首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Examples of G-protein-coupled receptors that can be biochemically detected in homo- or heteromeric complexes are emerging at an accelerated rate. Biophysical approaches have confirmed the existence of several such complexes in living cells and there is strong evidence to support the idea that dimerization is important in different aspects of receptor biogenesis and function. While the existence of G-protein-coupled-receptor homodimers raises fundamental questions about the molecular mechanisms involved in transmitter recognition and signal transduction, the formation of heterodimers raises fascinating combinatorial possibilities that could underlie an unexpected level of pharmacological diversity, and contribute to cross-talk regulation between transmission systems. Because G-protein-coupled receptors are major pharmacological targets, the existence of dimers could have important implications for the development and screening of new drugs. Here, we review the evidence supporting the existence of G-protein-coupled-receptor dimerization and discuss its functional importance.  相似文献   

2.
The neural crest is a fascinating population of cells that migrate long distances in the developing embryo to generate many different derivatives. It also occupies a central position in the origin and patterning of the vertebrate head, and has generated debates about issues such as cell programming versus plasticity and the role of cell death in early morphogenesis. These aspects of the field were revisited and discussed in a recent meeting organized to honour the retirement of Jim Weston and his contribution to the field.  相似文献   

3.
4.
Fruehauf S  Ho AD 《Cytotherapy》2005,7(3):301-308
The call for the meeting which took place in Heidelberg 13 January 2005, resulted in a high number of contributions covering a diversity of topics: embryonal stem cell research; molecular signaling pathways; assay systems for primitive, mesenchymal and epithelial stem cells; markers for transdifferentiation; and theoretical considerations including biomathematical modeling of stem cell development. The program was rounded off by pre-clinical and clinical applications of stem cell therapies, including new mobilization agents, treatment of myocardial infarction and chemoprotective gene transfer to stem cells.  相似文献   

5.
6.
A recent meeting titled "Conserved Mechanisms of Stem Cell Control and Regeneration" was held at the Biopharmaceutical Technology Center Institute (BTCI) in Madison, Wisconsin. The diversity of stem cells and biological contexts discussed highlight the field's rapid progress in deciphering the molecular basis of stem cell functions and emphasize the challenges facing the future exploitation of these cells as therapeutic vectors.  相似文献   

7.
8.
The neural crest is a fascinating embryonic population unique to vertebrates that is endowed with remarkable differentiation capacity. Thought to originate from ectodermal tissue, neural crest cells generate neurons and glia of the peripheral nervous system, and melanocytes throughout the body. However, the neural crest also generates many ectomesenchymal derivatives in the cranial region, including cell types considered to be of mesodermal origin such as cartilage, bone, and adipose tissue. These ectomesenchymal derivatives play a critical role in the formation of the vertebrate head, and are thought to be a key attribute at the center of vertebrate evolution and diversity. Further, aberrant neural crest cell development and differentiation is the root cause of many human pathologies, including cancers, rare syndromes, and birth malformations. In this review, we discuss the current findings of neural crest cell ontogeny, and consider tissue, cell, and molecular contributions toward neural crest formation. We further provide current perspectives into the molecular network involved during the segregation of the neural crest lineage.  相似文献   

9.
The assembly of eukaryotic chromatin, and the bearing of its structural organization on the regulation of gene expression, were the central topics of a recent conference organized jointly by the Biochemical Society and Wellcome Trust. A range of talks and poster presentations covered topical aspects of this research field and illuminated recent advances in our understanding of the structure and function of chromatin. The two-day meeting had stimulating presentations complemented with lively discourse and interactions of participants. In the present paper, we summarize the topics presented at the meeting, in particular highlighting subjects that are reviewed in more detail within this issue of Biochemical Society Transactions. The reports bring to life the truly fascinating molecular and structural biology of chromatin.  相似文献   

10.
This report focuses on the 2005 Annual meeting held in Caxambu, Minas Gerais, Brazil that was convened and organized by the Brazilian Society of Protozoology . This is an annual event and details of these meetings can be found on the Society's website. Within the space available it has been impossible to cover all the important and fascinating contributions and what is presented are our personal views of the meetings scientific highlights and new developments. The contents undoubtedly reflect each author's scientific interests and expertise. Fuller details of the round tables, seminars and posters can be consulted on line at .  相似文献   

