首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Solubilized epidermal growth factor receptor (EGF-R) has been used in an extension of the Geysen epitope mapping protocol in order to provide additional insight into the amino acid residues in human transforming growth factor alpha (hTGF alpha) which are critical to recognition and binding. Overlapping heptapeptides which encompassed the 50 amino acid primary sequence of hTGF alpha were synthesized on a polyethylene solid phase, and the amount of detergent-solubilized EGF-R bound to each peptide was measured using ELISA. EGF-R appeared to bind reproducibly to four heptapeptides cognate to sequences in both the N- and C-domains of hTGF alpha (residues 22-28, 28-34, 36-42, and 44-50). Visualization of these four regions on three-dimensional solution phase structures of hTGF alpha, derived from 1H NMR measurements [Kline, T.-P., Brown, F.K., Brown, S.C., Jeffs, P.W., Kopple, K.D., & Mueller, L. (1990) Biochemistry 29, 7805-7813], indicated that the peptide segments are located on a single face of the protein and suggested the presence of a potential receptor binding cavity. If peptide segments within both the N- and C-domains of hTGF alpha are involved in binding to EGF-R, then this has direct consequences for possible molecular mechanisms by which receptor activation might take place. For example, the observed conformational flexibility in the six NMR-derived hTGF alpha structures due to variations in the main-chain torsion angles of Val-33, in combination with the involvement of residues from both domains in the proposed binding cavity, may imply that receptor activation results from interdomain reorientation in the protein ligand.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The capacity of epidermal growth factor (EGF) or transforming growth factor-alpha (TGF-alpha) to induce internalization and degradation of the EGF receptor was compared in NIH-3T3 cells expressing the human EGF receptor. This study was initiated following the observation that TGF-alpha was much less efficient relative to EGF in generating a Mr = 125,000 amino-terminally truncated degradation product from the mature EGF receptor (EGF-dependent generation of this degradation product is described in S.J. Decker, J. Biol. Chem., 264:17641-17644). Pulse-chase experiments revealed that EGF generally stimulated EGF receptor degradation to a greater extent than TGF-alpha. Both ligands induced EGF receptor internalization to similar degrees. However, recovery of [125I]-EGF binding following incubation with EGF or TGF-alpha was much faster for TGF-alpha treated cells. Recovery of [125I]-EGF binding after TGF-alpha treatment did not appear to require protein synthesis. Tyrosine phosphorylation of EGF receptor from cells treated with TGF-alpha decreased more rapidly following removal of TGF-alpha compared to cells treated similarly with EGF. These data suggest that EGF routes the EGF receptor directly to a degradative pathway, whereas TGF-alpha allows receptor recycling prior to degradation, and that tyrosine phosphorylation could play a role in this differential receptor processing.  相似文献   

3.
We report the crystal structure, at 2.5 A resolution, of a truncated human EGFR ectodomain bound to TGFalpha. TGFalpha interacts with both L1 and L2 domains of EGFR, making many main chain contacts with L1 and interacting with L2 via key conserved residues. The results indicate how EGFR family members can bind a family of highly variable ligands. In the 2:2 TGFalpha:sEGFR501 complex, each ligand interacts with only one receptor molecule. There are two types of dimers in the asymmetric unit: a head-to-head dimer involving contacts between the L1 and L2 domains and a back-to-back dimer dominated by interactions between the CR1 domains of each receptor. Based on sequence conservation, buried surface area, and mutagenesis experiments, the back-to-back dimer is favored to be biologically relevant.  相似文献   

4.
The structures of human epidermal growth factor (EGF) and human transforming growth factor alpha (TGFα) have been determined in solution using nuclear magnetic resonance techniques. The features of each structure are described and similarities and differences between them are discussed. The structures are combined with information from sequence homologies to produce a model of the receptor-recognition sites of EGF and TGFα, which can be tested in a site-directed mutagenesis programme. The model assists in explaining previous observations of sequence-activity relationships. The TGFα and EGF structures also serve as models for homologous modules in other extracellular proteins.  相似文献   

