a solid phase monoclonal antibody, 36486, that reacts with the C-terminus of LCAT, and a detection monoclonal antibody, 36487, that reacts with an epitope located in the center of the LCAT primary structure. We observed a significant positive correlation between the values of LCAT protein determined with ELISA and LCAT activity determined with liposome substrate (r = 0.871, P < 0.001) or the endogenous self-substrate method (r = 0.864, P < 0.001), and we obtained inter- and intra-assay coefficients of variation less than 6.1%, minimum detection limit of 0.1 microg/ml. Highly specific monoclonal antibodies will be useful in the study of the molecular pathology of LCAT. Therefore, this precise and sensitive LCAT assay will help clarify the role of this enzyme in the metabolism of HDLs, and can be used for diagnostic purposes in investigating liver function. We obtained five monoclonal antibodies that recognized different epitopes on LCAT and developed a sandwich-type ELISA. Highly specific monoclonal antibodies provide a sensitive and specific analytical system for measurements of LCAT protein.  相似文献   

18.
Merozoite surface protein 1 (MSP-1) is a precursor to major antigens on the surface of Plasmodium spp. merozoites, which are involved in erythrocyte binding and invasion. MSP-1 is initially processed into smaller fragments; and at the time of erythrocyte invasion one of these of 42 kDa (MSP-1(42)) is subjected to a second processing, producing 33 kDa and 19 kDa fragments (MSP-1(33) and MSP-1(19)). Certain MSP-1-specific monoclonal antibodies (mAbs) react with conformational epitopes contained within the two epidermal growth factor domains that comprise MSP-1(19), and are classified as either inhibitory (inhibit processing of MSP-1(42) and erythrocyte invasion), blocking (block the binding and function of the inhibitory mAb), or neutral (neither inhibitory nor blocking). We have mapped the epitopes for inhibitory mAbs 12.8 and 12.10, and blocking mAbs such as 1E1 and 7.5 by using site-directed mutagenesis to change specific amino acid residues in MSP-1(19) and abolish antibody binding, and by using PEPSCAN to measure the reaction of the antibodies with every octapeptide within MSP-1(42). Twenty-six individual amino acid residue changes were made and the effect of each on the binding of mAbs was assessed by Western blotting and BIAcore analysis. Individual changes had either no effect, or reduced, or completely abolished the binding of individual mAbs. No two antibodies had an identical pattern of reactivity with the modified proteins. Using PEPSCAN each mAb reacted with a number of octapeptides, most of which were derived from within the first epidermal growth factor domain, although 1E1 also reacted with peptides spanning the processing site. When the single amino acid changes and the reactive peptides were mapped onto the three-dimensional structure of MSP-1(19), it was apparent that the epitopes for the mAbs could be defined more fully by using a combination of both mutagenesis and PEPSCAN than by either method alone, and differences in the fine specificity of binding for all the different antibodies could be distinguished. The incorporation of several specific amino acid changes enabled the design of proteins that bound inhibitory but not blocking antibodies. These may be suitable for the development of MSP-1-based vaccines against malaria.  相似文献   

19.
Seventeen monoclonal antibodies (MAbs) were previously established against the heavy chain (Hc) of botulinum type E neurotoxin in BALB/c mice immunized with the type E toxoid. Five MAbs (LE15-5, LE34-6, EK19-7, EK21-4, and AE27-9) showed toxin-neutralizing activity in mice. Two of the five MAbs, EK19-7 and EK21-4, recognized the regions located at amino acid positions 731 to 787 and 811 to 897, respectively. One of the remaining three antibodies (LE34-6) reacted with the amino acid sequence VIKAIN, at amino acid positions 663 to 668, closed by the ion channel-forming domain. It is suggested that the ion channel-forming domain may also be associated with the blocking of acetylcholine release. Furthermore, the amino acid sequence YLTHMRD within 30 residues of the C-terminal region of the Hc component seemed to be recognized by LE15-5. It has been reported that the binding domain of the type E toxin is located on the C-terminal half of the Hc component. Therefore, the neutralizing activity of LE15-5 antibody may be attributed to its ability to block the binding of neurotoxin to the receptor of target cells.  相似文献   

20.
Polyclonal and monoclonal antibodies were raised against a synthetic peptide containing the 15 carboxy-terminal amino acids (497-511) of vesicular stomatitis virus glycoprotein (VSV-G). The polyclonal antibodies (alpha P4) reacted with epitopes distributed along the 15-residue peptide, whereas the monoclonal antibody (P5D4) reacted with one epitope containing the five carboxy-terminal amino acids. Both types of antibodies recognized the cytoplasmic domain of VSV-G synthesized by tissue culture cells infected with the temperature-sensitive 045-VSV mutant (ts045-VSV). They recognized immature forms of VSV-G in the rough endoplasmic reticulum (RER) and Golgi complex, as well as mature VSV-G at the cell surface and in budding virus. The effect of these antibodies on intracellular transport and maturation of VSV-G was studied by microinjection. Both divalent antibodies (alpha P4 and P5D4) blocked transport of VSV-G to the cell surface. Monovalent Fab' fragments of alpha P4 (alpha P4-Fabs) also interfered with the appearance of VSV-G at the cell surface; Fab fragments of P5D4 (P5D4-Fabs), however, had no inhibitory effect. These results suggest that accessibility of a cytoplasmic domain, located within the sequence of amino acids 497-506 of the carboxy-terminal tail, is essential for transport of VSV-G to the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号