11.
Against the backdrop of the scenic Lake Mendota, the C. elegans Neurobiology Meeting came to a head. Expertly organised by Brian Ackley and Bruce Bamber and hosted at the accommodating University of Wisconsin, the meeting brought together recent contributions from many of the major research groups working on the neurobiology of C. elegans. With seven keynote speakers, 57 verbal presentations and hundreds of posters, this exciting event spanned a fascinating 3 days from 27 June to 30 June 2010. In keeping with the tradition of this conference, the event on the whole was spearheaded by young investigators from several research institutions. The meeting served to emphasise the gains enjoyed by taking advantage of the genetic tractability of the worm. A thread that ran through the meeting was the importance of integrating data across different levels of biological organisation to permit delineation of the physiology underpinning discrete behavioural states. Recent advances in optogenetics and microfluidics were at the forefront of refining these analyses. The presentations discussed in this meeting report are a selection which reflects this overarching theme.  相似文献   

12.
The diversity of hypersaline environments and the physiology of representative organisms are only beginning to be understood. Recent progress in this area is documented in "Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya" – eds. Nina Gunde-Cimerman, Aharon Oren and Ana Plemenitas. The 34 chapters successfully paint a fascinating emerging picture of these environments and the microorganisms inhabiting them.  相似文献   

13.
Actinomycetes genome sequencing and bioinformatic analyses revealed a large number of “cryptic” gene clusters coding for secondary metabolism. These gene clusters have the potential to increase the chemical diversity of natural products. Indeed, reexamination of well-characterized actinomycetes strains revealed a variety of hidden treasures. Growing information about this metabolic diversity has promoted further development of strategies to discover novel biologically active compounds produced by actinomycetes. This new task for actinomycetes genetics requires the development and use of new approaches and tools. Application of synthetic biology approaches led to the development of a set of strategies and tools to satisfy these new requirements. In this review, we discuss strategies and methods to discover small molecules produced by these fascinating bacteria and also discuss a variety of genetic instruments and regulatory elements used to activate secondary metabolism cryptic genes for the overproduction of these metabolites.  相似文献   

14.
Images of the exquisitely formed apparatus of the nervous system have great potential to capture the imagination. However, the fascinating complexity and diversity of neuronal form has only rarely been celebrated in broader visual culture. We discuss how scientific and cultural practices at the time of the neuron's discovery generated a legacy of schematic and simplified popular neuronal imagery, which is only now being revised in the light of technological advances and a changing artistic climate.  相似文献   

15.
In September 1999 the author first visited Sardinia in order to participate in a meeting of the federative International Committee on Anatomical Terminology, organised by Professor Alessandro Riva. Our stay in Cagliari coincided with the 200th anniversary of the appointment of Francesco Antonio Boi as the first Professor of Anatomy at the University of Cagliari. After a small ceremony to mark this bi-centennial, we visited the Collection of Anatomical Waxes of Clemente Susini at the University. The fascinating history of this collection has been described in various publications (Zanobio, 1979; Cattaneo and Riva, 1993; Riva et al., 1997) and was further expounded by Professor Riva at the bi-centenary.  相似文献   

16.
17.
The regulation of follicular development and atresia is a complex process and involves interactions between endocrine factors (gonadotropins) and intraovarian regulators (sex steroids, growth factors and cytokines) in the control of follicular cell fate (i.e. proliferation, differentiation and programmed cell death). Granulosa and theca cells are key players in this fascinating process. As atresia is the fate of most follicles, understanding of how these physiological regulators participate in determining the destiny of the follicle (to degenerate or to ovulate) at cellular and subcellular levels is fundamental. This short review summarizes the role of intraovarian modulators of programmed cell death in the induction of atresia during follicular development.  相似文献   

18.
19.
In multicellular organisms, most cells are confined to a particular tissue. However, some cells invade organs during normal development and in diseases (e.g., angiogenesis and cancer). Recent studies reveal a fascinating step-by-step process in which specific vulval cells induce and attract a single gonadal cell to invade an epithelial tubular organ in order to connect the uterus to the vulva in C. elegans.  相似文献   

20.
Cell membranes are composed of a lipid bilayer, containing proteins that span the bilayer and/or interact with the lipids on either side of the two leaflets. Although recent advances in lipid analytics show that membranes in eukaryotic cells contain hundreds of different lipid species, the function of this lipid diversity remains enigmatic. The basic structure of cell membranes is the lipid bilayer, composed of two apposing leaflets, forming a two-dimensional liquid with fascinating properties designed to perform the functions cells require. To coordinate these functions, the bilayer has evolved the propensity to segregate its constituents laterally. This capability is based on dynamic liquid-liquid immiscibility and underlies the raft concept of membrane subcompartmentalization. This principle combines the potential for sphingolipid-cholesterol self-assembly with protein specificity to focus and regulate membrane bioactivity. Here we will review the emerging principles of membrane architecture with special emphasis on lipid organization and domain formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号