5.
NIH-3T3 cells expressing the human epidermal growth factor (EGF) receptor were used in experiments to determine the fate of the EGF receptor in cells continuously exposed to EGF. EGF receptor was immunoprecipitated from cells labeled for 12 h with [35S] methionine in the absence or presence of 10 nM EGF. As expected, a single Mr = 170,000 polypeptide representing the mature EGF receptor was immune-precipitated from control cells. Surprisingly, immune precipitates from EGF-treated cells contained a prominent Mr = 125,000 receptor species, in addition to the Mr = 170,000 mature receptor. The Mr = 125,000 species was shown to be derived from the Mr = 170,000 form by pulse-chase experiments, in which the Mr = 170,000 receptor chased into the Mr = 125,000 form when EGF was included during the chase and by partial proteolysis. Both proteins became extensively phosphorylated on tyrosine residues in immune precipitate kinase assays. Treatment of immune precipitates with endoglycosidase F changed the apparent molecular weight of the Mr = 170,000 receptor to Mr = 130,000 and of the Mr = 125,000 form to Mr = 105,000, indicating that the appearance of the Mr = 125,000 protein was probably due to proteolysis. Antibody against the carboxyl terminus of the mature EGF receptor recognized the Mr = 125,000 protein, whereas antibody against the amino terminus did not. Incubation of cells with leupeptin prior to and during EGF addition inhibited processing to the Mr = 125,000 species. Methylamine and low temperature also inhibited the EGF-induced processing to the Mr = 125,000 form. These data suggest a possible role for proteolysis of the EGF receptor in receptor function.  相似文献   

6.
Circular dichroism (CD) and Fourier transform infrared spectroscopic studies have shown that the secondary structure of transforming growth factor alpha (TGF-alpha) is very similar to that of epidermal growth factor (EGF). The infrared spectra revealed a minor difference between the two proteins, in particular in the beta-sheet structure. A large difference was observed with CD between the two proteins in the apparent conformation each adopts when the disulfide bonds are reduced. Reduced TGF-alpha showed a distinct alpha-helical conformation only at a high trifluoroethanol concentration, whereas reduced EGF assumed an alpha-helical conformation in the absence of trifluoroethanol. This indicates that these two proteins adopt different secondary structures in the absence of disulfide bonds, although they assume similar folding structures in their presence. These data suggest that the disulfide bonds to a large degree dictate the conformation of these two proteins. Additionally, differences in the dynamic behavior between EGF and TGF-alpha were also observed. Infrared experiments showed that the hydrogen-deuterium exchange rate is much higher for TGF-alpha than for EGF, indicating that TGF-alpha is a more flexible molecule. The rate of reduction of the disulfide bonds by dithiothreitol was also faster for TGF-alpha. Therefore, it can be concluded that although EGF and TGF-alpha have a similar overall conformation, TGF-alpha is a more flexible molecule than EGF.  相似文献   

7.
Immunoreaction to TGF-alpha was limited to the basal epithelial cells of focal areas in the normal prostates. In benign prostatic hyperplasia (BPH) the immunostained areas were more widespread and immunolabelling was observed in both basal and columnar (secretory) cells of the epithelium. Some cells in the connective tissue stroma were also stained. In prostatic adenocarcinoma, epithelial immunostaining was even more extensive and intense than in BPH, and some stromal cells were also stained. Epidermal growth factor (EGF) immunostaining was only present in some basal cells in normal prostates. In BPH, this immunoreaction was strong in the basal cells and even stronger in the secretory cells. In prostatic cancer, the intensity of epithelial cell immunoreactivity was intermediate between that of normal prostates and that of BPH specimens. EGF-receptor immunostaining was focal and located in the basal cells in normal prostates. In BPH, labelling was also localized in basal cells but extended to wider areas. Some stromal cells appeared weakly labelled. In the prostatic carcinoma, both basal and columnar cells appeared stained and the number of immunolabelled stromal cells was higher than in BPH. The results presented suggest that, in normal conditions, EGF and TGF-alpha act as autocrine growth factors for the basal cells of the prostatic epithelium. In BPH this action is maintained and, in addition, the columnar cells start to secrete both factors which are bound by the basal cell receptors, giving rise to a paracrine regulation which probably overstimulates basal cell proliferation. In prostatic carcinoma, besides these regulatory mechanisms, the acquisition of EGF-receptors by the secretory cells develops an autocrine regulation which might induce their proliferation.  相似文献   

8.
This study was undertaken to determine the immunocytochemical localization of transforming growth factor α, epidermal growth factor and epidermal growth factor receptor in the endometrium of ovariectomized cats treated with oestradiol-17β and/or progesterone and in the endometrium and placenta of pregnant cats. Specific immunostaining was observed for all three antibodies. Moderate immunostaining for transforming growth factor α was observed in the epithelium of ovariectomized and oestrogen-treated cats. Dark epithelial staining was observed throughout pregnancy. The epithelial cells in progesterone-treated and peri-implantation animals contained dense deposits of reaction product, which were not reduced in intensity when immunoabsorbed antiserum was used. For epidermal growth factor, light--moderate epithelial staining was observed in ovariectomized and steroid-treated animals, and this increased in pregnant cats. Stromal staining for both the transforming and the epidermal growth factors was limited in steroid-treated animals and increased as pregnancy continued. Dark staining for epidermal growth factor receptor was observed in the epithelium and stroma in all the animals studied. The tips of surface epithelial convolutions in the non-implantation sites were always more darkly stained than in other regions of the surface epithelium. Staining in the placental trophoblast was limited to the syncytiotrophoblast for the two growth factors and the cytotrophoblast for the receptor during most of pregnancy and was absent late in pregnancy. The placental maternal giant cells contained specific immunoreactivity for all the immunogens from the middle of pregnancy to term. This study demonstrates that the two growth factors and the epidermal growth factor receptor are present in the endometrium and placenta of cats and suggests that these growth factors may play an autocrine/paracrine role during reproduction  相似文献   

9.
Y Yarden  J Schlessinger 《Biochemistry》1987,26(5):1443-1451
Epidermal growth factor (EGF) receptor from A-431 cells was purified by affinity chromatography with monoclonal anti-receptor antibodies. The purified radiolabeled receptor was incubated with EGF and then analyzed by gel electrophoresis under nondenaturing conditions. In these gels, the EGF receptor migrates in two forms: a fast-migrating (low) form and an EGF-induced slow-migrating (high) form. On the basis of the various control and calibration experiments described, it is concluded that the low form represents the monomeric 170-kilodalton EGF receptor and the high form represents an EGF receptor dimer. The binding of EGF causes a rapid, temperature-sensitive dimerization of the EGF receptor. Receptor dimerization is fully reversible and involves saturable, noncovalent interactions that are stable at neutral pH and in nonionic detergents. Both the monomeric and dimeric forms of the receptor bind EGF and undergo self-phosphorylation. The dimeric form of the receptor may possess higher ligand binding affinity, and it seems to be phosphorylated earlier than the monomeric form following the addition of EGF and [gamma-32P]ATP. On the basis of these results, it is concluded that receptor oligomerization is an intrinsic property of the occupied EGF receptor and that it may play a role in the activation of the kinase function and the subsequent transmembrane signaling process.  相似文献   

10.
Cellular uptake, nuclear translocation, and chromatin binding of epidermal growth factor (EGF) and monoclonal antibodies (MAbs) against the protein domain of the EGF surface receptor (MAb 425) and against the carbohydrate Y determinant on the EGF receptor (MAb Br 15-6A) were analyzed in cell lines that express surface EGF receptor. Both EGF and MAb 425 were translocated to the nucleus and bound in nondegraded form to the chromatin of all cells tested. MAb Br 15-6A was taken up only by SW 948 colorectal carcinoma cells which express EGF receptor whereas neither EGF nor MAb 425 was taken up by SW 707 colorectal carcinoma cells which do not express EGF receptor. MAb 425 immunoprecipitated a 230- to 250-kDa chromatin protein, which appears to be the EGF chromatin receptor. EGF was localized in a single EcoRI DNA fragment suggesting that the chromatin binding was highly specific. Binding of EGF to primarily DNase II-sensitive chromatin regions protected these regions from nuclease action. The role of growth factor binding to chromatin in neoplastic transformation is discussed.  相似文献   

11.
In this study, we aimed to detect the distribution of epidermal growth factor receptor (EGF-r) and transforming growth factor alpha in ovarian follicles at different stages. Indirect immunohistochemical methods and EGF-r polyclonal and TGF-alpha monoclonal antibodies were used; tissues were examined with light microscope. While dense collection of both growth factors were observed in primordial follicles, there was a strong reaction especially for EGF-r in follicles. Strong reactivity for EGF-r and moderate reactivity for TGF-alpha were observed in the nearby connective tissue. In examinations of primary follicles for EGF-r presence only, dye uptake was moderate in oocytes and dense in apical and basal cytoplasm of follicle cells. Reactivity was moderate in the nearby connective tissue. In the corpus luteum, there was weak reaction for both growth factors. But in stromal cells, reaction was strong. In degenerated follicle cells and in stroma of atretic follicles, reaction was positive for both growth factors; but EGF-r reactivity was more obvious. While strong staining was observed for both factors especially in granulosa cells surrounding the oocyte in Graafian follicle, moderate TGF-alpha reactivity was determined in oocyte cytoplasm. In conclusion, it is possible that EGF-r and TGF-alpha have ortocrine and paracrine effects on development and regression of human ovarian follicles.  相似文献   

12.
Transforming growth factor alpha (TGF-alpha), epidermal growth factor (EGF), and related factors mediate their biological effects by binding to the extracellular domain of the EGF receptor, which leads to activation of the receptor's cytoplasmic tyrosine kinase activity. Much remains to be determined, however, about the detailed molecular mechanism involved in this ligand-induced receptor activation. The determination of the binding mechanism and the related thermodynamic and kinetic parameters are of prime importance. To do so, we have used a surface plasmon resonance-based biosensor (the BIAcore) that allows the real-time recording of the interaction between TGF-alpha and the extracellular domain of the EGF receptor. By immobilizing different biotinylated derivatives of TGF-alpha on the sensor chip surface, we demonstrated that the N-terminus of TGF-alpha is not directly involved in receptor binding. By optimizing experimental conditions and interpreting the biosensor results by several data analysis methods, we were able to show that the data do not fit a simple binding model. Through global analysis of the data using a numerical integration method, we tested several binding mechanisms for the TGF-alpha/EGF receptor interaction and found that a conformational change model best fits the biosensor data. Our results, combined with other analyses, strongly support a receptor activation mechanism in which ligand binding results in a conformation-driven exposure of a dimerization site on the receptor.  相似文献   

13.
Intracellular calcium has been proposed to be an important mediator of signal transduction by various growth factors. We have studied the role of intracellular calcium in the mitogenic stimulation of C3H 10T1/2 mouse fibroblasts by epidermal growth factor and transforming growth factor alpha. We have found that both these peptides can cause a marked, transient increase in intracellular calcium levels. This rise occurs only in the presence of extracellular calcium. However, this calcium transient is not involved in the accumulation of c-fos and c-myc mRNAs which are elicited by these growth factors, since mRNA induction is observed to an equivalent degree in the absence or presence of extracellular calcium. These results demonstrate that although these growth factors cause an increase in intracellular calcium, the calcium second messenger system is not responsible for the induction of c-fos and c-myc mRNAs in C3H 10T1/2 fibroblasts.  相似文献   

14.
The epidermal growth factor receptor (EGFR) is a cyto-skeleton-binding protein. Although purified EGFR can interact with acting in vitro and normally at least 10% of EGFR exist in the insoluble cytoskeleton fraction of A431 cells, interaction of cytosolic EGFR with actin can only be visualized by fluorescence resonance energy transfer when epidermal growth factor presents in the cell medium. Results indicate that the correct orientation between EGFR and actin is important in the signal transduction process.  相似文献   

15.
16.
We have investigated the actions of transforming growth factor (TGF) type alpha on epidermal growth factor (EGF) receptor mRNA expression in MDA-468 human mammary carcinoma cells in serum-free media. We found that exposure of MDA-468 cells to TGF alpha results in elevated levels of EGF receptor mRNA. This increase in mRNA accumulation showed time and dose dependence. Addition of TGF beta 1 enhanced the accumulation of EGF receptor mRNA induced by TGF alpha in a time- and dose-dependent manner. We also found that triiodothyronine at physiological concentrations exerts synergistic control on the action of TGF alpha alone, or in association with TGF beta 1, on EGF receptor mRNA expression. Similarly, retinoic acid treatment also enhanced in a time- and dose-dependent manner the TGF alpha-dependent response of EGF receptor mRNA and acted synergistically with TGF beta 1. The results described here suggest that optimum regulation of EGF receptor gene expression by TGF alpha is a complex process involving synergistic interactions with heterologous growth factors and hormones.  相似文献   

17.
Dworkin I  Gibson G 《Genetics》2006,173(3):1417-1431
Wing development in Drosophila is a common model system for the dissection of genetic networks and their roles during development. In particular, the RTK and TGF-beta regulatory networks appear to be involved with numerous aspects of wing development, including patterning, cell determination, growth, proliferation, and survival in the developing imaginal wing disc. However, little is known as to how subtle changes in the function of these genes may contribute to quantitative variation for wing shape, per se. In this study 50 insertional mutations, representing 43 loci in the RTK, Hedgehog, TGF-beta pathways, and their genetically interacting factors were used to study the role of these networks on wing shape. To concurrently examine how genetic background modulates the effects of the mutation, each insertion was introgressed into two wild-type genetic backgrounds. Using geometric morphometric methods, it is shown that the majority of these mutations have profound effects on shape but not size of the wing when measured as heterozygotes. To examine the relationships between how each mutation affects wing shape hierarchical clustering was used. Unlike previous observations of environmental canalization, these mutations did not generally increase within-line variation relative to their wild-type counterparts. These results provide an entry point into the genetics of wing shape and are discussed within the framework of the dissection of complex phenotypes.  相似文献   

18.
The solution structure of the 53 amino acid peptide hormone, human epidermal growth factor (hEGF), has been determined to high resolution from nuclear magnetic resonance (n.m.r.) data. A large number of internuclear distance and dihedral restraints was obtained, including data from uniformly 15N-labelled hEGF. Dynamical simulated annealing methods using the program XPLOR were used for structure calculation. An improved protocol was developed combining efficient conformational searching at a reduced computational cost. The general fold of the calculated structures compared well with that of a derivative of the carboxy-terminally truncated hEGF determined previously. A group of 44 structures were calculated with no violations greater than 0.3 A and 3 degrees for distance and dihedral restraints, respectively. The average pairwise root mean square (r.m.s.) deviation of all backbone atoms for these structures was 2.25 A for all 53 residues, 0.92 A for the bulk of the protein, and 0.23 A for the functionally important carboxy-terminal domain. Two new helical segments containing highly conserved amino acids have been identified; one between cysteines 6 and 14 and a second at the end of the carboxy-terminal domain. New insight into the molecular architecture of the site of putative receptor binding was provided by comparing the structure of hEGF with its biologically equipotent analogue, human transforming growth factor alpha. This comparison revealed a close structural relationship between the two growth factors and provides an improved understanding of the structure/function relationships in EGF.  相似文献   

19.
Epidermal growth factor receptor signaling   总被引:5,自引:0,他引:5  
  相似文献   

20.
Embryonic testis development requires the morphogenesis of cords and growth of all cell populations to allow organ formation. It is anticipated that coordination of the growth and differentiation of various cell types involves locally produced growth factors. The current study was an investigation of the hypothesis that transforming growth factor-alpha (TGF-alpha) is involved in regulating embryonic testis growth. TGF-alpha has previously been shown to function in the postnatal testis. TGF-alpha and other members of the epidermal growth factor (EGF) family act through the epidermal growth factor receptor (EGFR) to stimulate cell proliferation and tissue morphogenesis. To understand the potential actions of TGF-alpha in the embryonic testis, general cell proliferation was investigated. Characterization of cell proliferation in the rat testis throughout embryonic and postnatal development indicated that each cell type has a distinct pattern of proliferation. Germ cell growth was transiently suppressed around birth. Interstitial cell growth was high embryonically and decreased to low levels around birth. A low level of Sertoli cell proliferation was observed at the onset of testis cord formation. Sertoli cell proliferation in early embryonic development was low; the levels were high later in embryonic development and remained high until the onset of puberty. Both TGF-alpha and the EGFR were shown to be expressed in the embryonic and postnatal rat and mouse testis. Perturbation of TGF-alpha function using neutralizing antibodies to TGF-alpha on testis organ cultures dramatically inhibited the growth of both embryonic and neonatal testis. TGF-alpha antibodies had no effect on cord formation. The TGF-alpha antibody was found to be specific for TGF-alpha in Western blots when compared to EGF and heregulin. Testis growth was also inhibited by perturbation of EGFR signaling using an EGFR kinase inhibitor. Therefore, TGF-alpha appears to influence embryonic testis growth but not morphogenesis (i.e., cord formation). Treatment of embryonic testis organ cultures with exogenous TGF-alpha also perturbed development, leading to an increased proliferation of unorganized cells. Testis from EGFR and TGF-alpha knockout mice were analyzed for testis morphology. TGF-alpha knockout mice had no alterations in testis phenotype, while EGFR knockout mice had a transient decrease in the relative amount of interstitial cells before birth. Observations suggest that there may be alternate or compensatory factors that allow testis growth to occur in the apparent absence of TGF-alpha actions in the mutant mice. In summary, the results obtained suggest that TGF-alpha is an important factor in the regulation of embryonic testis growth, but other factors will also be involved in the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号